Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(48): 106330-106341, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37726632

RESUMO

The recognition of certain herbicides as endocrine disrupting compounds has raised concerns due to their ability to interfere with the normal functioning of the endocrine system, which regulates various physiological processes in organisms. The objective of this study was to assess the possible human health risks associated with terbuthylazine and endocrine-disrupting herbicides atrazine, acetochlor, and metolachlor in the drinking, surface, and groundwater of the Zagreb city region, Croatia. We relied on advanced statistical methods and principal component analysis (PCA), which revealed higher levels of atrazine and acetochlor in drinking and groundwater samples and higher presence of metolachlor and terbuthylazine in surface waters. To evaluate the danger to human health, various exposure scenarios have been assessed. The risk of direct human exposure to analyzed herbicides through drinking or bathing with drinking (tap) or groundwater, as well as from recreational activities like swimming in rivers, streams, and lakes, has been quantified. In addition to these direct exposure scenarios, indirect ones based on consumer goods, fruits, and vegetables, treated with surface and groundwater for irrigation, were assessed to investigate the danger to human health. Judging by the reported herbicide levels there was no significant risk of carcinogenic (CR ≤ 1 × 10-6) or non-carcinogenic (HI < 1) diseases, not even when we assessed the so-called "cocktail effect" of combined the herbicide exposure in different waters.


Assuntos
Atrazina , Água Potável , Herbicidas , Poluentes Químicos da Água , Humanos , Herbicidas/análise , Atrazina/análise , Água/análise , Croácia , Poluentes Químicos da Água/análise , Medição de Risco , Água Potável/análise
2.
Chemosphere ; 336: 139289, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37348619

RESUMO

Atrazine is a broad-spectrum herbicide widely used worldwide to control grassy and broadleaf weeds. Atrazine's popularity is attributable to its cost-effectiveness and reliable performance. Relatedly, it is also an important micropollutant with a potential negative impact on biodiversity and human health. Atrazine has long been regularly detected in several environmental compartments, and its widespread use has resulted in ubiquitous and unpreventable contamination. Among pesticides sold in Brazil, atrazine has remained among the top-ranked active ingredients for the last several years. Thus, this study aimed to evaluate the occurrence of atrazine and three degradation products (hydroxyatrazine, desisopropylatrazine, and desethylatrazine) in surface water (Capivari and Atibaia rivers) and treated water, monthly sampling from two drinking water treatment plants in Campinas (São Paulo, Brazil). An analytical method using solid-phase extraction (SPE) and liquid chromatography tandem mass spectrometry (LC-MS/MS) was developed to determine target compounds simultaneously. The method presented instrument quantification limits from 0.5 to 4.0 ng mL-1 and recovery values from 80 to 112%, with a maximum relative standard deviation of 6%. All analytes had a detection frequency of 100% from 2 to 2744 ng L-1. Statistical analysis showed no analyte removal after conventional water treatment. Also, the Capivari River showed greater analyte concentration than the Atibaia River. Performed risk assessments according to current Brazilian standards showed no human and environmental health risks. However, other risk assessment approaches may indicate potential risks, advocating for further research and ongoing surveillance.


Assuntos
Atrazina , Água Potável , Poluentes Químicos da Água , Humanos , Atrazina/análise , Cromatografia Líquida/métodos , Água Potável/análise , Brasil , Espectrometria de Massas em Tandem/métodos , Poluentes Químicos da Água/análise , Monitoramento Ambiental
3.
Environ Sci Pollut Res Int ; 30(25): 66625-66637, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37099115

RESUMO

The widespread use of nanoparticles (NPs) and organic pollutants increases the risk of their coexistence in the aquatic environments. It is uncertain how the combined toxicities of NPs and OCs affect aquatic organisms in surface waters. In this study, the binary combined toxicities of TiO2 NPs with three different organochlorines (OCs)-pentachlorobenzene (PeCB), 3,3,4,4-tetrachlorobiphenyl (PCB-77), and atrazine on Chlorella pyrenoidosa in three karst surface water bodies were investigated. The correlation analysis results indicated that the toxicities of TiO2 NPs and OCs to algae were mainly related to the total organic carbon (TOC) and ionic strength of surface water. Surface water relieved the growth inhibition of the pollutants on algae as compared with ultrapure water (UW). The combined toxic effect caused by the co-exposure of TiO2 NPs-atrazine was synergistic and had an antagonistic effect for TiO2 NPs-PCB-77 in four types of water bodies. However, the co-exposure of TiO2 NPs-PeCB had an additive effect in the Huaxi Reservoir (HX) and synergistic effects in Baihua Lake (BH), Hongfeng Lake (HF), and UW. TiO2 NPs increased the bioaccumulation of OCs by algae. Both PeCB and atrazine significantly increased the bioaccumulation of TiO2 NPs by algae, except for PeCB in HX; however, PCB-77 reduced the bioaccumulation of TiO2 NPs by algae. The toxic effects of TiO2 NPs and OCs on algae in different water bodies were the result of the nature of the pollutants, bioaccumulation, hydrochemical properties, and other factors.


Assuntos
Atrazina , Chlorella , Poluentes Ambientais , Hidrocarbonetos Clorados , Nanopartículas , Poluentes Químicos da Água , Atrazina/análise , Nanopartículas/química , Titânio/química , Água , Hidrocarbonetos Clorados/análise , Poluentes Ambientais/análise , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 880: 163054, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36963691

RESUMO

The synergistic activation of persulfate by multiple factors could degrade pollutants more efficiently. However, the co-activation method based on metal ions has the risk of leakage. The non-metallic coupling method could achieve the same efficiency as the metal activation and meanwhile release environmental stress. In this study, the original biochar (BC) was prepared through using Chinese medicinal residue of Acanthopanax senticosus as the precursor. Compared with other biochar, the pore size structure was higher and toxicity risk was lower. The ultrasonic (US)/Acanthopanax senticosus biochar (ASBC)/persulfate oxidation system was established for Atrazine (ATZ). Results showed that 45KHz in middle and low frequency band cooperated with ASBC600 to degrade nearly 70 % of ATZ within 50 min, and US promoted the formation of SO4- and OH. Meanwhile, the synergy index of US and ASBC was calculated to be 1.18, which showed positive synergistic effect. Finally, the potential toxicity was examined by using Toxicity Characteristic Leaching Procedure (TCLP) and luminescent bacteria. This study provides a promising way for the activation of persulfate, which is expected to bring a new idea for the win-win situation of pollutant degradation and solid waste resource utilization.


Assuntos
Atrazina , Eleutherococcus , Poluentes Químicos da Água , Atrazina/toxicidade , Atrazina/análise , Medicina Tradicional Chinesa , Metais , Carvão Vegetal/química , Poluentes Químicos da Água/análise
5.
Sci Total Environ ; 865: 161190, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36581287

RESUMO

The substantial spatial and temporal variability of pesticides has led to large uncertainties when determining their peak aqueous concentrations. There is however a lack of large-scale studies dealing with accurate determination of annual maximum daily concentration (AMDC) across the landscape and over time based on the publicly available monitoring data. We developed a novel data-driven approach that firstly used time series modeling to generate AMDCs for qualified water monitoring sites in the conterminous U.S. With feature variables such as pesticide use and land cover compiled into the dataset, machine learning models using eXtreme Gradient Boosting (XGBoost) and Random Forest Regressor (RF) were then developed to estimate AMDCs in surface waters across the U.S. Both models exhibited significant predictability, while a hybrid model consisting of the average predictions by XGBoost and RF model had the highest prediction accuracy (mean absolute error (MAE): 1.23; R2: 0.61). The analysis of permutation variable importance indicated that pesticide use and drainage area were the two most important drivers. Partial dependence analysis revealed that pesticide use, precipitation, cultivated crop land cover and solubility exhibited concentration-promoting effects, whereas drainage area and molecular weight had concentration-demoting effects. Soil adsorption coefficient (Koc) showed nonmonotonic effects. The hybrid model was used to predict and map AMDCs of four example pesticides, including 2,4-dichlorophenoxyacetic acid (2,4-D), atrazine, glyphosate and imidacloprid during 2016-2019 at national scale. The predictive capability was validated using independent monitoring datasets. The fully evaluated approach significantly reduced the uncertainties in modeling annual peak concentrations and served as a valuable solution for conducting geographically oriented, highly refined exposure assessments for pesticides.


Assuntos
Atrazina , Herbicidas , Praguicidas , Humanos , Praguicidas/análise , Água/análise , Monitoramento Ambiental , Herbicidas/análise , Atrazina/análise
6.
Environ Sci Pollut Res Int ; 30(8): 20804-20820, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36260229

RESUMO

The increase in food needs due to high population growth in Niger has led to the intensification of urban agriculture and the increased use of pesticides. The objective of this study is primarily to assess the polar pesticide contamination (mainly herbicides) of the Niger River and its tributary, the Mekrou River, in Niger, using both grab sampling and POCIS (Polar Organic Chemical Integrative Samplers), and then to evaluate the risk to the aquatic environment. Two water sampling campaigns were carried out during the wet and dry seasons. The polar pesticides were analyzed by liquid chromatography coupled with tandem mass spectrometry, which allowed the identification of compounds with concentrations in the grab samples above the WHO guide values and the EU directive: diuron with 2221 ng/L (EU quality guideline: 200 ng/L), atrazine with 742 ng/L (EU quality guideline: 600 ng/L) and acetochlor with 238 ng/L (EU quality guideline: 100 ng/L). The risk assessment study indicated that diuron and atrazine present a high risk for the aquatic environment during the wet season. The main source of water contamination is the intensive use of pesticides in urban agriculture near the city of Niamey, and the intensive cotton farming in the Benin. Moreover, the surveys (30 producers interviewed) showed that 70% of the pesticides used are not approved by the Interstate Committee for Drought Control in the Sahel (CILSS) and some are prohibited in Niger. The inventory of pesticides sold in the zone showed that active ingredients used by producers are 48% insecticides, 45% herbicides, and 7% fungicides.


Assuntos
Atrazina , Herbicidas , Praguicidas , Poluentes Químicos da Água , Praguicidas/análise , Rios/química , Diurona/análise , Atrazina/análise , Níger , Monitoramento Ambiental/métodos , Herbicidas/análise , Água/análise , Poluentes Químicos da Água/análise
7.
Sci Total Environ ; 852: 158498, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36063942

RESUMO

Atrazine herbicide can bioaccumulate over time and thus affect humans for generations to come. However, scarce studies have evaluated its bioaccumulation potential in bovine milk, a nutritional staple for children and the elderly both domestically and internationally. This study aimed to determine its concentration in groundwater and bovine milk, as well as the risks it is likely to pose for human health. Eighteen dairy farms in the Pampean plain of Argentina were analyzed. A strong correlation was found between the chemical composition and the geomorphological characteristics of the plain. In addition, increased salinity was observed in the groundwater at greater distances from the aquifer's recharge area. Atrazine was quantified in 50 % of the groundwater samples (at values ranging from 0.07 to 1.40 µg/L), and in 89 % of the bovine milk samples (from 2.51 to 20.97 µg/L). Moreover, atrazine levels in 44.4 % of the groundwater samples and 11.1 % of the bovine milk samples (n = 18) exceeded the limits internationally established as safe for human consumption. The hazard quotient (HQ) values of the compound were negligible for children and adults, both in groundwater (child = 9.7E-4, adult = 4.5E-4) and in milk (child = 1.0E-2, adult = 1.6E-3). The estimated cancer risk (CR) values need further evaluation (child = 7.8E-6, adult = 3.6E-6 in groundwater; child = 6.6E-5, adult = 1.3E-5 in milk). In both types of samples, the HQ and CR of residual atrazine were higher for children than for adults. Nevertheless, bioaccumulation factors suggest that dairy cows have a moderate capacity to incorporate atrazine from abiotic matrices. This is the first report on residual atrazine in bovine milk in Argentina. The results presented here indicate that the status of atrazine contamination in the area should continue to be monitored in order to assess its long-term impact on public health.


Assuntos
Atrazina , Água Subterrânea , Herbicidas , Poluentes Químicos da Água , Criança , Adulto , Animais , Feminino , Bovinos , Humanos , Idoso , Atrazina/análise , Qualidade da Água , Bioacumulação , Leite/química , Poluentes Químicos da Água/análise , Água Subterrânea/química , Medição de Risco , Monitoramento Ambiental/métodos
8.
Artigo em Inglês | MEDLINE | ID: mdl-35886730

RESUMO

The presence of pesticide residues in groundwater, many years after their phase out in European Union verifies that the persistence in aquifer is much higher than in other environmental compartments. Currently used and banned pesticides were monitored in Northern Greece aquifers and a human health risk assessment was conducted. The target compounds were the herbicides metolachlor (MET), terbuthylazine (TER), atrazine (ATR) and its metabolites deisopropylatrazine (DIA), deethylatrazine (DEA) and hydroxyatrazine (HA). Eleven sampling sites were selected to have representatives of different types of wells. Pesticides were extracted by solid-phase extraction and analyzed by liquid chromatography. MET was detected in 100% of water samples followed by ATR (96.4%), DEA and HA (88.6%), DIA (78.2%) and TER (67.5%). ATR, DIA, DEA, HA, MET and TER mean concentrations detected were 0.18, 0.29, 0.14, 0.09, 0.16 and 0.15 µg/L, respectively. Obtained results were compared with historical data from previous monitoring studies and temporal trends were assessed. Preferential flow was the major factor facilitating pesticide leaching within the month of herbicide application. Moreover, apparent age of groundwater and the reduced pesticide dissipation rates on aquifers resulted of long-term detection of legacy pesticides. Although atrazine had been banned more than 18 years ago, it was detected frequently and their concentrations in some cases were over the maximum permissible limit. Furthermore, human health risk assessment of pesticides was calculated for two different age groups though drinking water consumption. In all examined wells, the sum of the HQ values were lower than the unity. As a result, the analyzed drinking water wells are considered safe according to the acute risk assessment process. However, the presence of atrazine residues causes concerns related with chronic toxicity, since ATR R values were greater than the parametric one of 1 × 10-6 advised by USEPA, for both age groups.


Assuntos
Atrazina , Água Subterrânea , Herbicidas , Praguicidas , Poluentes Químicos da Água , Atrazina/análise , Monitoramento Ambiental/métodos , Grécia , Água Subterrânea/química , Herbicidas/análise , Humanos , Praguicidas/análise , Medição de Risco , Poluentes Químicos da Água/análise
9.
Environ Monit Assess ; 194(8): 578, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35819550

RESUMO

For pesticide registrations in the USA under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), as implemented by the United States Environmental Protection Agency, drinking water risk assessments for groundwater sources are based on standard scenario modeling concentration estimates. The conceptual model for the drinking water protection goals is defined in terms of (1) a rural well in or near a relatively high pesticide use area, a shallow well (4-10 m); (2) long-term, single-station weather data; (3) soils characterized as highly leachable; (4) upper-end or surrogate, worst-case environmental fate parameters; and (5) maximum, annual use rates repeated every year. To date, monitoring data have not been quantitatively incorporated into FIFRA drinking water risk assessment; even though considerable, US national-scale temporal and spatial data for some chemistries exists. Investigations into drinking water monitoring data development have historically focused on single-source efforts that may not represent wide geographies and/or time periods, whereas Safe Drinking Water Act groundwater monitoring data are focused on a community-level scale rather than an individual, shallow, rural well. In the current case study, US national-scale, rural well data for the herbicide atrazine was collected, quality controlled, and combined into a single database from mixed sources (termed the atrazine rural well database) to (1) characterize differences between exposure estimates from standard EPA modeling approaches for specific characterization, (2) evaluate monitoring data toward direct use in US drinking water risk assessments to compliment or supersede standard modeling approaches to define risk, and (3) evaluate monitoring trends a function of time relative to label changes implemented as part of the registration review process. Of the 75,665 drinking water samples collected from groundwater, atrazine was only detected in 3185, a 4% detection rate.


Assuntos
Atrazina , Água Potável , Água Subterrânea , Praguicidas , Atrazina/análise , Monitoramento Ambiental , Praguicidas/análise , Estados Unidos
10.
Environ Res ; 204(Pt B): 112090, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34582803

RESUMO

Atrazine-contaminated soils can pose a carcinogenic and non-carcinogenic health risk through different routes for exposed people. This study aimed to assess the health risk of exposure to atrazine-contaminated soils through direct ingestion and dermal contact in farmlands nearby Shiraz. Atrazine concentration was measured in 22 selected sites using grid sampling. The carcinogenic and non-cancer risks associated with dermal and ingestion exposure in children and adults were estimated. The lowest and highest atrazine concentrations were in S1 (0.015 mg/kg soil) and S22 (0.55 mg/kg soil). Hazard Index (HI)1 values ranged from 0.007 to 0.25 for children, and the values ranged from 0.0008 to 0.03 for adults. The mean cancer risk for children and adults was 6.01 × 10-4 and 7.40 × 10-5, respectively. The HI value was less than 1 for all sampling sites, indicating that exposure to atrazine does not threaten children and adults. However, the cancer risk exceeds the United States Environmental Protection Agency (US.EPA)2 threshold risk limit (10-6 to 10-4) in all sampling sites. Therefore, it is recommended that children should avoid playing on atrazine-contaminated farms or soils near anywhere atrazine may have been used.


Assuntos
Atrazina , Metais Pesados , Poluentes do Solo , Adulto , Atrazina/análise , Atrazina/toxicidade , Criança , China , Monitoramento Ambiental , Fazendas , Humanos , Irã (Geográfico)/epidemiologia , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
11.
Environ Monit Assess ; 193(12): 827, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34796399

RESUMO

Inclusion of pesticide monitoring data in pesticide risk assessment is important yet challenging for several reasons, including infrequent or irregular data collection, disparate sources procedures and associated monitoring periods, and interpretation of the data itself in a policy context. These challenges alone, left unaddressed, will likely introduce unintentional and unforeseen risk assessment conclusions. While individual water quality monitoring programs report standard operating procedures and quality control practices for their own data, cross-checking data for duplicated data from one database to another does not routinely occur. Consequently, we developed a novel quality control and assurance methodology to identify errors and duplicated records toward creating an aggregated, single pesticide database toward use in ecological risk assessment. This methodology includes (1) standardization and reformatting practices, (2) data error and duplicate record identification protocols, (3) missing or inconsistent limit of detection and quantification reporting, and (4) site metadata scoring and ranking procedures to flag likely duplicate records. We applied this methodology to develop an aggregated (multiple-source), national-scale database for atrazine from a diverse set of surface water monitoring programs. The resultant database resolved and/or removed approximately 31% of the total ~ 385,000 records that were due to duplicated records. Identification of sample replicates was also developed. While the quality control and assurances methodologies developed in this work were applied to atrazine, they generally demonstrate how a properly constructed and aggregated single pesticide database would benefit from the methods described herein before use in subsequent statistical and data analysis or risk assessment.


Assuntos
Atrazina , Praguicidas , Atrazina/análise , Monitoramento Ambiental , Praguicidas/análise , Controle de Qualidade , Padrões de Referência
12.
J Toxicol Environ Health B Crit Rev ; 24(6): 223-306, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34219616

RESUMO

Atrazine is a triazine herbicide used predominantly on corn, sorghum, and sugarcane in the US. Its use potentially overlaps with the ranges of listed (threatened and endangered) species. In response to registration review in the context of the Endangered Species Act, we evaluated potential direct and indirect impacts of atrazine on listed species and designated critical habitats. Atrazine has been widely studied, extensive environmental monitoring and toxicity data sets are available, and the spatial and temporal uses on major crops are well characterized. Ranges of listed species are less well-defined, resulting in overly conservative designations of "May Effect". Preferences for habitat and food sources serve to limit exposure among many listed animal species and animals are relatively insensitive. Atrazine does not bioaccumulate, further diminishing exposures among consumers and predators. Because of incomplete exposure pathways, many species can be eliminated from consideration for direct effects. It is toxic to plants, but even sensitive plants tolerate episodic exposures, such as those occurring in flowing waters. Empirical data from long-term monitoring programs and realistic field data on off-target deposition of drift indicate that many other listed species can be removed from consideration because exposures are below conservative toxicity thresholds for direct and indirect effects. Combined with recent mitigation actions by the registrant, this review serves to refine and focus forthcoming listed species assessment efforts for atrazine.Abbreviations: a.i. = Active ingredient (of a pesticide product). AEMP = Atrazine Ecological Monitoring Program. AIMS = Avian Incident Monitoring SystemArach. = Arachnid (spiders and mites). AUC = Area Under the Curve. BE = Biological Evaluation (of potential effects on listed species). BO = Biological Opinion (conclusion of the consultation between USEPA and the Services with respect to potential effects in listed species). CASM = Comprehensive Aquatic System Model. CDL = Crop Data LayerCN = field Curve Number. CRP = Conservation Reserve Program (lands). CTA = Conditioned Taste Avoidance. DAC = Diaminochlorotriazine (a metabolite of atrazine, also known by the acronym DACT). DER = Data Evaluation Record. EC25 = Concentration causing a specified effect in 25% of the tested organisms. EC50 = Concentration causing a specified effect in 50% of the tested organisms. EC50RGR = Concentration causing a 50% reduction in relative growth rate. ECOS = Environmental Conservation Online System. EDD = Estimated Daily Dose. EEC = Expected Environmental Concentration. EFED = Environmental Fate and Effects Division (of the USEPA). EFSA = European Food Safety Agency. EIIS = Ecological Incident Information System. ERA = Environmental Risk Assessment. ESA = Endangered Species Act. ESU = Evolutionarily Significant UnitsFAR = Field Application RateFIFRA = Federal Insecticide, Fungicide, and Rodenticide Act. FOIA = Freedom of Information Act (request). GSD = Genus Sensitivity Distribution. HC5 = Hazardous Concentration for ≤ 5% of species. HUC = Hydrologic Unit Code. IBM = Individual-Based Model. IDS = Incident Data System. KOC = Partition coefficient between water and organic matter in soil or sediment. KOW = Octanol-Water partition coefficient. LC50 = Concentration lethal to 50% of the tested organisms. LC-MS-MS = Liquid Chromatograph with Tandem Mass Spectrometry. LD50 = Dose lethal to 50% of the tested organisms. LAA = Likely to Adversely Affect. LOAEC = Lowest-Observed-Adverse-Effect Concentration. LOC = Level of Concern. MA = May Affect. MATC = Maximum Acceptable Toxicant Concentration. NAS = National Academy of Sciences. NCWQR = National Center of Water Quality Research. NE = No Effect. NLAA = Not Likely to Adversely Affect. NMFS = National Marine Fisheries Service. NOAA = National Oceanic and Atmospheric Administration. NOAEC = No-Observed-Adverse-Effect Concentration. NOAEL = No-Observed-Adverse-Effect Dose-Level. OECD = Organization of Economic Cooperation and Development. PNSP = Pesticide National Synthesis Project. PQ = Plastoquinone. PRZM = Pesticide Root Zone Model. PWC = Pesticide in Water Calculator. QWoE = Quantitative Weight of Evidence. RGR = Relative growth rate (of plants). RQ = Risk Quotient. RUD = Residue Unit Doses. SAP = Science Advisory Panel (of the USEPA). SGR = Specific Growth Rate. SI = Supplemental Information. SSD = Species Sensitivity Distribution. SURLAG = Surface Runoff Lag Coefficient. SWAT = Soil & Water Assessment Tool. SWCC = Surface Water Concentration Calculator. UDL = Use Data Layer (for pesticides). USDA = United States Department of Agriculture. USEPA = United States Environmental Protection Agency. USFWS = United States Fish and Wildlife Service. USGS = United States Geological Survey. WARP = Watershed Regressions for Pesticides.


Assuntos
Atrazina/toxicidade , Monitoramento Ambiental/métodos , Herbicidas/toxicidade , Animais , Atrazina/análise , Herbicidas/análise , Medição de Risco/métodos , Especificidade da Espécie , Estados Unidos
13.
Environ Sci Pollut Res Int ; 28(26): 35064-35072, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33661496

RESUMO

Atrazine is one of the most used herbicides in China. It is a persistent organic pollutant but has been widely used on Chinese farmlands for a long time. To assess its dietary and ecological risks to human and environment, in this study, atrazine residues were extracted with acetonitrile and then plant samples were detected with gas chromatography coupled with mass spectrometry (GC-MS) and soil samples were determined with gas chromatography coupled with nitrogen-phosphorus detector (GC-NPD). The limit of quantification (LOQ) of the method was 0.01 mg/kg for all matrices. The recoveries ranged from 82.0 to 105.4% for plant samples and 75.6 to 85.6% for soil samples. The final residues of atrazine in all plant samples were lower than LOQ. Dietary risk assessment suggested that under good agricultural practices (GAP) conditions, intake of atrazine from apples, grapes, and tea would exhibit an acceptably low health risk on consumers. However, the final residues of atrazine in soil samples were <0.01-9.2 mg/kg, and the half-lives were 2.0-9.1 days. Based on the species sensitivity distribution (SSD) model, the potential affected fraction (PAF) of atrazine in soil samples ranges from 0.01 to 65.8%. Atrazine residues in 43.1% soil samples were higher than 0.11 mg/kg, which was the hazardous concentration for 5% of species (HC5) of atrazine in soil. These results suggested that the ecological risks of atrazine in apples, grapes, and tea garden soil would exhibit a high risk on environmental species even under the same GAP conditions. This study could provide guidance for comprehensive risk assessment of atrazine properly used in apple, grape, and tea gardens.


Assuntos
Atrazina , Herbicidas , Malus , Resíduos de Praguicidas , Poluentes do Solo , Vitis , Atrazina/análise , China , Cromatografia Gasosa-Espectrometria de Massas , Herbicidas/análise , Humanos , Resíduos de Praguicidas/análise , Medição de Risco , Solo , Poluentes do Solo/análise , Chá
14.
Chemosphere ; 258: 127333, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32947666

RESUMO

Increasing use of current-use pesticides (CUPs) in Africa raises environmental and public health concerns. But there is a large uncertainty about their occurrence and the composition of pesticide mixtures on this continent. This paper investigates the presence of 27 CUPs in air across 20 sampling sites in Africa. 166 passive air samples, consisting of polyurethane foam (PUF), were collected in 12 African countries between 2010 and 2018. Samples were extracted with methanol and analyzed via high-performance liquid chromatography coupled with tandem mass spectrometry. The detection frequencies of CUPs per site were compared to land use patterns and sampling years, while their similarities were assessed using hierarchical cluster analysis. Overall, 24 CUPs were detected at least once. In 93% of all samples, at least one CUP was detected, while 78% of the samples had mixtures of two or more CUPs (median 3, interquartile range 5). Atrazine and chlorpyrifos were detected in 19 out of 20 sampling sites. Carbaryl, metazachlor, simazine, tebuconazole and terbuthylazine had the highest detection frequencies at sampling sites dominated by croplands. Across all the sampling years, 16 CUPs were present. Seven CUPs were newly detected from 2016 onwards (azinfos-methyl, dimetachlor, chlorsulfuron, chlortoluron, isoproturon, prochloraz and pyrazon), while metamitron was only present before 2012. Sites within a radius of about 200 km showed similarities in detected CUP mixtures across all samples. Our results show the presence of CUP mixtures across multiple agricultural and urban locations in Africa which requires further investigation of related environmental and human health risks.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Praguicidas/análise , África , Agricultura , Atrazina/análise , Clorpirifos/análise , Humanos , Poliuretanos
15.
Chemosphere ; 252: 126533, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32217410

RESUMO

Despite frequent detection of atrazine (ATZ) and its degradates (including hydroxyatrazine, ATZ-OH; deethylatrazine, DEA; deisopropylatrazine, DIA; and deethyldeisopropylatrazine, DACT) in a variety of water bodies, documentation of their occurrence and distribution in tap water in China is still scarce. A nationwide survey about ATZ and its degradates (ATZs) in tap water from 31 provinces in 7 regions of mainland China and Hong Kong was conducted during June 2019. At least one of the analytes was found in all the water samples (n = 884). The median sum concentrations of ATZs (ΣATZs) was 21.0 ng/L (range: 0.02 ng/L-3.04 µg/L). The predominant compounds of ATZs in tap water were ATZ and DEA, with a detection frequency of 99.5% and 98.0%, respectively, followed by ATZ-OH (87.3%), DACT (84.0%), and DIA (78.1%). Significant regional variations (p < 0.05) were found in the concentrations of ATZs in tap water, and the highest concentration of ΣATZs (median: 254 ng/L, range: 0.44 ng/L-3.04 µg/L) was found in Northeastern China, followed by Eastern (37.2 ng/L, 0.02-706 ng/L), Northern (30.2 ng/L, 0.04-317 ng/L), Central (29.3 ng/L, 0.04-256 ng/L), Southern (25.0 ng/L, 0.04-297 ng/L), Southwestern (17.2 ng/L, 0.02-388 ng/L), and Northwestern China (3.22 ng/L, 0.06-214 ng/L). The level of ΣATZs in groundwater from rural area of China was about 1/3 of that found in tap water. ATZs cannot be removed by boiling tap water. The highest estimated daily intake of ΣATZs (248 ng/kg-body weight/day) was found in the infant population of Changchun, Jilin, Northeastern China.


Assuntos
Atrazina/análise , Exposição Ambiental/análise , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricos , Atrazina/análogos & derivados , China , Exposição Ambiental/estatística & dados numéricos , Água Subterrânea , Herbicidas/análise , Hong Kong , Humanos , Triazinas/análise , Água
16.
Environ Sci Pollut Res Int ; 26(23): 23268-23278, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31197664

RESUMO

Four techniques, UV254 nm photolysis, vacuum ultraviolet (VUV172 nm) photolysis, combined UV254 nm/VUV185 nm photolysis and gamma (γ) radiolysis were used to induce the transformation of atrazine in aqueous solution. The effects of dissolved oxygen (atrazine concentration 1 × 10-4 mol L-1 and 4.6 × 10-7 mol L-1) and matrix (high purity water/purified wastewater, atrazine concentration 4.6 × 10-7 mol L-1) and the electric energy requirements were investigated. The calculation of the energy input in cases of the photolyses was based on the lamp's power. In radiolysis, the absorbed dose (J kg-1) was the basis. In UV photolysis, atrazine transforms to atrazine-2-hydroxy; this product practically does not degrade during UV photolysis; due to this reason, the mineralisation is very slow. This and some other products of atrazine decomposition degrade only in radical reactions. Dissolved oxygen usually slightly enhances the degradation rate. At 10-7 mol L-1 concentration level, the matrix, high purity water/purified wastewater, has not much influence on the degradation rates in UV photolysis and radiolysis. In the VUV and UV/VUV systems, considerable matrix effects were observed. Comparing the electric energy requirements of the four degradation processes, radiolysis was found to be the economically most feasible method, requiring 1-2 orders of magnitude less electric energy than UV/VUV, VUV and UV photolysis.


Assuntos
Atrazina/análise , Raios gama , Fotólise , Raios Ultravioleta , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Atrazina/efeitos da radiação , Cinética , Oxirredução , Vácuo , Águas Residuárias/química , Poluentes Químicos da Água/efeitos da radiação
17.
Toxicol Sci ; 150(2): 269-82, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26794141

RESUMO

The risk of human exposure to total chlorotriazines (TCT) in drinking water was evaluated using a physiologically based pharmacokinetic (PBPK) model. Daily TCT (atrazine, deethylatrazine, deisopropylatrazine, and diaminochlorotriazine) chemographs were constructed for 17 frequently monitored community water systems (CWSs) using linear interpolation and Krieg estimates between observed TCT values. Synthetic chemographs were created using a conservative bias factor of 3 to generate intervening peaks between measured values. Drinking water consumption records from 24-h diaries were used to calculate daily exposure. Plasma TCT concentrations were updated every 30 minutes using the PBPK model output for each simulated calendar year from 2006 to 2010. Margins of exposure (MOEs) were calculated (MOE = [Human Plasma TCTPOD] ÷ [Human Plasma TCTEXP]) based on the toxicological point of departure (POD) and the drinking water-derived exposure to TCT. MOEs were determined based on 1, 2, 3, 4, 7, 14, 28, or 90 days of rolling average exposures and plasma TCT Cmax, or the area under the curve (AUC). Distributions of MOE were determined and the 99.9th percentile was used for risk assessment. MOEs for all 17 CWSs were >1000 at the 99.9(th)percentile. The 99.9(th)percentile of the MOE distribution was 2.8-fold less when the 3-fold synthetic chemograph bias factor was used. MOEs were insensitive to interpolation method, the consumer's age, the water consumption database used and the duration of time over which the rolling average plasma TCT was calculated, for up to 90 days. MOEs were sensitive to factors that modified the toxicological, or hyphenated appropriately no-observed-effects level (NOEL), including rat strain, endpoint used, method of calculating the NOEL, and the pharmacokinetics of elimination, as well as the magnitude of exposure (CWS, calendar year, and use of bias factors).


Assuntos
Atrazina/farmacocinética , Água Potável/química , Monitoramento Ambiental/métodos , Modelos Biológicos , Poluentes Químicos da Água/farmacocinética , Atrazina/análise , Atrazina/sangue , Atrazina/toxicidade , Água Potável/normas , Monitoramento Ambiental/estatística & dados numéricos , Humanos , Probabilidade , Medição de Risco , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/sangue , Poluentes Químicos da Água/toxicidade
18.
Bull Environ Contam Toxicol ; 96(1): 90-5, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26537372

RESUMO

Methodology using solid phase extraction and high performance liquid chromatography (SPE-C18/HPLC-DAD) was applied to pesticide determinations in ten water reservoirs in the semidarid region of northeastern Brazil. The validated method was suitable for determination of herbicides and insecticide in surface water. The recovery efficiency of atrazine, methyl-parathion and simazine was approximately 70%. The method also showed good linearity and selectivity with correlation coefficients (R) greater than 0.99. The limits of detection were below the maximum residue limits (MRLs) established by government agencies. Studied reservoirs showed presence of atrazine at mean levels from 7.0 to 15.0 µg/L. Simazine and methyl parathion were not detected during the period. The atrazine levels measured from this semiarid region are of the same magnitude as those found in regions with moderate to high agricultural activity. According to detected atrazine concentrations, the annual health risk to humans was insignificant. However, the control of herbicides is important to maintain the quality of water in the reservoirs of Ceará, Brazil.


Assuntos
Herbicidas/análise , Inseticidas/análise , Poluentes Químicos da Água/análise , Abastecimento de Água/estatística & dados numéricos , Agricultura , Atrazina/análise , Brasil , Cromatografia Líquida de Alta Pressão , Poluição Ambiental/análise , Humanos , Praguicidas/análise , Medição de Risco , Simazina/análise , Extração em Fase Sólida/métodos , Água/análise , Água/química
19.
Environ Technol ; 36(9-12): 1538-46, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25491130

RESUMO

The triazines are a group of herbicides with a wide range of uses. Atrazine is, in fact, one of the most used agricultural pesticides in the world. The terbuthylazine is applied as a substitute of atrazine in some countries of Europe since 2004, when the European Union announced a ban of atrazine because of ubiquitous water contamination. In this study, both atrazine and terbuthylazine were degraded by the ozone process to estimate the efficiency on pesticide removal in water, the intermediates formed and their potential oestrogenic activity using the yeast oestrogen screen (YES) test. Both pesticides were rapidly eliminated from the medium during ozonation (applied ozone dose 0.083 and 0.02 mmol O3 L(-1), respectively). The results show that both compounds generated similar by-products from ozone degradation. Moreover, significant oestrogenic activity was detected for both atrazine and terbuthylazine intermediates, during the first minutes of ozonation. The YES assay used in this study proved to be a sensitive tool in assessing trace amounts of oestrogenic chemicals, which can represent critical issues influencing the experimental results in environmental applications.


Assuntos
Atrazina/química , Disruptores Endócrinos/análise , Triazinas/química , Poluentes Químicos da Água/química , Atrazina/análise , Concentração de Íons de Hidrogênio , Oxirredução , Ozônio , Saccharomyces cerevisiae , Triazinas/análise
20.
Environ Toxicol Chem ; 34(5): 959-67, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25475692

RESUMO

The present study examined the potential use of polar organic chemical integrative samplers (POCIS) for exposure assessment of munitions constituents, including 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and their breakdown products (aminodinitrotoluenes [ADNTs], diaminonitrotoluenes [DANTs], and hexahydro-1,3,5-trinitroso-1,3,5-triazine [TNX]). Loss of munitions constituents from the sorbent phase after uptake was observed for the "pesticide" POCIS configuration but not for the "pharmaceutical" configuration. Therefore, the latter was selected for further investigation. Under constant exposure conditions, TNT, ADNTs, DANT, RDX, and atrazine (a common environmental contaminant) accumulated at a linear rate for at least 14 d, with sampling rates between 34 mL/d and 215 mL/d. When POCIS were exposed to fluctuating concentrations, analyte accumulation values were similar to values found during constant exposure, indicating that the sampler was indeed integrative. In contrast, caffeine (a common polar contaminant) and TNX did not accumulate at a linear rate and had a reduction in accumulation of greater than 50% on the POCIS during fluctuating exposures, demonstrating that POCIS did not sample those chemicals in an integrative manner. Moreover, in a flow-through microcosm containing the explosive formulation Composition B, TNT and RDX were readily measured using POCIS, despite relatively high turnover rates and thus reduced water concentrations. Mean water concentrations estimated from POCIS were ± 37% of mean water concentrations measured by traditional grab sample collection. Thus, POCIS were found to have high utility for quantifying exposure to most munitions constituents evaluated (TNT, ADNTs, and RDX) and atrazine.


Assuntos
Poluentes Ambientais/análise , Substâncias Explosivas/análise , Compostos Orgânicos/análise , Atrazina/análise , Calibragem , Indicadores e Reagentes , Controle de Qualidade , Triazinas/análise , Trinitrotolueno/análise , Água/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA