Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Biomech ; 171: 112200, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38905926

RESUMO

Low-cost markerless motion capture systems offer the potential for 3D measurement of joint angles during human movement. This study aimed to validate a smartphone-based markerless motion capture system's (OpenCap) derived lower extremity kinematics during common return-to-sport tasks, comparing it to an established optoelectronic motion capture system. Athletes with prior anterior cruciate ligament reconstruction (12-18 months post-surgery) performed three movements: a jump-landing-rebound, single-leg hop, and lateral-vertical hop. Kinematics were recorded concurrently with two smartphones running OpenCap's software and with a 10-camera, marker-based motion capture system. Validity of lower extremity joint kinematics was assessed across 437 recorded trials using measures of agreement (coefficient of multiple correlation: CMC) and error (mean absolute error: MAE, root mean squared error: RMSE) across the time series of movement. Agreement was best in the sagittal plane for the knee and hip in all movements (CMC > 0.94), followed by the ankle (CMC = 0.84-0.93). Lower agreement was observed for frontal (CMC = 0.47-0.78) and transverse (CMC = 0.51-0.6) plane motion. OpenCap presented a grand mean error of 3.85° (MAE) and 4.34° (RMSE) across all joint angles and movements. These results were comparable to other available markerless systems. Most notably, OpenCap's user-friendly interface, free software, and small physical footprint have the potential to extend motion analysis applications beyond conventional biomechanics labs, thus enhancing the accessibility for a diverse range of users.


Assuntos
Volta ao Esporte , Humanos , Fenômenos Biomecânicos , Masculino , Feminino , Adulto , Movimento/fisiologia , Articulação do Joelho/fisiologia , Articulação do Joelho/cirurgia , Extremidade Inferior/fisiologia , Reconstrução do Ligamento Cruzado Anterior/métodos , Amplitude de Movimento Articular/fisiologia , Adulto Jovem , Smartphone , Captura de Movimento
2.
Artigo em Inglês | MEDLINE | ID: mdl-38833397

RESUMO

Designing an exoskeleton that can improve user capabilities is a challenging task, and most designs rely on experiments to achieve this goal. A different approach is to use simulation-based designs to determine optimal device parameters. Most of these simulations use full trajectory tracking limb kinematics during a natural gait as a reference. However, exoskeletons typically change the natural gait kinematics of the user. Other types of simulations assume that human gait is optimized for a cost function that combines several objectives, such as the cost of transport, injury prevention, and stabilization. In this study, we use a 2D OpenSim model consisting of 10 degrees of freedom and considering 18 muscles, together with the Moco optimization tool, to investigate the differences between these two approaches with respect to running with a passive knee exoskeleton. Utilizing this model, we test the effect of a full trajectory tracking objective with different weights (representing the importance of the objective in the optimization cost function) and show that when using weights that are typically used in the literature, there is no deviation from the experimental data. Next, we develop a multi-objective cost function with foot clearance term based on peak knee angle during swing, that achieves trajectories similar (RMSE=7.4 deg) to experimental running data. Finally, we investigate the effect of different parameters in the design of a clutch-based passive knee exoskeleton (1.5 kg at each leg) and find that a design that utilizes a 2.5 Nm/deg spring achieves an improvement of up to 8% in net metabolic energy. Our results show that tracking objectives in the cost function, even with a low weight, hinders the simulation's ability to change the gait trajectory. Thus, there is a need for other predictive simulation methods for exoskeletons.


Assuntos
Simulação por Computador , Exoesqueleto Energizado , Marcha , Corrida , Humanos , Fenômenos Biomecânicos , Marcha/fisiologia , Corrida/fisiologia , Músculo Esquelético/fisiologia , Desenho de Equipamento , Algoritmos , Joelho/fisiologia , Articulação do Joelho/fisiologia , Desenho de Prótese
3.
Sci Rep ; 14(1): 11903, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789519

RESUMO

Technologically advanced running shoes (TARS) improve performance compared to classical running shoes (CRS). Improved race performance has been attributed to metabolic savings in male runners, but it remains unclear if these same benefits are experienced among females and in recreational runners. The mechanisms behind these benefits are still not fully understood despite the need for optimisation, and their influence on injury mechanisms has not been explored. Here we combined biomechanical, physiological, and modelling approaches to analyse joint mechanics, oxygen uptake, and tibial load in nineteen male and female recreational runners running with CRS and TARS at their individual lactate threshold speed (12.4 ± 1.9 km/h). Oxygen uptake was 3.0 ± 1.5% lower in TARS than in CRS. Ankle dorsiflexion, joint moment and joint power were reduced in TARS compared to CRS at various phases of stance including midstance, while knee joint mechanics were mostly similar throughout. There were no significant differences for tibial bending moment during the stance phase but cumulative tibial damage per kilometre was 12 ± 9% lower in TARS compared to CRS. Our results suggest that running with TARS reduces oxygen cost in recreational female and male runners, which may partly be explained by differences in lower limb joint mechanics. The lower cumulative tibial bone load with TARS may allow runners to run longer distances in this type of shoe compared to CRS.


Assuntos
Consumo de Oxigênio , Corrida , Sapatos , Tíbia , Humanos , Corrida/fisiologia , Masculino , Feminino , Adulto , Fenômenos Biomecânicos , Tíbia/fisiologia , Consumo de Oxigênio/fisiologia , Adulto Jovem , Articulação do Joelho/fisiologia , Oxigênio/metabolismo
4.
J Biomech Eng ; 146(10)2024 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-38683101

RESUMO

Understanding the biomechanical impact of injuries and reconstruction of the anterior cruciate ligament (ACL) is vital for improving surgical treatments that restore normal knee function. The purpose of this study was to develop a technique that enables parametric analysis of the effect of the ACL reconstruction (ACLR) in cadaver knees, by replacing its contributions with that of a specimen-specific virtual ACLR that can be enabled, disabled, or modified. Twelve ACLR reconstructed knees were mounted onto a motion simulator. In situ ACLR graft forces were measured using superposition, and these data were used to design specimen-specific virtual ACLRs that would yield the same ligament force-elongation behaviors. Tests were then repeated using the virtual ACLR in place of the real ACLR and following that in ACL deficient knee by disabling the virtual ACLR. In comparison to the ACL deficient state, the virtual ACLRs were able to restore knee stability to the same extent as real ACLRs. The average differences between the anterior tibial translation (ATT) of the virtual ACLR versus the real ACLR were +1.6 ± 0.9 mm (p = 0.4), +2.1 ± 0.4 mm (p = 0.4), and +1.0 ± 0.9 mm (p = 0.4) during Anterior drawer, Lachman and Pivot-shift tests, respectively, which is small in comparison to the full ATT range of motion (ROM) of these knees. Therefore, we conclude that a virtual ACLR can be used in place of real ACLR during biomechanical testing of cadaveric knees. This capability opens the door for future studies that can leverage parameterization of the ACLR for surgical design optimization.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Articulação do Joelho , Fenômenos Mecânicos , Humanos , Fenômenos Biomecânicos , Articulação do Joelho/cirurgia , Articulação do Joelho/fisiologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Amplitude de Movimento Articular
5.
Med Sci Sports Exerc ; 56(8): 1368-1377, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547400

RESUMO

PURPOSE: This study aimed to determine associations between running economy (RE) and running sagittal plane kinematic and kinetic parameters. METHOD: A total of 30 male recreational runners (age: 21.21 ± 1.22 yr, V̇O 2max : 54.61 ± 5.42 mL·kg -1 ·min -1 ) participated in two separate test sessions. In the first session, the participant's body composition and RE at 10 and 12 km·h -1 were measured. In the second session, measurements were taken for the sagittal plane of hip, knee, and ankle angles and range of motion (ROM), as well as ground reaction force. RESULTS: Moderate correlations were found between lower energy costs at 12 km·h -1 and smaller hip flexion at toe-off ( r = 0.373) as well as smaller peak hip flexion during stance ( r = 0.397). During the swing phase, lower energy costs at 10 km·h -1 were moderately correlated with smaller peak knee flexion and smaller knee flexion and extension ROM ( r = 0.366-0.443). Lower energy costs at 12 km·h -1 were moderately correlated with smaller peak hip and knee flexion as well as knee extension ROM ( r = 0.369-0.427). In terms of kinetics, there was a moderate correlation between higher energy costs at 10 km·h -1 and larger peak active force, as well as larger peak braking and propulsion force ( r = -0.470-0.488). Lower energy costs at 12 km·h -1 were moderately to largely correlated with smaller peak impact and braking force ( r = 0.486 and -0.500, respectively). Regarding the statistical parametric mapping analysis, most outcomes showed associations with RE at 10 km·h -1 , including knee flexion (42.5%-65.5% of the gait cycle), ankle plantarflexion (32.5%-36% of the gait cycle), active force (30.5%-35% of the stance phase), and propulsion force (68%-72.5% of the stance phase). Lower energy costs at 12 km·h -1 were correlated with smaller hip flexion (5.5%-12% and 66.5%-74%) and smaller knee flexion (57%-57.5%) during the running gait cycle. CONCLUSIONS: This study indicates that biomechanical factors are associated with RE in recreational runners. To design effective training methods to improve RE, coaches and runners should focus on the sagittal plane kinematics of the hip, knee, and ankle, as well as lower vertical and horizontal kinetic parameters.


Assuntos
Metabolismo Energético , Extremidade Inferior , Amplitude de Movimento Articular , Corrida , Humanos , Corrida/fisiologia , Masculino , Fenômenos Biomecânicos , Amplitude de Movimento Articular/fisiologia , Adulto Jovem , Extremidade Inferior/fisiologia , Metabolismo Energético/fisiologia , Cinética , Consumo de Oxigênio/fisiologia , Articulação do Tornozelo/fisiologia , Joelho/fisiologia , Articulação do Quadril/fisiologia , Tornozelo/fisiologia , Articulação do Joelho/fisiologia , Composição Corporal , Quadril/fisiologia , Marcha/fisiologia
6.
Sci Rep ; 14(1): 3567, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347085

RESUMO

Excessive loads at lower limb joints can lead to pain and degenerative diseases. Altering joint loads with muscle coordination retraining might help to treat or prevent clinical symptoms in a non-invasive way. Knowing how much muscle coordination retraining can reduce joint loads and which muscles have the biggest impact on joint loads is crucial for personalized gait retraining. We introduced a simulation framework to quantify the potential of muscle coordination retraining to reduce joint loads for an individuum. Furthermore, the proposed framework enables to pinpoint muscles, which alterations have the highest likelihood to reduce joint loads. Simulations were performed based on three-dimensional motion capture data of five healthy adolescents (femoral torsion 10°-29°, tibial torsion 19°-38°) and five patients with idiopathic torsional deformities at the femur and/or tibia (femoral torsion 18°-52°, tibial torsion 3°-50°). For each participant, a musculoskeletal model was modified to match the femoral and tibial geometry obtained from magnetic resonance images. Each participant's model and the corresponding motion capture data were used as input for a Monte Carlo analysis to investigate how different muscle coordination strategies influence joint loads. OpenSim was used to run 10,000 simulations for each participant. Root-mean-square of muscle forces and peak joint contact forces were compared between simulations. Depending on the participant, altering muscle coordination led to a maximum reduction in hip, knee, patellofemoral and ankle joint loads between 5 and 18%, 4% and 45%, 16% and 36%, and 2% and 6%, respectively. In some but not all participants reducing joint loads at one joint increased joint loads at other joints. The required alteration in muscle forces to achieve a reduction in joint loads showed a large variability between participants. The potential of muscle coordination retraining to reduce joint loads depends on the person's musculoskeletal geometry and gait pattern and therefore showed a large variability between participants, which highlights the usefulness and importance of the proposed framework to personalize gait retraining.


Assuntos
Marcha , Músculos , Adolescente , Humanos , Método de Monte Carlo , Marcha/fisiologia , Fêmur/fisiologia , Tíbia/fisiologia , Articulação do Joelho/fisiologia , Fenômenos Biomecânicos , Músculo Esquelético/fisiologia
7.
Med Eng Phys ; 117: 103997, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37331751

RESUMO

BACKGROUND: The inhomogeneous distribution of collagen fiber in cartilage can substantially influence the knee kinematics. This becomes vital for understanding the mechanical response of soft tissues, and cartilage deterioration including osteoarthritis (OA). Though the conventional computational models consider geometrical heterogeneity along with fiber reinforcements in the cartilage model as material heterogeneity, the influence of fiber orientation on knee kinetics and kinematics is not fully explored. This work examines how the collagen fiber orientation in the cartilage affects the healthy (intact knee) and arthritic knee response over multiple gait activities like running and walking. METHODS: A 3D finite element knee joint model is used to compute the articular cartilage response during the gait cycle. A fiber-reinforced porous hyper elastic (FRPHE) material is used to model the soft tissue. A split-line pattern is used to implement the fiber orientation in femoral and tibial cartilage. Four distinct intact cartilage models and three OA models are simulated to assess the impact of the orientation of collagen fibers in a depth wise direction. The cartilage models with fibers oriented in parallel, perpendicular, and inclined to the articular surface are investigated for multiple knee kinematics and kinetics. FINDINGS: The comparison of models with fiber orientation parallel to articulating surface for walking and running gait has the highest elastic stress and fluid pressure compared with inclined and perpendicular fiber-oriented models. Also, the maximum contact pressure is observed to be higher in the case of intact models during the walking cycle than for OA models. In contrast, the maximum contact pressure is higher during running in OA models than in intact models. Additionally, parallel-oriented models produce higher maximum stresses and fluid pressure for walking and running gait than proximal-distal-oriented models. Interestingly, during the walking cycle, the maximum contact pressure with intact models is approximately three times higher than on OA models. In contrast, the OA models exhibit higher contact pressure during the running cycle. INTERPRETATION: Overall, the study indicates that collagen orientation is crucial for tissue responsiveness. This investigation provides insights into the development of tailored implants.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Fenômenos Biomecânicos , Cinética , Análise de Elementos Finitos , Articulação do Joelho/fisiologia , Cartilagem Articular/fisiologia , Colágeno , Estresse Mecânico
8.
Res Q Exerc Sport ; 94(3): 783-792, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-35426761

RESUMO

Background: Thigh muscle strength capacities are major modifiable risk factors for knee and thigh muscle injuries. Therefore, their valid assessment is essential. Most isokinetic knee tests are conducted in a seated position and rely on dynamometer-based data. However, their accuracy is doubtful because axis alignment is erroneous. Purpose: This study investigated if hip angle (flexed vs. extended) and assessment method (dynamometer-based vs. camera-based) affect isokinetic outcome parameters. Methods: Sixteen healthy male participants (27 years, 184 cm, 80 kg) performed discrete isokinetic tests of the knee flexors and extensors (60°/s) while their kinematics were captured (100 fps). Results: Both assessment methods revealed very strong linear relationships (94% ≤ R2 ≤ 98%) although peak moments (d ≤ 0.87), contractional work (d ≤ 1.26), and functional knee flexor:extensor ratios (d ≤ 0.81) significantly differed. Seated knee flexor tests demonstrated the largest knee trajectory center's misalignment (x = 4.0 cm, z = -2.5 cm; 1.37 ≤ d ≤ 4.74). Conclusion: Hip-angle induced kinematic changes did not affect the relation between the lever arms, thus causing highly proportional deviations of kinetic parameters. The assessment method altered the magnitude, but not the message of isokinetic knee tests, which should be preferentially performed with extended hip joint to improve axis alignment. Knowledge of these kinetic and kinematic interactions assists practitioners and scientists with isokinetic tests and/or rehabilitation training to ensure reasonable interpretations of gathered isokinetic outcomes.


Assuntos
Músculo Esquelético , Coxa da Perna , Masculino , Humanos , Músculo Esquelético/fisiologia , Articulação do Joelho/fisiologia , Joelho/fisiologia , Força Muscular/fisiologia
9.
J Strength Cond Res ; 37(4): 951-968, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36227232

RESUMO

ABSTRACT: Glänzel, MH, Rodrigues, DR, Petter, GN, Pozzobon, D, Vaz, MA, and Geremia, JM. Foam rolling acute effects on myofascial tissue stiffness and muscle strength: a systematic review and meta-analysis. J Strength Cond Res 37(4): 951-968, 2023-Foam rolling (FR) is widely used in rehabilitation and physical training. However, the effects of FR on myofascial tissue stiffness and muscle strength remain unclear. This study aimed to perform a systematic review with meta-analysis of trials that tested the FR acute effects during warm-up on the myofascial tissue stiffness and muscle strength in healthy adults or athletes. This systematic review (CRD42021227048) was performed according to Cochrane's recommendations, with searches performed in PubMed, Web of Science, Embase, and PEDro databases. Syntheses of included studies' data were performed, and the PEDro scale was used to assess the methodological quality of the studies. Certainty of evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluations approach. Twenty included studies assessed trunk and thigh fascial tissue stiffness, and thigh and calf muscle stiffness, whereas muscle strength was assessed in the knee extensors and flexors, and plantar flexors muscles. Qualitative analysis showed decreases in fascial ( n = 2) and muscle ( n = 5) stiffness after FR. However, the meta-analysis showed no effects of FR on myofascial tissue stiffness. Both qualitative and quantitative analyses showed no effects of FR on isometric muscle strength, eccentric torque, and rate of force development. However, the knee extensor concentric torque increased after FR. Foam rolling increases the knee extensor concentric torque, but it does not acutely change the myofascial tissue stiffness and isometric muscle strength. However, evidence of these studies provides low certainty to state that FR does not change these parameters. Therefore, high methodological quality studies should be performed to better ascertain the effects of FR on the myofascial tissue stiffness and muscle strength.


Assuntos
Joelho , Músculo Esquelético , Adulto , Humanos , Músculo Esquelético/fisiologia , Joelho/fisiologia , Articulação do Joelho/fisiologia , Extremidade Inferior , Força Muscular/fisiologia , Amplitude de Movimento Articular/fisiologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-36293974

RESUMO

BACKGROUND AND OBJECTIVES: Muscle knee strength is a major parameter that allows return to running. Isokinetic strength parameters may predict return to running 4 months after ACLR using the bone-patellar-tendon-bone procedure. MATERIALS AND METHODS: The isokinetic knee strength of 216 patients (24.5 ± 5 years) was measured 4 months after surgery, and progressive return to running was allowed. The effectiveness of return to running was reported at 6 months. Return to running prediction was established using multivariate logistic regression. Predictive parameters were presented with a ROC curve area to define the best cut-off, with sensibility (Se) and specificity (Sp). RESULTS: A model was established, including the limb symmetry index (LSI), and 103 patients (47.6%) were able to run between the fourth and the sixth month after surgery. These patients presented significantly fewer knee complications, a better Lysholm score, a better Quadriceps and Hamstring LSI and better quadriceps strength reported for body weight on the operated limb. The best model was established including the Quadriceps and Hamstring LSI at 60°/s and the Lysholm score. The cut-off for Quadriceps LSI was 60% (ROC curve area: 0.847; Se: 77.5%; Sp: 77%), for Hamstring LSI 90% (ROC curve area: 0.716; Se: 65.7%; Sp: 60.2%) and for Lyshom score 97 points (ROC curve area: 0.691; Se: 65%; Sp: 66%). CONCLUSION: Four months after ACLR using a bone-patellar-tendon-bone procedure, the Quadriceps and Hamstring LSI associated to the Lysholm score could help make the decision to allow return to running.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Ligamento Patelar , Corrida , Humanos , Ligamento Patelar/cirurgia , Lesões do Ligamento Cruzado Anterior/cirurgia , Articulação do Joelho/fisiologia , Força Muscular/fisiologia
11.
Knee ; 39: 38-49, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36126493

RESUMO

BACKGROUND: Patients with knee joint pathology present with variable muscular responses across the muscles of the lower limb and pelvis. Conventional approaches to characterizing muscle function are limited to gross strength assessments that may overlook subtle changes both in the thigh, hip and shank musculature. PURPOSE: To describe individualized patterns of lower extremity muscle volumes in patients with knee pathologies. METHODS: This was a retrospective case series performed in a University medical center. Nine patients diagnosed with meniscus tear recommended to undergo meniscectomy volunteered. Participants underwent 3.0 Tesla magnetic resonance imaging (MRI) of the lower extremities. Thirty-five MRI-derived muscle volumes were compared between limbs and expressed as percentage asymmetry. For additional context, z-scores were also calculated for mass- and height-normalized muscles and pre-determined muscle groupings relative to a normative database. RESULTS: There were no consistent patterns observed when considering between-limb asymmetries among all patients. The ankle musculature (dorsiflexors, plantar flexors, and invertors) was the only muscle group to be consistently smaller than normal for all patients, with the psoas major and flexor hallucis longus being the only individual muscles. The severity or chronicity of injury and presence of surgical intervention did not appear to have a clear effect on muscle volumes. CONCLUSION: Patients with a history of meniscal pathology demonstrate inconsistent patterns of lower extremity muscle volumes about the hip, knee, and ankle between limbs and in comparison to uninjured individuals. These data support the need for individualized assessment and intervention in this population.


Assuntos
Traumatismos do Joelho , Força Muscular , Humanos , Força Muscular/fisiologia , Estudos Retrospectivos , Traumatismos do Joelho/diagnóstico por imagem , Traumatismos do Joelho/cirurgia , Músculo Esquelético , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Articulação do Joelho/fisiologia
12.
Sensors (Basel) ; 22(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36015914

RESUMO

To improve exoskeleton designs, it is crucial to understand the effects of the placement of such added mass on a broad spectrum of users. Most prior studies on the effects of added mass on gait have analyzed young adults using discrete point analysis. This study quantifies the changes in gait characteristics of young and middle-aged adults in response to added mass across the whole gait cycle using statistical parametric mapping. Fourteen middle-aged and fourteen younger adults walked during 60 s treadmill trials under nine different loading conditions. The conditions represented full-factorial combinations of low (+3.6 lb), medium (+5.4 lb), and high (+10.8 lb) mass amounts at the thighs and pelvis. Joint kinematics, kinetics and muscle activations were evaluated. The young and middle-aged adults had different responses to added mass. Under pelvis loading, middle-aged adults did not adopt the same kinematic responses as younger adults. With thigh loading, middle-aged adults generally increased knee joint muscle activity around heel strike, which could have a negative impact on joint loading. Overall, as age may impact the user's response to an exoskeleton, designers should aim to include sensors to directly monitor user response and adaptive control approaches that account for these differences.


Assuntos
Exoesqueleto Energizado , Marcha , Fenômenos Biomecânicos/fisiologia , Marcha/fisiologia , Humanos , Articulação do Joelho/fisiologia , Pessoa de Meia-Idade , Caminhada/fisiologia , Adulto Jovem
13.
IEEE Trans Biomed Eng ; 69(9): 2860-2871, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35239473

RESUMO

Joint tissue mechanics (e.g., stress and strain) are believed to have a major involvement in the onset and progression of musculoskeletal disorders, e.g., knee osteoarthritis (KOA). Accordingly, considerable efforts have been made to develop musculoskeletal finite element (MS-FE) models to estimate highly detailed tissue mechanics that predict cartilage degeneration. However, creating such models is time-consuming and requires advanced expertise. This limits these complex, yet promising, MS-FE models to research applications with few participants and makes the models impractical for clinical assessments. Also, these previously developed MS-FE models have not been used to assess activities other than gait. This study introduces and verifies a semi-automated rapid state-of-the-art MS-FE modeling and simulation toolbox incorporating an electromyography- (EMG) assisted MS model and a muscle-force driven FE model of the knee with fibril-reinforced poro(visco)elastic cartilages and menisci. To showcase the usability of the pipeline, we estimated joint- and tissue-level knee mechanics in 15 KOA individuals performing different daily activities. The pipeline was verified by comparing the estimated muscle activations and joint mechanics to existing experimental data. To determine the importance of the EMG-assisted MS analysis approach, results were compared to those from the same FE models but driven by static-optimization-based MS models. The EMG-assisted MS-FE pipeline bore a closer resemblance to experiments compared to the static-optimization-based MS-FE pipeline. Importantly, the developed pipeline showed great potential as a rapid MS-FE analysis toolbox to investigate multiscale knee mechanics during different activities of individuals with KOA.


Assuntos
Articulação do Joelho , Fenômenos Mecânicos , Fenômenos Biomecânicos , Eletromiografia , Análise de Elementos Finitos , Marcha/fisiologia , Humanos , Articulação do Joelho/fisiologia , Modelos Biológicos , Músculos
14.
Eur J Sport Sci ; 22(2): 257-268, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33191856

RESUMO

Although isokinetic strength testing is commonly used in hamstring strain injury (HSI) rehabilitation and prevention, research findings concerning its predictive value remain inconclusive. Existing research focuses on peak torque (PT) and angle of PT, not analysing the torque behaviour throughout the testing range of motion (ROM). This study intended to assess the value of isokinetic curve evaluation in association with HSI. A sample of 116 male football players with and without a recent HSI history was submitted to bilateral isokinetic assessment of the knee and hip muscles. Raw isokinetic data were filtered and normalized prior to curve analysis submission in MATLAB. Torque development of each muscle group throughout the entire testing ROM was assessed using HSI history as an independent variable. Curve analysis revealed significant differences in torque behaviour in function of injury history. Players with an HSI history demonstrated significantly stronger concentric knee flexion and extension, eccentric knee extension and concentric hip extension patterns compared to the controls and their uninjured limb. HSI history was also associated with lower concentric hip flexion torques and lower mixed H:Q ratios compared to the control group and their contralateral limb. HSI history was associated with altered knee and hip muscle strength profiles, potentially due to isolated focus on local strength training in rehabilitation or mechanisms of neuromuscular inhibition. Because the differences in torque amplitude were range-dependent and did not systematically concur with the point of PT achievement, isokinetic strength evaluation should most probably be conducted using curve analysis.


Assuntos
Músculos Isquiossurais , Futebol , Músculos Isquiossurais/fisiologia , Humanos , Articulação do Joelho/fisiologia , Masculino , Força Muscular/fisiologia , Músculo Quadríceps/fisiologia , Futebol/fisiologia , Torque
15.
J Strength Cond Res ; 36(9): 2417-2426, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33273304

RESUMO

ABSTRACT: Hirsch, SM, Chapman, CJ, Frost, DM, and Beach, TAC. Mechanical energy expenditure at lumbar spine and lower extremity joints during the single-leg squat is affected by the nonstance foot position. J Strength Cond Res 36(9): 2417-2426, 2022-Previous research has shown that discrete kinematic and kinetic quantities during bodyweight single-leg squat (SLS) movements are affected by elevated foot positioning and sex of the performer, but generalizations are limited by the high-dimensional data structure reported. Using a 3D inverse dynamical linked-segment model, we quantified mechanical energy expenditure (MEE) at each joint in the kinetic chain, the total MEE (sum of MEE across aforesaid joints), and the relative contribution of each joint to total MEE during SLSs performed with elevated foot positioned beside stance leg (SLS-Side), and in-front of (SLS-Front) and behind (SLS-Back) the body. Total MEE differed between SLS variations ( p = 0.002), with the least amount observed in the SLS-Back (effect size [ES] = 0.066-0.069). Approximately 50% of total MEE was contributed by the knee joint in each SLS variation, whereas MEE at the ankle, hip, and lumbar spine (in absolute and relative terms) varied complexly as a function of the elevated foot position. Total MEE ( p = 0.0192, ES = 0.852) and the absolute MEE at the knee and spine was greater in men across the SLS variations performed ( p = 0.025-0.036, ES = 0.715-0.766), but only the lumbar spine contribution to total MEE was larger in men across all SLS variations ( p = 0.045, ES = 0.607). Otherwise, there were no other sex-specific responses observed. Biomechanically, SLS movements are generally "knee-dominant," but changing elevated foot position effectively redistributes MEE among other joints in the linkage. Consistent with the previous conclusions reached based on discrete kinematic and kinetic data, not all SLSs are equal.


Assuntos
Perna (Membro) , Postura , Fenômenos Biomecânicos , Metabolismo Energético , Feminino , Humanos , Articulações , Articulação do Joelho/fisiologia , Perna (Membro)/fisiologia , Extremidade Inferior/fisiologia , Masculino , Postura/fisiologia
16.
Sci Rep ; 11(1): 14348, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253839

RESUMO

Knee osteoarthritis (KOA) is an orthopedic disorder with a substantial impact on mobility and quality of life. An accurate assessment of the KOA levels is imperative in prioritizing meaningful patient care. Quantifying osteoarthritis features such as osteophytes and joint space narrowing (JSN) from low-resolution images (i.e., X-ray images) are mostly subjective. We implement an objective assessment and quantification of KOA to aid practitioners. In particular, we developed an interpretable ensemble of convolutional neural network (CNN) models consisting of three modules. First, we developed a scale-invariant and aspect ratio preserving model to localize Knee joints. Second, we created multiple instances of "hyperparameter optimized" CNN models with diversity and build an ensemble scoring system to assess the severity of KOA according to the Kellgren-Lawrence grading (KL) scale. Third, we provided visual explanations of the predictions by the ensemble model. We tested our models using a collection of 37,996 Knee joints from the Osteoarthritis Initiative (OAI) dataset. Our results show a superior (13-27%) performance improvement compared to the state-of-the-art methods.


Assuntos
Articulação do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/diagnóstico por imagem , Simulação por Computador , Humanos , Processamento de Imagem Assistida por Computador , Articulação do Joelho/fisiologia , Aprendizado de Máquina , Rede Nervosa , Osteoartrite do Joelho/fisiopatologia
17.
Science ; 372(6545): 957-960, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34045349

RESUMO

Evolutionary pressures have led humans to walk in a highly efficient manner that conserves energy, making it difficult for exoskeletons to reduce the metabolic cost of walking. Despite the challenge, some exoskeletons have managed to lessen the metabolic expenditure of walking, either by adding or storing and returning energy. We show that the use of an exoskeleton that strategically removes kinetic energy during the swing period of the gait cycle reduces the metabolic cost of walking by 2.5 ± 0.8% for healthy male users while converting the removed energy into 0.25 ± 0.02 watts of electrical power. By comparing two loading profiles, we demonstrate that the timing and magnitude of energy removal are vital for successful metabolic cost reduction.


Assuntos
Metabolismo Energético , Exoesqueleto Energizado , Caminhada , Adulto , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos , Eletricidade , Marcha , Músculos Isquiossurais/fisiologia , Humanos , Joelho/fisiologia , Articulação do Joelho/fisiologia , Masculino , Contração Muscular , Músculo Esquelético/fisiologia
18.
Cartilage ; 13(2_suppl): 427S-437S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33218275

RESUMO

OBJECTIVES: Recapitulating the mechanical properties of articular cartilage (AC) is vital to facilitate the clinical translation of cartilage tissue engineering. Prior to evaluation of tissue-engineered constructs, it is fundamental to investigate the biomechanical properties of native AC under sudden, prolonged, and cyclic loads in a practical manner. However, previous studies have typically reported only the response of native AC to one or other of these loading regimes. We therefore developed a streamlined testing protocol to characterize the elastic and viscoelastic properties of human knee AC, generating values for several important parameters from the same sample. DESIGN: Human AC was harvested from macroscopically normal regions of distal femoral condyles of patients (n = 3) undergoing total knee arthroplasty. Indentation and unconfined compression tests were conducted under physiological conditions (temperature 37 °C and pH 7.4) and testing parameters (strain rates and loading frequency) to assess elastic and viscoelastic parameters. RESULTS: The biomechanical properties obtained were as follows: Poisson ratio (0.4 ± 0.1), instantaneous modulus (52.14 ± 9.47 MPa) at a loading rate of 1 mm/s, Young's modulus (1.03 ± 0.48 MPa), equilibrium modulus (7.48 ± 4.42 MPa), compressive modulus (10.60 ± 3.62 MPa), dynamic modulus (7.71 ± 4.62 MPa) at 1 Hz and loss factor (0.11 ± 0.02). CONCLUSIONS: The measurements fell within the range of reported values for human knee AC biomechanics. To the authors' knowledge this study is the first to report such a range of biomechanical properties for human distal femoral AC. This protocol may facilitate the assessment of tissue-engineered composites for their functionality and biomechanical similarity to native AC prior to clinical trials.


Assuntos
Cartilagem Articular , Fenômenos Biomecânicos , Cartilagem Articular/fisiologia , Fêmur , Humanos , Articulação do Joelho/fisiologia , Estresse Mecânico
19.
J Electromyogr Kinesiol ; 56: 102503, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33248368

RESUMO

The quadriceps-intermittent-fatigue (QIF) test assesses knee extensors strength, endurance and performance fatigability in isometric condition. We aimed to assess reliability and agreement for this test in dynamic conditions and with the use of transcranial magnetic stimulation. On two separate sessions, 20 young adults (25 ± 4 yr, 10 women) performed stages of 100 knee extensors concentric contractions at 120°/s (60° range-of-motion) with 10% increments of the initial maximal concentric torque until exhaustion. Performance fatigability across the test was quantified as maximal isometric and concentric torque loss, and its mechanisms were investigated through the responses to transcranial magnetic and electrical stimulations. Reliability and agreement were assessed using ANOVAs, coefficients of variation (CVs) and intra-class correlation coefficients (ICCs) with 95% CI. Good inter-session reliability and high agreement were found for number of contractions [489 ± 75 vs. 503 ± 95; P = 0.20; ICC = 0.85 (0.66; 0.94); CV = 5% (3; 7)] and total work [11,285 ± 4,932 vs. 11,792 ± 5838 Nm.s; P = 0.20; ICC = 0.95 (0.87; 0.98); CV = 8% (5; 11)]. Poor reliability but high agreement were observed for isometric [-33 ± 6 vs. -31 ± 7%; P = 0.13; ICC = 0.47 (0.05; 0.75); CV = 6% (4;8)] and concentric [-20 ± 11% vs. -19 ± 9%; P = 0.82; ICC = 0.26 (-0.22; 0.63); CV = 9% (6; 12)] torque loss. The dynamic QIF test represents a promising tool for neuromuscular evaluation in isokinetic mode.


Assuntos
Contração Isométrica/fisiologia , Dinamômetro de Força Muscular , Junção Neuromuscular/fisiologia , Músculo Quadríceps/fisiologia , Amplitude de Movimento Articular/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Estimulação Elétrica/métodos , Feminino , Humanos , Joelho/fisiologia , Articulação do Joelho/fisiologia , Masculino , Reprodutibilidade dos Testes , Adulto Jovem
20.
J Orthop Res ; 39(3): 597-608, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33030797

RESUMO

Radiostereometic analysis (RSA) is a precise method for the functional assessment of joint kinematics. Traditionally, the method is based on tracking of surgically implanted bone markers and analysis is user intensive. We propose an automated method of analysis based on models generated from computed tomography (CT) scans and digitally reconstructed radiographs. The study investigates method agreement between marker-based RSA and the CT bone model-based RSA method for assessment of knee joint kinematics in an experimental setup. Eight cadaveric specimens were prepared with bone markers and bone volume models were generated from CT-scans. Using a mobile fixture setup, dynamic RSA recordings were obtained during a knee flexion exercise in two unique radiographic setups, uniplanar and biplanar. The method agreement between marker-based and CT bone model-based RSA methods was compared using bias and LoA. Results obtained from uniplanar and biplanar recordings were compared and the influence of radiographic setup was considered for clinical relevance. The automated method had a bias of -0.19 mm and 0.11° and LoA within ±0.42 mm and ±0.33° for knee joint translations and rotations, respectively. The model pose estimation of the tibial bone was more precise than the femoral bone. The radiographic setup had no clinically relevant effect on results. In conclusion, the automated CT bone model-based RSA method had a clinical precision comparable to that of marker-based RSA. The automated method is non-invasive, fast, and clinically applicable for functional assessment of knee kinematics and pathomechanics in patients.


Assuntos
Articulação do Joelho/fisiologia , Análise Radioestereométrica/métodos , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Feminino , Fêmur/diagnóstico por imagem , Fêmur/fisiologia , Humanos , Articulação do Joelho/diagnóstico por imagem , Masculino , Tíbia/diagnóstico por imagem , Tíbia/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA