Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Neurol ; 96(2): 247-261, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38771066

RESUMO

OBJECTIVE: Although astrocytic pathology is a pathological hallmark of progressive supranuclear palsy (PSP), its pathophysiological role remains unclear. This study aimed to assess astrocyte reactivity in vivo in patients with PSP. Furthermore, we investigated alterations in brain lactate levels and their relationship with astrocyte reactivity. METHODS: We included 30 patients with PSP-Richardson syndrome and 30 healthy controls; in patients, tau deposition was confirmed through 18F-florzolotau positron emission tomography. Myo-inositol, an astroglial marker, and lactate were quantified in the anterior cingulate cortex through magnetic resonance spectroscopy. We measured plasma biomarkers, including glial fibrillary acidic protein as another astrocytic marker. The anterior cingulate cortex was histologically assessed in postmortem samples of another 3 patients with PSP with comparable disease durations. RESULTS: The levels of myo-inositol and plasma glial fibrillary acidic protein were significantly higher in patients than those in healthy controls (p < 0.05); these increases were significantly associated with PSP rating scale and cognitive function scores (p < 0.05). The lactate level was high in patients, and correlated significantly with high myo-inositol levels. Histological analysis of the anterior cingulate cortex in patients revealed reactive astrocytes, despite mild tau deposition, and no marked synaptic loss. INTERPRETATION: We discovered high levels of astrocyte biomarkers in patients with PSP, suggesting astrocyte reactivity. The association between myo-inositol and lactate levels suggests a link between reactive astrocytes and brain energy metabolism changes. Our results indicate that astrocyte reactivity in the anterior cingulate cortex precedes pronounced tau pathology and neurodegenerative processes in that region, and affects brain function in PSP. ANN NEUROL 2024;96:247-261.


Assuntos
Astrócitos , Proteína Glial Fibrilar Ácida , Giro do Cíngulo , Inositol , Ácido Láctico , Paralisia Supranuclear Progressiva , Humanos , Paralisia Supranuclear Progressiva/metabolismo , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/sangue , Ácido Láctico/sangue , Ácido Láctico/metabolismo , Inositol/metabolismo , Giro do Cíngulo/metabolismo , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/patologia , Biomarcadores/sangue , Proteínas tau/metabolismo , Tomografia por Emissão de Pósitrons
2.
Acta Neuropathol Commun ; 9(1): 141, 2021 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-34419154

RESUMO

Traditionally, analysis of neuropathological markers in neurodegenerative diseases has relied on visual assessments of stained sections. Resulting semiquantitative scores often vary between individual raters and research centers, limiting statistical approaches. To overcome these issues, we have developed six deep learning-based models, that identify some of the most characteristic markers of Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA). The deep learning-based models are trained to differentially detect parenchymal amyloid ß (Aß)-plaques, vascular Aß-deposition, iron and calcium deposition, reactive astrocytes, microglia, as well as fibrin extravasation. The models were trained on digitized histopathological slides from brains of patients with AD and CAA, using a workflow that allows neuropathology experts to train convolutional neural networks (CNNs) on a cloud-based graphical interface. Validation of all models indicated a very good to excellent performance compared to three independent expert human raters. Furthermore, the Aß and iron models were consistent with previously acquired semiquantitative scores in the same dataset and allowed the use of more complex statistical approaches. For example, linear mixed effects models could be used to confirm the previously described relationship between leptomeningeal CAA severity and cortical iron accumulation. A similar approach enabled us to explore the association between neuroinflammation and disparate Aß pathologies. The presented workflow is easy for researchers with pathological expertise to implement and is customizable for additional histopathological markers. The implementation of deep learning-assisted analyses of histopathological slides is likely to promote standardization of the assessment of neuropathological markers across research centers, which will allow specific pathophysiological questions in neurodegenerative disease to be addressed in a harmonized way and on a larger scale.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Angiopatia Amiloide Cerebral/patologia , Aprendizado Profundo/tendências , Redes Neurais de Computação , Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/metabolismo , Angiopatia Amiloide Cerebral/metabolismo , Humanos , Microglia/metabolismo , Microglia/patologia
3.
Brain ; 142(11): 3440-3455, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31578541

RESUMO

The 18 kDa translocator protein (TSPO) is increasingly used to study brain and spinal cord inflammation in degenerative diseases of the CNS such as multiple sclerosis. The enhanced TSPO PET signal that arises during disease is widely considered to reflect activated pathogenic microglia, although quantitative neuropathological data to support this interpretation have not been available. With the increasing interest in the role of chronic microglial activation in multiple sclerosis, characterising the cellular neuropathology associated with TSPO expression is of clear importance for understanding the cellular and pathological processes on which TSPO PET imaging is reporting. Here we have studied the cellular expression of TSPO and specific binding of two TSPO targeting radioligands (3H-PK11195 and 3H-PBR28) in tissue sections from 42 multiple sclerosis cases and 12 age-matched controls. Markers of homeostatic and reactive microglia, astrocytes, and lymphocytes were used to investigate the phenotypes of cells expressing TSPO. There was an approximate 20-fold increase in cells double positive for TSPO and HLA-DR in active lesions and in the rim of chronic active lesion, relative to normal appearing white matter. TSPO was uniformly expressed across myeloid cells irrespective of their phenotype, rather than being preferentially associated with pro-inflammatory microglia or macrophages. TSPO+ astrocytes were increased up to 7-fold compared to normal-appearing white matter across all lesion subtypes and accounted for 25% of the TSPO+ cells in these lesions. To relate TSPO protein expression to ligand binding, specific binding of the TSPO ligands 3H-PK11195 and 3H-PBR28 was determined in the same lesions. TSPO radioligand binding was increased up to seven times for 3H-PBR28 and up to two times for 3H-PK11195 in active lesions and the centre of chronic active lesions and a strong correlation was found between the radioligand binding signal for both tracers and the number of TSPO+ cells across all of the tissues examined. In summary, in multiple sclerosis, TSPO expression arises from microglia of different phenotypes, rather than being restricted to microglia which express classical pro-inflammatory markers. While the majority of cells expressing TSPO in active lesions or chronic active rims are microglia/macrophages, our findings also emphasize the significant contribution of activated astrocytes, as well as smaller contributions from endothelial cells. These observations establish a quantitative framework for interpretation of TSPO in multiple sclerosis and highlight the need for neuropathological characterization of TSPO expression for the interpretation of TSPO PET in other neurodegenerative disorders.


Assuntos
Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/genética , Receptores de GABA/genética , Acetamidas , Idoso , Idoso de 80 Anos ou mais , Astrócitos/patologia , Autopsia , Feminino , Genótipo , Homeostase , Humanos , Isoquinolinas , Linfócitos/patologia , Masculino , Microglia/patologia , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Tomografia por Emissão de Pósitrons , Piridinas , Compostos Radiofarmacêuticos
4.
J Alzheimers Dis ; 66(4): 1587-1597, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30475760

RESUMO

Waste clearance from the brain parenchyma occurs along perivascular pathways. Enlargement of the perivascular space (ePVS) is associated with pathologic features of Alzheimer's disease (AD), although the mechanisms and implications of this dilation are unclear. Fluid exchange along the cerebral vasculature is dependent on the perivascular astrocytic water channel aquaporin-4 (AQP4) and loss of perivascular AQP4 localization is found in AD. We directly measured ePVS in postmortem samples of pathologically characterized tissue from participants who were cognitively intact or had AD or mixed dementia (vascular lesions with AD). We found that both AD and mixed dementia groups had significantly increased ePVS compared to cognitively intact subjects. In addition, we found increased global AQP4 expression of the AD group over both control and mixed dementia groups and a qualitative reduction in perivascular localization of AQP4 in the AD group. Among these cases, increasing ePVS burden was associated with the presence of tau and amyloid-ß pathology. These findings are consistent with the existing evidence of ePVS in AD and provide novel information regarding differences in AD and vascular dementia and the potential role of astroglial pathology in ePVS.


Assuntos
Doença de Alzheimer/patologia , Aquaporina 4/metabolismo , Astrócitos/patologia , Encéfalo/patologia , Demência Vascular/patologia , Sistema Glinfático/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Demência Vascular/metabolismo , Feminino , Sistema Glinfático/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade
5.
Neurotoxicology ; 68: 115-125, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30031109

RESUMO

Neural electrode implants are made mostly of noble materials. We have synthesized a nanostructured material combining the good electrochemical properties of iridium oxide (IrOx) and carbon-nanotubes (CNT) and the properties of poly(3,4-ethylenedioxythiophene) (PEDOT). IrOx-CNT-PEDOT charge storage capacity was lower than that of IrOx and IrOx-CNT, but higher than that of other PEDOT-containing hybrids and Pt. Cyclic voltammetry, SEM, XPS and micro-Raman spectroscopy suggest that PEDOT encapsulates IrOx and CNT. In our search for a cell culture platform that could optimize modelling the in vivo environment, we determined cell viability, neuron and astrocyte functionality and the response of astrocytes to an inflammatory insult by using primary cultures of neurons, of astrocytes and co-cultures of both. The materials tested (based on IrOx, CNT and PEDOT, as well as Pt as a reference) allowed adhesion and proliferation of astrocytes and full compatibility for neurons grown in co-cultures. Functionality assays show that uptake of glutamate in neuron-astrocyte co-culture was significantly higher than the sum of the uptake in astrocytes and neurons. In co-cultures on IrOx, IrOx-CNT and IrOx-CNT-PEDOT, glutamate was released by a depolarizing stimulus and induced a significant increase in intracellular calcium, supporting the expression of functional NMDA/glutamate receptors. LPS-induced inflammatory response in astrocytes showed a decreased response in NOS2 and COX2 mRNA expression for IrOx-CNT-PEDOT. Results indicate that neuron-astrocyte co-cultures are a reliable model for assessing the biocompatibility and safety of nanostructured materials, evidencing also that hybrid IrOx-CNT-PEDOT nanocomposite materials may offer larger resistance to inflammatory insults.


Assuntos
Astrócitos/metabolismo , Materiais Biocompatíveis/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Irídio/química , Nanotubos/química , Neurônios/metabolismo , Polímeros/química , Astrócitos/patologia , Células Cultivadas , Técnicas de Cocultura , Contenção de Riscos Biológicos , Inflamação/metabolismo , Teste de Materiais , Neurônios/patologia
6.
J Neurosci Res ; 96(4): 487-500, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28463430

RESUMO

Traumatic brain injuries (TBIs) pose a massive burden of disease and continue to be a leading cause of morbidity and mortality throughout the world. A major obstacle in developing effective treatments is the lack of comprehensive understanding of the underlying mechanisms that mediate tissue damage and recovery after TBI. As such, our work aims to highlight the development of a novel experimental platform capable of fully characterizing the underlying pathobiology that unfolds after TBI. This platform encompasses an empirically optimized multiplex immunohistochemistry staining and imaging system customized to screen for a myriad of biomarkers required to comprehensively evaluate the extent of neuroinflammation, neural tissue damage, and repair in response to TBI. Herein, we demonstrate that our multiplex biomarker screening platform is capable of evaluating changes in both the topographical location and functional states of resident and infiltrating cell types that play a role in neuropathology after controlled cortical impact injury to the brain in male Sprague-Dawley rats. Our results demonstrate that our multiplex biomarker screening platform lays the groundwork for the comprehensive characterization of changes that occur within the brain after TBI. Such work may ultimately lead to the understanding of the governing pathobiology of TBI, thereby fostering the development of novel therapeutic interventions tailored to produce optimal tissue protection, repair, and/or regeneration with minimal side effects, and may ultimately find utility in a wide variety of other neurological injuries, diseases, and disorders that share components of TBI pathobiology.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Imuno-Histoquímica/métodos , Neuroimagem/métodos , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Biomarcadores/metabolismo , Encéfalo/fisiopatologia , Lesões Encefálicas Traumáticas/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Masculino , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Ratos Sprague-Dawley , Doenças da Língua/metabolismo , Doenças da Língua/patologia
7.
J Cereb Blood Flow Metab ; 37(10): 3278-3299, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28816095

RESUMO

Traumatic brain injury (TBI) is an expanding public health epidemic with pathophysiology that is difficult to diagnose and thus treat. TBI biomarkers should assess patients across severities and reveal pathophysiology, but currently, their kinetics and specificity are unclear. No single ideal TBI biomarker exists. We identified new candidates from a TBI CSF proteome by selecting trauma-released, astrocyte-enriched proteins including aldolase C (ALDOC), its 38kD breakdown product (BDP), brain lipid binding protein (BLBP), astrocytic phosphoprotein (PEA15), glutamine synthetase (GS) and new 18-25kD-GFAP-BDPs. Their levels increased over four orders of magnitude in severe TBI CSF. First post-injury week, ALDOC levels were markedly high and stable. Short-lived BLBP and PEA15 related to injury progression. ALDOC, BLBP and PEA15 appeared hyper-acutely and were similarly robust in severe and mild TBI blood; 25kD-GFAP-BDP appeared overnight after TBI and was rarely present after mild TBI. Using a human culture trauma model, we investigated biomarker kinetics. Wounded (mechanoporated) astrocytes released ALDOC, BLBP and PEA15 acutely. Delayed cell death corresponded with GFAP release and proteolysis into small GFAP-BDPs. Associating biomarkers with cellular injury stages produced astroglial injury-defined (AID) biomarkers that facilitate TBI assessment, as neurological deficits are rooted not only in death of CNS cells, but also in their functional compromise.


Assuntos
Astrócitos/patologia , Biomarcadores/análise , Lesões Encefálicas Traumáticas/líquido cefalorraquidiano , Proteínas Reguladoras de Apoptose , Astrócitos/química , Concussão Encefálica , Lesões Encefálicas Traumáticas/diagnóstico , Células Cultivadas , Proteína 7 de Ligação a Ácidos Graxos/sangue , Frutose-Bifosfato Aldolase/sangue , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/sangue , Cinética , Fosfoproteínas/sangue , Proteoma/análise , Proteínas Supressoras de Tumor/sangue
8.
J Neuropathol Exp Neurol ; 76(7): 605-619, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28591867

RESUMO

Aging-related tau astrogliopathy (ARTAG) is a recently introduced terminology. To facilitate the consistent identification of ARTAG and to distinguish it from astroglial tau pathologies observed in the primary frontotemporal lobar degeneration tauopathies we evaluated how consistently neuropathologists recognize (1) different astroglial tau immunoreactivities, including those of ARTAG and those associated with primary tauopathies (Study 1); (2) ARTAG types (Study 2A); and (3) ARTAG severity (Study 2B). Microphotographs and scanned sections immunostained for phosphorylated tau (AT8) were made available for download and preview. Percentage of agreement and kappa values with 95% confidence interval (CI) were calculated for each evaluation. The overall agreement for Study 1 was >60% with a kappa value of 0.55 (95% CI 0.433-0.645). Moderate agreement (>90%, kappa 0.48, 95% CI 0.457-0.900) was reached in Study 2A for the identification of ARTAG pathology for each ARTAG subtype (kappa 0.37-0.72), whereas fair agreement (kappa 0.40, 95% CI 0.341-0.445) was reached for the evaluation of ARTAG severity. The overall assessment of ARTAG showed moderate agreement (kappa 0.60, 95% CI 0.534-0.653) among raters. Our study supports the application of the current harmonized evaluation strategy for ARTAG with a slight modification of the evaluation of its severity.


Assuntos
Envelhecimento/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Tauopatias/patologia , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença
9.
J Colloid Interface Sci ; 482: 142-150, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27501037

RESUMO

The present investigation was aimed at developing various ligands-anchored dendrimers and comparing their brain targeting potential at one platform. Sialic acid (S), glucosamine (G) and concanavalin A (C) anchored poly(propyleneimine) (PPI) dendritic nanoconjugates were developed and evaluated for delivery of anti-cancer drug, paclitaxel (PTX) to the brain. MTT assay on U373MG human astrocytoma cells indicated IC50 values of 0.40, 0.65, 0.95, 2.00 and 3.50µM for PTX loaded SPPI, GPPI, CPPI, PPI formulations, and free PTX, respectively. The invivo pharmacokinetics and biodistribution studies in rats showed significantly higher accumulation of PTX in brain as compared to free PTX. The order of targeting potential of various ligands under investigation was found as sialic acid>glucosamine>concanavalin A. Thus, it can be concluded that sialic acid, glucosamine and Con A can be used as potential ligands to append PPI dendrimers for enhanced delivery of anticancer drugs to the brain for higher therapeutic outcome.


Assuntos
Antineoplásicos Fitogênicos/farmacocinética , Dendrímeros/química , Nanoconjugados/química , Paclitaxel/farmacocinética , Polipropilenos/química , Animais , Antineoplásicos Fitogênicos/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Concanavalina A/química , Dendrímeros/farmacocinética , Composição de Medicamentos , Liberação Controlada de Fármacos , Glucosamina/química , Humanos , Injeções Intravenosas , Ligantes , Terapia de Alvo Molecular , Nanoconjugados/uso terapêutico , Nanoconjugados/ultraestrutura , Paclitaxel/farmacologia , Ratos , Ácidos Siálicos/química , Distribuição Tecidual
10.
PLoS One ; 9(4): e95643, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24755676

RESUMO

Erythropoietin (EPO) has been recognized as a neuroprotective agent. In animal models of neonatal brain injury, exogenous EPO has been shown to reduce lesion size, improve structure and function. Experimental studies have focused on short course treatment after injury. Timing, dose and length of treatment in preterm brain damage remain to be defined. We have evaluated the effects of high dose and long-term EPO treatment in hypoxic-ischemic (HI) injury in 3 days old (P3) rat pups using histopathology, magnetic resonance imaging (MRI) and spectroscopy (MRS) as well as functional assessment with somatosensory-evoked potentials (SEP). After HI, rat pups were assessed by MRI for initial damage and were randomized to receive EPO or vehicle. At the end of treatment period (P25) the size of resulting cortical damage and white matter (WM) microstructure integrity were assessed by MRI and cortical metabolism by MRS. Whisker elicited SEP were recorded to evaluate somatosensory function. Brains were collected for neuropathological assessment. The EPO treated animals did not show significant decrease of the HI induced cortical loss at P25. WM microstructure measured by diffusion tensor imaging was improved and SEP response in the injured cortex was recovered in the EPO treated animals compared to vehicle treated animals. In addition, the metabolic profile was less altered in the EPO group. Long-term treatment with high dose EPO after HI injury in the very immature rat brain induced recovery of WM microstructure and connectivity as well as somatosensory cortical function despite no effects on volume of cortical damage. This indicates that long-term high-dose EPO induces recovery of structural and functional connectivity despite persisting gross anatomical cortical alteration resulting from HI.


Assuntos
Eritropoetina/farmacologia , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/patologia , Animais , Animais Recém-Nascidos , Astrócitos/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Cicatriz/patologia , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Eritropoetina/administração & dosagem , Potenciais Somatossensoriais Evocados , Feminino , Hipóxia-Isquemia Encefálica/metabolismo , Filamentos Intermediários/metabolismo , Masculino , Metaboloma , Metabolômica , Bainha de Mielina/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Tamanho do Órgão , Espectroscopia de Prótons por Ressonância Magnética , Ratos , Fatores de Tempo
11.
PLoS One ; 9(3): e91852, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24637840

RESUMO

SOX14 is a member of the SOXB2 subgroup of transcription factors implicated in neural development. Although the first SOX14 gene in vertebrates was cloned and characterized more than a decade ago and its expression profile during development was revealed in various animal model systems, the role of this gene during neural development is largely unknown. In the present study we analyzed the expression of SOX14 in human NT2/D1 and mouse P19 pluripotent embryonal carcinoma cells. We demonstrated that it is expressed in both cell lines and upregulated during retinoic acid induced neural differentiation. We showed that SOX14 was expressed in both neuronal and non-neuronal differentiated derivatives, as revealed by immunocytochemistry. Since it was previously proposed that increased SOXB2 proteins level interfere with the activity of SOXB1 counteracting partners, we compared expression patterns of SOXB members during retinoic acid induction of embryonal carcinoma cells. We revealed that upregulation of SOX14 expression is accompanied by alterations in the expression patterns of SOXB1 members. In order to analyze the potential cross-talk between them, we generated SOX14 expression construct. The ectopic expression of SOX14 was demonstrated at the mRNA level in NT2/D1, P19 and HeLa cells, while an increased level of SOX14 protein was detected in HeLa cells only. By transient transfection experiments in HeLa cells we showed for the first time that ectopic expression of SOX14 repressed SOX1 expression, whereas no significant effect on SOX2, SOX3 and SOX21 was observed. Data presented here provide an insight into SOX14 expression during in vitro neural differentiation of embryonal carcinoma cells and demonstrate the effect of its ectopic expression on protein levels of SOXB members in HeLa cells. Obtained results contribute to better understanding the role of one of the most conserved SOX proteins.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células-Tronco de Carcinoma Embrionário/metabolismo , Células-Tronco de Carcinoma Embrionário/patologia , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição SOXB2/genética , Tretinoína/farmacologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Biomarcadores/metabolismo , Linhagem Celular , Células-Tronco de Carcinoma Embrionário/efeitos dos fármacos , Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Células HeLa , Humanos , Imuno-Histoquímica , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXB2/metabolismo
12.
Cell Calcium ; 54(5): 343-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24035346

RESUMO

Neuron-astrocyte interactions are important for brain computations and synaptic plasticity. Perisynaptic astrocytic processes (PAPs) contain a high density of transporters that are responsible for neurotransmitter clearance. Metabotropic glutamate receptors are thought to trigger Ca(2+) release from Ca(2+) stores in PAPs in response to synaptic activity. Our ultrastructural study revealed that PAPs are actually devoid of Ca(2+) stores and have a high surface-to-volume ratio favorable for uptake. Astrocytic processes containing Ca(2+) stores were located further away from the synapses and could therefore respond to changes in ambient glutamate. Thus, the anatomic data do not support communication involving Ca(2+) stores in tripartite synapses, but rather point to extrasynaptic communication.


Assuntos
Astrócitos/metabolismo , Cálcio/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Comunicação Celular , Ácido Glutâmico/farmacologia , Hipocampo/metabolismo , Masculino , Microscopia Eletrônica , Método de Monte Carlo , Ratos , Ratos Wistar , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/ultraestrutura
13.
Sud Med Ekspert ; 56(5): 4-6, 2013.
Artigo em Russo | MEDLINE | ID: mdl-24432419

RESUMO

This article reports an original observation of a few cases of brain injury in subjects presenting with elevated blood pressure. The standard histological staining techniques and immunohistological method were used to detect GFAP in astrocytes. The morphological features of this type of brain injury in the elderly subjects are described, the possibility of using them for the analysis of the damage is considered.


Assuntos
Astrócitos , Lesões Encefálicas/patologia , Encéfalo/patologia , Hipertensão/complicações , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Astrócitos/metabolismo , Astrócitos/patologia , Feminino , Proteína Glial Fibrilar Ácida/análise , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
14.
BMC Neurosci ; 12: 92, 2011 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-21943155

RESUMO

BACKGROUND: Tobacco smoke (TS) contains highly reactive oxygen species (such as hydrogen peroxide, peroxynitrite, etc), which cause oxidative damage in vascular tissue and may exacerbate inflammatory events leading to the blood-brain barrier damage (BBBD) which accompanies the development of a variety of neurological disorders. Smokers often have elevated leukocyte counts (primarily neutrophils and monocytes), and significant decreases in plasma alpha-tocopherol (vitamin E) and ascorbic acid (vitamin C) levels due to increased anti-oxidative mobilization in response to oxidative stress evoked by TS. For this purpose, using static culture systems and a well-established dynamic in vitro BBB model (DIV-BBB) we tested the hypothesis that antioxidant vitamin supplementation (E and/or C) can protect the BBB during exposure to whole soluble TS. RESULTS: TS exacerbates inflammatory events and leads to endothelial overexpression of vascular adhesion molecules (VCAM-1, P-selectin and E-selectin), release of pro-inflammatory cytokines (TNF-α and IL-6) and nitric oxide (NO), release and activation of matrix metalloproteinases (MMP-2 and MMP-9), monocytic maturation into macrophages, and adhesion to the vascular endothelium. Furthermore, TS altered the normal glucose metabolic behaviour of in vitro BBB capillaries and caused a period of transient anaerobic respiration to meet the cellular bioenergetic demand. Pre-treatment with antioxidant vitamins (C and/or E) effectively reduced the pro-inflammatory activity associated with TS, protecting the viability and functions of the BBB. CONCLUSION: Our results have shown that loss of endothelial viability as well as BBB function and integrity caused by TS exposure can be prevented or at least reduced by normal physiologic concentrations of antioxidant vitamins in vitro.


Assuntos
Antioxidantes/fisiologia , Barreira Hematoencefálica/fisiologia , Poluição por Fumaça de Tabaco/efeitos adversos , Astrócitos/metabolismo , Astrócitos/patologia , Barreira Hematoencefálica/patologia , Linhagem Celular Tumoral , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Monócitos/metabolismo , Monócitos/patologia , Fármacos Neuroprotetores/farmacologia , Poluição por Fumaça de Tabaco/prevenção & controle
15.
Neurotoxicology ; 32(6): 776-84, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21781985

RESUMO

Studies have shown cases of poisoning with plants from the genus Crotalaria (Leguminosae) mainly in animals. They induce damages in the central nervous system (CNS), which has been attributed to toxic effects of the pyrrolizidine alkaloid (PA) monocrotaline (MCT). Previously we demonstrated that both MCT and dehydromonocrotaline (DHMC), its main active metabolite, induce changes in the levels and patterns of expression of the main protein from astrocyte cytoskeleton, glial fibrillary acidic protein (GFAP). In this study we investigated the effect of MCT on rat cortical astrocyte/neuron primary co-cultures. Primary cultures were exposed to 10 or 100 µM MCT. The MTT test and the measurement of LDH activity on the culture medium revealed that after 24h exposure MCT was not cytotoxic to neuron/astrocyte cells. However, the cell viability after 72 h treatment decreased in 10-20%, and the LDH levels in the culture medium increased at a rate of 12% and 23%, in cultures exposed to 10 or 100 µM MCT. Rosenfeld staining showed vacuolization and increase in cell body in astrocytes after MCT exposure. Immunocytochemistry and Western blot analyses revealed changes on pattern of GFAP and ßIII-tubulin expression and steady state levels after MCT treatment, with a dose and time dependent intense down regulation and depolarization of neuronal ßIII-tubulin. Moreover, treatment with 100 µM MCT for 12h induced GSH depletion, which was not seen when cytochrome P450 enzyme system was inhibited indicating that it is involved in MCT induced cytotoxicity in CNS cells.


Assuntos
Astrócitos/efeitos dos fármacos , Cérebro/efeitos dos fármacos , Crotalaria , Monocrotalina/toxicidade , Neurônios/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Astrócitos/patologia , Western Blotting , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cérebro/embriologia , Cérebro/metabolismo , Cérebro/patologia , Técnicas de Cocultura , Crotalaria/química , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Glutationa/metabolismo , Imuno-Histoquímica , L-Lactato Desidrogenase/metabolismo , Monocrotalina/isolamento & purificação , Neurônios/metabolismo , Neurônios/patologia , Ratos , Ratos Wistar , Fatores de Tempo , Tubulina (Proteína)/metabolismo
16.
Neurochem Int ; 56(1): 152-60, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19799953

RESUMO

Reactive astrocytosis seems to be strongly implicated in the development and maintenance of inflammatory and neurodegenerative disorders. We design a new toxic model treatment with 3-nitropropionic acid (3-NP), a mitochondrial complex II irreversible inhibitor, to induce in rats Huntington's disease (HD) like syndrome, characterized by hindlimb dystonia, involuntary choreiform movements and reduced global activity. In an attempt to find out whether molecular and morphological changes in the neuro-glial network could be involved in the pathogenesis of this disease, we developed a protocol of subchronic intra-peritoneal 3-NP intoxication. Moreover we set up specific, highly discriminative, behavioral tests to detect very early mild motor disabilities in 3-NP treated rats. This treatment did not cause severe cell death. However, in the Caudate-Putamen (CPu) of all 3-NP treated animals we found a massive astrogliosis, revealed by increased GFAP levels, paralleled by changes of the glial glutamate transporter GLAST distribution. To these glial changes we detected a transcriptional upregulation of c-fos and Sub-P in the striatal medium spiny neurons (MSN). We propose that this model of 3-NP intoxication along with the designed set of behavioral analyses allow to unmask in a very early phase the motor deficits and the underlying morpho-molecular changes associated to the onset of motor disabilities in the HD-like syndrome. Therefore this model unveil the key role played by the different components of the tripartite synapse in the pathogenesis of the HD, a putative non-cell-autonomous disease.


Assuntos
Astrócitos/patologia , Doenças dos Gânglios da Base/patologia , Gânglios da Base/patologia , Gliose/patologia , Neurotoxinas/toxicidade , Nitrocompostos/toxicidade , Propionatos/toxicidade , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Gânglios da Base/metabolismo , Gânglios da Base/fisiopatologia , Doenças dos Gânglios da Base/induzido quimicamente , Doenças dos Gânglios da Base/fisiopatologia , Comportamento Animal/fisiologia , Avaliação da Deficiência , Modelos Animais de Doenças , Transportador 1 de Aminoácido Excitatório/efeitos dos fármacos , Transportador 1 de Aminoácido Excitatório/metabolismo , Proteína Glial Fibrilar Ácida/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/induzido quimicamente , Gliose/fisiopatologia , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Doença de Huntington/fisiopatologia , Masculino , Transtornos dos Movimentos/diagnóstico , Transtornos dos Movimentos/patologia , Transtornos dos Movimentos/fisiopatologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Testes Neuropsicológicos , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Índice de Gravidade de Doença , Substância P/efeitos dos fármacos , Substância P/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Fatores de Tempo
17.
Exp Hematol ; 35(4 Suppl 1): 69-77, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17379090

RESUMO

OBJECTIVE: Normal tissues, including the central nervous system, tolerate single exposures to narrow planes of synchrotron-generated x-rays (microplanar beams; microbeams) up to several hundred Gy. The repairs apparently involve the microvasculature and the glial system. We evaluate a hypothesis on the involvement of bystander effects in these repairs. METHODS: Confluent cultures of bovine aortic endothelial cells were irradiated with three parallel 27-microm microbeams at 24 Gy. Rats' spinal cords were transaxially irradiated with a single microplanar beam, 270 microm thick, at 750 Gy; the dose distribution in tissue was calculated. RESULTS: Within 6 hours following irradiation of the cell culture the hit cells died, apparently by apoptosis, were lost, and the confluency was maintained. The spinal cord study revealed a loss of oligodendrocytes, astrocytes, and myelin in 2 weeks, but by 3 months repopulation and remyelination was nearly complete. Monte Carlo simulations showed that the microbeam dose fell from the peak's 80% to 20% in 9 microm. CONCLUSIONS: In both studies the repair processes could have involved "beneficial" bystander effects leading to tissue restoration, most likely through the release of growth factors, such as cytokines, and the initiation of cell-signaling cascades. In cell culture these events could have promoted fast disappearance of the hit cells and fast structural response of the surviving neighboring cells, while in the spinal cord study similar events could have been promoting angiogenesis to replace damaged capillary blood vessels, and proliferation, migration, and differentiation of the progenitor glial cells to produce new, mature, and functional glial cells.


Assuntos
Efeito Espectador/efeitos da radiação , Sistema Nervoso Central/efeitos da radiação , Neovascularização Fisiológica/efeitos da radiação , Regeneração/efeitos da radiação , Traumatismos da Medula Espinal/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Células Cultivadas , Sistema Nervoso Central/irrigação sanguínea , Sistema Nervoso Central/patologia , Relação Dose-Resposta à Radiação , Método de Monte Carlo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Doses de Radiação , Ratos , Ratos Endogâmicos F344 , Traumatismos da Medula Espinal/patologia , Raios X
18.
Cerebrovasc Dis ; 19(3): 192-200, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15665510

RESUMO

This study investigated the effects of argatroban, a thrombin inhibitor, on brain edema and inflammation in a rat intracerebral hemorrhage (ICH) model. ICH was induced by injecting collagenase IV into the right caudate nucleus. Argatroban was administered intraperitoneally. Argatroban reduced brain edema from 44.6 to 14.3 microl at 72 h. Infiltration of polymorphonuclear leukocytes at 24 h and monocyte/macrophage at 24 and 72 h was significantly suppressed by argatroban. Argatroban did not increase the volume of hematoma. Systemic administration of argatroban reduced secondary brain damage including edema and inflammation in a rat ICH model.


Assuntos
Anticoagulantes/farmacologia , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/patologia , Ácidos Pipecólicos/farmacologia , Animais , Arginina/análogos & derivados , Astrócitos/patologia , Edema Encefálico/tratamento farmacológico , Edema Encefálico/patologia , Hematoma/tratamento farmacológico , Hematoma/patologia , Masculino , Neutrófilos/patologia , Ratos , Ratos Wistar , Sulfonamidas
19.
Am J Pathol ; 165(3): 937-48, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15331417

RESUMO

Alzheimer's disease (AD) is associated with accumulation of beta-amyloid (Abeta). A major genetic risk factor for sporadic AD is inheritance of the apolipoprotein (apo) E4 allele. ApoE can act as a pathological chaperone of Abeta, promoting its conformational transformation from soluble Abeta into toxic aggregates. We determined if blocking the apoE/Abeta interaction reduces Abeta load in transgenic (Tg) AD mice. The binding site of apoE on Abeta corresponds to residues 12 to 28. To block binding, we synthesized a peptide containing these residues, but substituted valine at position 18 to proline (Abeta12-28P). This changed the peptide's properties, making it non-fibrillogenic and non-toxic. Abeta12-28P competitively blocks binding of full-length Abeta to apoE (IC50 = 36.7 nmol). Furthermore, Abeta12-28P reduces Abeta fibrillogenesis in the presence of apoE, and Abeta/apoE toxicity in cell culture. Abeta12-28P is blood-brain barrier-permeable and in AD Tg mice inhibits Abeta deposition. Tg mice treated with Abeta12-28P for 1 month had a 63.3% reduction in Abeta load in the cortex (P = 0.0043) and a 59.5% (P = 0.0087) reduction in the hippocampus comparing to age-matched control Tg mice. Antibodies against Abeta were not detected in sera of treated mice; therefore the observed therapeutic effect of Abeta12-28P cannot be attributed to an antibody clearance response. Our experiments demonstrate that compounds blocking the interaction between Abeta and its pathological chaperones may be beneficial for treatment of beta-amyloid deposition in AD.


Assuntos
Doença de Alzheimer/prevenção & controle , Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/metabolismo , Fragmentos de Peptídeos/farmacologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Apolipoproteínas E/genética , Astrócitos/metabolismo , Astrócitos/patologia , Sítios de Ligação/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Proposta de Concorrência , Feminino , Meia-Vida , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutação , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Presenilina-1 , Ligação Proteica/efeitos dos fármacos , Células Tumorais Cultivadas
20.
Exp Brain Res ; 145(1): 83-90, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12070748

RESUMO

A transient (lasting for 15 min) bilateral carotid artery occlusion model was created by using male Mongolian gerbils ( n=20, weight 50-60 g). The animals were divided into a group with mild hypothermia (34 degrees C, n=10) and a normothermic group (37 degrees C, n=10). High-energy phosphate metabolism (ATP, PCr, Pi) and intracellular pH were sequentially measured using (31)P-MRS during ischemia and after reperfusion for 1 week. The same animals were also subjected to a histopathological evaluation. During ischemia, there were no statistically significant differences between the two groups in the quantities of the metabolites. However, after reperfusion the rate of metabolic recovery by the mildly hypothermic (MH) group was significantly higher (by 10-20%) than the normothermic (NT) group. The intracellular pH decreased about 0.4 in both groups after ischemia; and after reperfusion the intracellular pH of the MH group returned to baseline levels faster than in the NT group. One week after ischemia, energy metabolism gradually decreased about 10-20% in both groups. In the histopathological evaluation, pyramidal cell damage in the hippocampus was 33% on average in the MH group and 79% in the NT group. The neuronal damage to the cerebral cortex was 26% in the MH group and 61% in the NT group. Astrocyte reactivity in the hippocampus and cerebral cortex was 2.9% and 1.1% in the MH group and 9.7% and 5.2% in the NT group. The results of this experiment indicate that the protective effect of mild hypothermia is due to the high recovery rate of ATP and PCr and the prevention of a secondary decline in high phosphate energy.


Assuntos
Antipirina/análogos & derivados , Infarto Cerebral/metabolismo , Metabolismo Energético/fisiologia , Hipotermia Induzida , Ataque Isquêmico Transitório/metabolismo , Prosencéfalo/metabolismo , Recuperação de Função Fisiológica/fisiologia , Traumatismo por Reperfusão/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Temperatura Corporal/fisiologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Infarto Cerebral/fisiopatologia , Gerbillinae , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Ataque Isquêmico Transitório/fisiopatologia , Masculino , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Neurônios/metabolismo , Neurônios/patologia , Fosfocreatina/metabolismo , Fósforo/metabolismo , Prosencéfalo/fisiopatologia , Traumatismo por Reperfusão/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA