Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.694
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Phys Eng Sci Med ; 47(3): 1213-1226, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38884670

RESUMO

An automated scoring system for cleanliness assessment during video capsule endoscopy (VCE) is presently lacking. The present study focused on developing an approach to automatically assess the cleanliness in VCE frames as per the latest scoring i.e., Korea-Canada (KODA). Initially, an easy-to-use mobile application called artificial intelligence-KODA (AI-KODA) score was developed to collect a multi-label image dataset of twenty-eight patient capsule videos. Three readers (gastroenterology fellows), who had been trained in reading VCE, rated this dataset in a duplicate manner. The labels were saved automatically in real-time. Inter-rater and intra-rater reliability were checked. The developed dataset was then randomly split into train:validate:test ratio of 70:20:10 and 60:20:20. It was followed by a comprehensive benchmarking and evaluation of three multi-label classification tasks using ten machine learning and two deep learning algorithms. Reliability estimation was found to be overall good among the three readers. Overall, random forest classifier achieved the best evaluation metrics, followed by Adaboost, KNeighbours, and Gaussian naive bayes in the machine learning-based classification tasks. Deep learning algorithms outperformed the machine learning-based classification tasks for only VM labels. Thorough analysis indicates that the proposed approach has the potential to save time in cleanliness assessment and is user-friendly for research and clinical use. Further research is required for the improvement of intra-rater reliability of KODA, and the development of automated multi-task classification in this field.


Assuntos
Endoscopia por Cápsula , Humanos , Automação , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Algoritmos , Inteligência Artificial
2.
AAPS PharmSciTech ; 25(6): 143, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918304

RESUMO

The topology and surface characteristics of lyophilisates significantly impact the stability and reconstitutability of freeze-dried pharmaceuticals. Consequently, visual quality control of the product is imperative. However, this procedure is not only time-consuming and labor-intensive but also expensive and prone to errors. In this paper, we present an approach for fully automated, non-destructive inspection of freeze-dried pharmaceuticals, leveraging robotics, computed tomography, and machine learning.


Assuntos
Liofilização , Aprendizado de Máquina , Liofilização/métodos , Preparações Farmacêuticas/química , Controle de Qualidade , Química Farmacêutica/métodos , Tomografia Computadorizada por Raios X/métodos , Robótica/métodos , Tecnologia Farmacêutica/métodos , Automação/métodos
3.
PLoS One ; 19(6): e0304085, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38905190

RESUMO

In a clinical context, conventional optical microscopy is commonly used for the visualization of biological samples for diagnosis. However, the availability of molecular techniques and rapid diagnostic tests are reducing the use of conventional microscopy, and consequently the number of experienced professionals starts to decrease. Moreover, the continuous visualization during long periods of time through an optical microscope could affect the final diagnosis results due to induced human errors and fatigue. Therefore, microscopy automation is a challenge to be achieved and address this problem. The aim of the study is to develop a low-cost automated system for the visualization of microbiological/parasitological samples by using a conventional optical microscope, and specially designed for its implementation in resource-poor settings laboratories. A 3D-prototype to automate the majority of conventional optical microscopes was designed. Pieces were built with 3D-printing technology and polylactic acid biodegradable material with Tinkercad/Ultimaker Cura 5.1 slicing softwares. The system's components were divided into three subgroups: microscope stage pieces, storage/autofocus-pieces, and smartphone pieces. The prototype is based on servo motors, controlled by Arduino open-source electronic platform, to emulate the X-Y and auto-focus (Z) movements of the microscope. An average time of 27.00 ± 2.58 seconds is required to auto-focus a single FoV. Auto-focus evaluation demonstrates a mean average maximum Laplacian value of 11.83 with tested images. The whole automation process is controlled by a smartphone device, which is responsible for acquiring images for further diagnosis via convolutional neural networks. The prototype is specially designed for resource-poor settings, where microscopy diagnosis is still a routine process. The coalescence between convolutional neural network predictive models and the automation of the movements of a conventional optical microscope confer the system a wide range of image-based diagnosis applications. The accessibility of the system could help improve diagnostics and provide new tools to laboratories worldwide.


Assuntos
Microscopia , Microscopia/métodos , Microscopia/instrumentação , Microscopia/economia , Humanos , Impressão Tridimensional/instrumentação , Software , Robótica/instrumentação , Smartphone , Automação , Imageamento Tridimensional/métodos
4.
Eur J Nucl Med Mol Imaging ; 51(11): 3252-3266, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38717592

RESUMO

PURPOSE: [18F]PI-2620 positron emission tomography (PET) detects misfolded tau in progressive supranuclear palsy (PSP) and Alzheimer's disease (AD). We questioned the feasibility and value of absolute [18F]PI-2620 PET quantification for assessing tau by regional distribution volumes (VT). Here, arterial input functions (AIF) represent the gold standard, but cannot be applied in routine clinical practice, whereas image-derived input functions (IDIF) represent a non-invasive alternative. We aimed to validate IDIF against AIF and we evaluated the potential to discriminate patients with PSP and AD from healthy controls by non-invasive quantification of [18F] PET. METHODS: In the first part of the study, we validated AIF derived from radial artery whole blood against IDIF by investigating 20 subjects (ten controls and ten patients). IDIF were generated by manual extraction of the carotid artery using the average and the five highest (max5) voxel intensity values and by automated extraction of the carotid artery using the average and the maximum voxel intensity value. In the second part of the study, IDIF quantification using the IDIF with the closest match to the AIF was transferred to group comparison of a large independent cohort of 40 subjects (15 healthy controls, 15 PSP patients and 10 AD patients). We compared VT and VT ratios, both calculated by Logan plots, with distribution volume (DV) ratios using simplified reference tissue modelling and standardized uptake value (SUV) ratios. RESULTS: AIF and IDIF showed highly correlated input curves for all applied IDIF extraction methods (0.78 < r < 0.83, all p < 0.0001; area under the curves (AUC): 0.73 < r ≤ 0.82, all p ≤ 0.0003). Regarding the VT values, correlations were mainly found between those generated by the AIF and by the IDIF methods using the maximum voxel intensity values. Lowest relative differences (RD) were observed by applying the manual method using the five highest voxel intensity values (max5) (AIF vs. IDIF manual, avg: RD = -82%; AIF vs. IDIF automated, avg: RD = -86%; AIF vs. IDIF manual, max5: RD = -6%; AIF vs. IDIF automated, max: RD = -26%). Regional VT values revealed considerable variance at group level, which was strongly reduced upon scaling by the inferior cerebellum. The resulting VT ratio values were adequate to detect group differences between patients with PSP or AD and healthy controls (HC) (PSP target region (globus pallidus): HC vs. PSP vs. AD: 1.18 vs. 1.32 vs. 1.16; AD target region (Braak region I): HC vs. PSP vs. AD: 1.00 vs. 1.00 vs. 1.22). VT ratios and DV ratios outperformed SUV ratios and VT in detecting differences between PSP and healthy controls, whereas all quantification approaches performed similarly in comparing AD and healthy controls. CONCLUSION: Blood-free IDIF is a promising approach for quantification of [18F]PI-2620 PET, serving as correlating surrogate for invasive continuous arterial blood sampling. Regional [18F]PI-2620 VT show large variance, in contrast to regional [18F]PI-2620 VT ratios scaled with the inferior cerebellum, which are appropriate for discriminating PSP, AD and healthy controls. DV ratios obtained by simplified reference tissue modeling are similarly suitable for this purpose.


Assuntos
Doença de Alzheimer , Processamento de Imagem Assistida por Computador , Tomografia por Emissão de Pósitrons , Proteínas tau , Humanos , Tomografia por Emissão de Pósitrons/métodos , Masculino , Feminino , Idoso , Proteínas tau/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Pessoa de Meia-Idade , Processamento de Imagem Assistida por Computador/métodos , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/metabolismo , Automação , Estudos de Casos e Controles , Compostos Radiofarmacêuticos/farmacocinética
5.
Int J Cardiovasc Imaging ; 40(7): 1493-1500, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38748056

RESUMO

Image noise and vascular attenuation are important factors affecting image quality and diagnostic accuracy of coronary computed tomography angiography (CCTA). The aim of this study was to develop an algorithm that automatically performs noise and attenuation measurements in CCTA and to evaluate the ability of the algorithm to identify non-diagnostic examinations. The algorithm, "NoiseNet", was trained and tested on 244 CCTA studies from the Swedish CArdioPulmonary BioImage Study. The model is a 3D U-Net that automatically segments the aortic root and measures attenuation (Hounsfield Units, HU), noise (standard deviation of HU, HUsd) and signal-to-noise ratio (SNR, HU/HUsd) in the aortic lumen, close to the left coronary ostium. NoiseNet was then applied to 529 CCTA studies previously categorized into three subgroups: fully diagnostic, diagnostic with excluded parts and non-diagnostic. There was excellent correlation between NoiseNet and manual measurements of noise (r = 0.948; p < 0.001) and SNR (r = 0.948; <0.001). There was a significant difference in noise levels between the image quality subgroups: fully diagnostic 33.1 (29.8-37.9); diagnostic with excluded parts 36.1 (31.5-40.3) and non-diagnostic 42.1 (35.2-47.7; p < 0.001). Corresponding values for SNR were 16.1 (14.0-18.0); 14.0 (12.4-16.2) and 11.1 (9.6-14.0; p < 0.001). ROC analysis for prediction of a non-diagnostic study showed an AUC for noise of 0.73 (CI 0.64-0.83) and for SNR of 0.80 (CI 0.71-0.89). In conclusion, NoiseNet can perform noise and SNR measurements with high accuracy. Noise and SNR impact image quality and automatic measurements may be used to identify CCTA studies with low image quality.


Assuntos
Algoritmos , Automação , Angiografia por Tomografia Computadorizada , Angiografia Coronária , Doença da Artéria Coronariana , Vasos Coronários , Valor Preditivo dos Testes , Interpretação de Imagem Radiográfica Assistida por Computador , Razão Sinal-Ruído , Humanos , Angiografia Coronária/métodos , Reprodutibilidade dos Testes , Doença da Artéria Coronariana/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Suécia , Pessoa de Meia-Idade , Tomografia Computadorizada Multidetectores , Feminino , Artefatos , Masculino , Idoso
6.
J Bone Miner Res ; 39(7): 898-905, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38699950

RESUMO

Whether simultaneous automated ascertainments of prevalent vertebral fracture (auto-PVFx) and abdominal aortic calcification (auto-AAC) on vertebral fracture assessment (VFA) lateral spine bone density (BMD) images jointly predict incident fractures in routine clinical practice is unclear. We estimated the independent associations of auto-PVFx and auto-AAC primarily with incident major osteoporotic and secondarily with incident hip and any clinical fractures in 11 013 individuals (mean [SD] age 75.8 [6.8] years, 93.3% female) who had a BMD test combined with VFA between March 2010 and December 2017. Auto-PVFx and auto-AAC were ascertained using convolutional neural networks (CNNs). Proportional hazards models were used to estimate the associations of auto-PVFx and auto-AAC with incident fractures over a mean (SD) follow-up of 3.7 (2.2) years, adjusted for each other and other risk factors. At baseline, 17% (n = 1881) had auto-PVFx and 27% (n = 2974) had a high level of auto-AAC (≥ 6 on scale of 0 to 24). Multivariable-adjusted hazard ratios (HR) for incident major osteoporotic fracture (95% CI) were 1.85 (1.59, 2.15) for those with compared with those without auto-PVFx, and 1.36 (1.14, 1.62) for those with high compared with low auto-AAC. The multivariable-adjusted HRs for incident hip fracture were 1.62 (95% CI, 1.26 to 2.07) for those with compared to those without auto-PVFx, and 1.55 (95% CI, 1.15 to 2.09) for those high auto-AAC compared with low auto-AAC. The 5-year cumulative incidence of major osteoporotic fracture was 7.1% in those with no auto-PVFx and low auto-AAC, 10.1% in those with no auto-PVFx and high auto-AAC, 13.4% in those with auto-PVFx and low auto-AAC, and 18.0% in those with auto-PVFx and high auto-AAC. While physician manual review of images in clinical practice will still be needed to confirm image quality and provide clinical context for interpretation, simultaneous automated ascertainment of auto-PVFx and auto-AAC can aid fracture risk assessment.


Individuals with calcification of their abdominal aorta (AAC) and vertebral fractures seen on lateral spine bone density images (easily obtained as part of a bone density test) are much more likely to have subsequent fractures. Prior studies have not shown if both AAC and prior vertebral fracture both contribute to fracture prediction in routine clinical practice. Additionally, a barrier to using these images to aid fracture risk assessment at the time of bone density testing has been the need for expert readers to be able to accurately detect both AAC and vertebral fractures. We have developed automated computer methods (using artificial intelligence) to accurately detect vertebral fracture (auto-PVFx) and auto-AAC on lateral spine bone density images for 11 013 older individuals having a bone density test in routine clinical practice. Over a 5-year follow-up period, 7.1% of those with no auto-PVFx and low auto-AAC, 10.1% of those with no auto-PVFx and high auto-AAC, 13.4% of those with auto-PVFx and low auto-AAC, and 18.0% of those with auto-PVFx and high auto-AAC had a major osteoporotic fracture. Auto-PVFx and auto-AAC, ascertained simultaneously on lateral spine bone density images, both contribute to the risk of subsequent major osteoporotic fractures in routine clinical practice settings.


Assuntos
Aorta Abdominal , Fraturas da Coluna Vertebral , Humanos , Feminino , Idoso , Fraturas da Coluna Vertebral/epidemiologia , Fraturas da Coluna Vertebral/diagnóstico por imagem , Aorta Abdominal/diagnóstico por imagem , Aorta Abdominal/patologia , Masculino , Medição de Risco , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/epidemiologia , Prevalência , Idoso de 80 Anos ou mais , Fatores de Risco , Automação , Fraturas por Osteoporose/epidemiologia , Fraturas por Osteoporose/diagnóstico por imagem , Incidência
7.
Med Phys ; 51(6): 4201-4218, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38721977

RESUMO

BACKGROUND: Spinal degeneration and vertebral compression fractures are common among the elderly that adversely affect their mobility, quality of life, lung function, and mortality. Assessment of vertebral fractures in chronic obstructive pulmonary disease (COPD) is important due to the high prevalence of osteoporosis and associated vertebral fractures in COPD. PURPOSE: We present new automated methods for (1) segmentation and labelling of individual vertebrae in chest computed tomography (CT) images using deep learning (DL), multi-parametric freeze-and-grow (FG) algorithm, and separation of apparently fused vertebrae using intensity autocorrelation and (2) vertebral deformity fracture detection using computed vertebral height features and parametric computational modelling of an established protocol outlined for trained human experts. METHODS: A chest CT-based automated method was developed for quantitative deformity fracture assessment following the protocol by Genant et al. The computational method was accomplished in the following steps: (1) computation of a voxel-level vertebral body likelihood map from chest CT using a trained DL network; (2) delineation and labelling of individual vertebrae on the likelihood map using an iterative multi-parametric FG algorithm; (3) separation of apparently fused vertebrae in CT using intensity autocorrelation; (4) computation of vertebral heights using contour analysis on the central anterior-posterior (AP) plane of a vertebral body; (5) assessment of vertebral fracture status using ratio functions of vertebral heights and optimized thresholds. The method was applied to inspiratory or total lung capacity (TLC) chest scans from the multi-site Genetic Epidemiology of COPD (COPDGene) (ClinicalTrials.gov: NCT00608764) study, and the performance was examined (n = 3231). One hundred and twenty scans randomly selected from this dataset were partitioned into training (n = 80) and validation (n = 40) datasets for the DL-based vertebral body classifier. Also, generalizability of the method to low dose CT imaging (n = 236) was evaluated. RESULTS: The vertebral segmentation module achieved a Dice score of .984 as compared to manual outlining results as reference (n = 100); the segmentation performance was consistent across images with the minimum and maximum of Dice scores among images being .980 and .989, respectively. The vertebral labelling module achieved 100% accuracy (n = 100). For low dose CT, the segmentation module produced image-level minimum and maximum Dice scores of .995 and .999, respectively, as compared to standard dose CT as the reference; vertebral labelling at low dose CT was fully consistent with standard dose CT (n = 236). The fracture assessment method achieved overall accuracy, sensitivity, and specificity of 98.3%, 94.8%, and 98.5%, respectively, for 40,050 vertebrae from 3231 COPDGene participants. For generalizability experiments, fracture assessment from low dose CT was consistent with the reference standard dose CT results across all participants. CONCLUSIONS: Our CT-based automated method for vertebral fracture assessment is accurate, and it offers a feasible alternative to manual expert reading, especially for large population-based studies, where automation is important for high efficiency. Generalizability of the method to low dose CT imaging further extends the scope of application of the method, particularly since the usage of low dose CT imaging in large population-based studies has increased to reduce cumulative radiation exposure.


Assuntos
Processamento de Imagem Assistida por Computador , Fraturas da Coluna Vertebral , Tomografia Computadorizada por Raios X , Fraturas da Coluna Vertebral/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Inteligência Artificial , Automação , Radiografia Torácica , Aprendizado Profundo , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Idoso
8.
PLoS One ; 19(5): e0301643, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38696424

RESUMO

BACKGROUND: Delayed response to clinical deterioration of hospital inpatients is common. Deployment of an electronic automated advisory vital signs monitoring and notification system to signal clinical deterioration is associated with significant improvements in clinical outcomes but there is no evidence on the cost-effectiveness compared with routine monitoring, in the National Health Service (NHS) in the United Kingdom (UK). METHODS: A decision analytic model was developed to estimate the cost-effectiveness of an electronic automated advisory notification system versus standard care, in adults admitted to a district general hospital. Analyses considered: (1) the cost-effectiveness of the technology based on secondary analysis of patient level data of 3787 inpatients in a before-and-after study; and (2) the cost-utility (cost per quality-adjusted life-year (QALY)) over a lifetime horizon, extrapolated using published data. Analysis was conducted from the perspective of the NHS. Uncertainty in the model was assessed using a range of sensitivity analyses. RESULTS: The study population had a mean age of 68 years, 48% male, with a median inpatient stay of 6 days. Expected life expectancy at discharge was assumed to be 17.74 years. (1) Cost-effectiveness analysis: The automated notification system was more effective (-0.027 reduction in mean events per patient) and provided a cost saving of -£12.17 (-182.07 to 154.80) per patient admission. (2) Cost-utility analysis: Over a lifetime horizon the automated notification system was dominant, demonstrating a positive incremental QALY gain (0.0287 QALYs, equivalent to ~10 days of perfect health) and a cost saving of £55.35. At a threshold of £20,000 per QALY, the probability of automated monitoring being cost-effective in the NHS was 81%. Increased use of cableless sensors may reduce cost-savings, however, the intervention remains cost-effective at 100% usage (ICER: £3,107/QALY). Stratified cost-effectiveness analysis by age, National Early Warning Score (NEWS) on admission, and primary diagnosis indicated the automated notification system was cost-effective for most strategies and that use representative of the patient population studied was the most cost-saving strategy. CONCLUSION: Automated notification system for adult patients admitted to general wards appears to be a cost-effective use in the NHS; adopting this technology could be good use of scarce resources with significance for patient safety.


Assuntos
Análise Custo-Benefício , Anos de Vida Ajustados por Qualidade de Vida , Humanos , Masculino , Idoso , Feminino , Reino Unido , Pessoa de Meia-Idade , Deterioração Clínica , Idoso de 80 Anos ou mais , Adulto , Automação/economia
9.
Cytometry A ; 105(6): 474-479, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38702936

RESUMO

The most commonly used flow cytometric (FCM) analysis of cellular DNA content relies on ethanol fixation followed by RNA digestion and propidium iodide (PI) intercalation into double-stranded DNA. This is a laborious and time-consuming procedure that is subject to systematic errors due to centrifugation and washing steps associated with sample preparation. It can adversely affect the reliability of the results. Here, we present a modified concept of DNA quantification in adherent cell lines by FCM that involves neither ethanol fixation nor any washing and cell transferring steps. Our high throughput assay of adherent cell lines reduces sample-processing time, requires minimal workload, provides a possibility for automation, and, if needed, also allows a significant reduction in the size of individual samples. Working with a well-proven commercial tool-The BD Cycletest™ Plus DNA Reagent Kit-primarily designed for cell cycle analysis and aneuploidy determination in experimental and clinical samples, we suggest a novel, very efficient, and robust approach for DNA research in adherent cell cultures.


Assuntos
DNA , Citometria de Fluxo , Humanos , Citometria de Fluxo/métodos , DNA/análise , Adesão Celular , Ciclo Celular/genética , Automação , Reprodutibilidade dos Testes , Aneuploidia
10.
Waste Manag ; 183: 63-73, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38718628

RESUMO

With the recent advancement in artificial intelligence, there are new opportunities to adopt smart technologies for the sorting of materials at the beginning of the recycling value chain. An automatic bin capable of sorting the waste among paper, plastic, glass & aluminium, and residual waste was installed in public areas of Milan Malpensa airport, a context where the separate collection is challenging. First, the airport waste composition was assessed, together with the efficiency of the manual sorting performed by passengers among the conventional bins: paper, plastic, glass & aluminium, and residual waste. Then, the environmental (via the life cycle assessment - LCA) and the economic performances of the current system were compared to those of a system in which the sorting is performed by the automatic bin. Three scenarios were evaluated: i) all waste from public areas, despite being separately collected, is sent to incineration with energy recovery, due to the inadequate separation quality (S0); ii) recyclable fractions are sent to recycling according to the actual level of impurities in the bags (S0R); iii) fractions are sorted by the automatic bin and sent to recycling (S1). According to the results, the current separate collection shows a 62 % classification accuracy. Focusing on LCA, S0 causes an additional burden of 12.4 mPt (milli points) per tonne of waste. By contrast, S0R shows a benefit (-26.4 mPt/t) and S1 allows for a further 33 % increase of benefits. Moreover, the cost analysis indicates potential savings of 24.3 €/t in S1, when compared to S0.


Assuntos
Aeroportos , Reciclagem , Eliminação de Resíduos , Resíduos Sólidos , Reciclagem/métodos , Reciclagem/economia , Resíduos Sólidos/análise , Eliminação de Resíduos/métodos , Eliminação de Resíduos/economia , Itália , Custos e Análise de Custo , Gerenciamento de Resíduos/métodos , Gerenciamento de Resíduos/economia , Automação , Incineração/métodos , Incineração/economia
11.
Med Phys ; 51(6): 4351-4364, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38687043

RESUMO

BACKGROUND: Alberta Stroke Program Early Computed Tomography Score (ASPECTS) is a standardized semi-quantitative method for early ischemic changes in acute ischemic stroke. PURPOSE: However, ASPECTS is still affected by expert experience and inconsistent results between readers in clinical. This study aims to propose an automatic ASPECTS scoring model based on diffusion-weighted imaging (DWI) mode to help clinicians make accurate treatment plans. METHODS: Eighty-two patients with stroke were included in the study. First, we designed a new deep learning network for segmenting ASPECTS scoring brain regions. The network is improved based on U-net, which integrates multiple modules. Second, we proposed using hybrid classifiers to classify brain regions. For brain regions with larger areas, we used brain grayscale comparison algorithm to train machine learning classifiers, while using hybrid feature training for brain regions with smaller areas. RESULTS: The average DICE coefficient of the segmented hindbrain area can reach 0.864. With the proposed hybrid classifier, our method performs significantly on both region-level ASPECTS and dichotomous ASPECTS. The sensitivity and accuracy on the test set are 95.51% and 93.43%, respectively. For dichotomous ASPECTS, the intraclass correlation coefficient (ICC) between our automated ASPECTS score and the expert reading was 0.87. CONCLUSIONS: This study proposed an automated model for ASPECTS scoring of patients with acute ischemic stroke based on DWI images. Experimental results show that the method of segmentation first and then classification is feasible. Our method has the potential to assist physicians in the Alberta Stroke Program with early CT scoring and clinical stroke diagnosis.


Assuntos
Automação , Aprendizado Profundo , Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador , AVC Isquêmico , Humanos , AVC Isquêmico/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Idoso , Masculino , Pessoa de Meia-Idade , Feminino , Isquemia Encefálica/diagnóstico por imagem
12.
Drug Metab Dispos ; 52(5): 377-389, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38438166

RESUMO

The determination of metabolic stability is critical for drug discovery programs, allowing for the optimization of chemical entities and compound prioritization. As such, it is common to perform high-volume in vitro metabolic stability experiments early in the lead optimization process to understand metabolic liabilities. Additional metabolite identification experiments are subsequently performed for a more comprehensive understanding of the metabolic clearance routes to aid medicinal chemists in the structural design of compounds. Collectively, these experiments require extensive sample preparation and a substantial amount of time and resources. To overcome the challenges, a high-throughput integrated assay for simultaneous hepatocyte metabolic stability assessment and metabolite profiling was developed. This assay platform consists of four parts: 1) an automated liquid-handling system for sample preparation and incubation, 2) a liquid chromatography and high-resolution mass spectrometry-based system to simultaneously monitor the parent compound depletion and metabolite formation, 3) an automated data analysis and report system for hepatic clearance assessment; and 4) streamlined autobatch processing for software-based metabolite profiling. The assay platform was evaluated using eight control compounds with various metabolic rates and biotransformation routes in hepatocytes across three species. Multiple sample preparation and data analysis steps were evaluated and validated for accuracy, repeatability, and metabolite coverage. The combined utility of an automated liquid-handling instrument, a high-resolution mass spectrometer, and multiple streamlined data processing software improves the process of these highly demanding screening assays and allows for simultaneous determination of metabolic stability and metabolite profiles for more efficient lead optimization during early drug discovery. SIGNIFICANCE STATEMENT: Metabolic stability assessment and metabolite profiling are pivotal in drug discovery to fully comprehend metabolic liabilities for chemical entity optimization and lead selection. Process of these assays can be repetitive and resource demanding. Here, we developed an integrated hepatocyte stability assay that combines automation, high-resolution mass spectrometers, and batch-processing software to improve and combine the workflow of these assays. The integrated approach allows simultaneous metabolic stability assessment and metabolite profiling, significantly accelerating screening and lead optimization in a resource-effective manner.


Assuntos
Hepatócitos , Software , Cromatografia Líquida/métodos , Espectrometria de Massas , Automação
13.
J Am Pharm Assoc (2003) ; 64(3): 102065, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38432477

RESUMO

BACKGROUND: Financial, operational, and clinical workflow impacts of deploying an automated dispensing cabinet (ADC) in long-term care (LTC) facilities based on actual observations have not been documented in peer-reviewed literature. OBJECTIVES: To evaluate the impact of a closed-door pharmacy (CDP) implementing an ADC with unique secure, removable, and transportable locked pockets in an unstudied setting (LTC facilities) for management of first and emergency dose medications. PRACTICE DESCRIPTION: This study was conducted in 1 CDP and 2 LTC facilities. PRACTICE INNOVATION: Enhancing emergency medication management and inventory tracking in an unstudied setting through implementation of an ADC system featuring unique electronically encoded medication storage pockets that can be prepared in the CDP, locked and securely transported to the LTC, and when inserted into ADC it informs staff of its presence, position, and contents. EVALUATION METHODS: Mixed methods, pre- and poststudy to assess the impact of replacing manual emergency medication kits with an ADC. Outcomes were evaluated using rapid ethnography with workflow modeling; inventory and delivery reports; a nursing perception survey; and transactional data from the ADC during postimplementation phase. RESULTS: Pharmacy technician preparation time and pharmacist checking time decreased by 59% and 80%, respectively, and standing inventory was reduced by more than $10,000 combined for the CDP and 2 LTCs by replacing emergency medication kits with the ADC. In the LTCs, this change led to a 71% reduction in emergency medication retrieval time, an increase in emergency medication utilization, and a 96% reduction in the cost of unscheduled deliveries. Over 70% of the nurses surveyed favored replacement of the emergency medication kits with the ADC system. CONCLUSION: Replacing manual emergency medication kit with the described ADC system improved workflow efficiency in the CDP and LTC. It also significantly reduced unscheduled (STAT) deliveries and standing inventory and increased the availability of medications commonly used.


Assuntos
Assistência de Longa Duração , Farmácias , Fluxo de Trabalho , Humanos , Farmácias/organização & administração , Conduta do Tratamento Medicamentoso/organização & administração , Automação , Assistência Farmacêutica/organização & administração , Farmacêuticos/organização & administração
14.
J Cardiovasc Magn Reson ; 26(1): 101042, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556134

RESUMO

BACKGROUND: Diastolic left ventricular (LV) dysfunction is a powerful contributor to the symptoms and prognosis of patients with heart failure. In patients with depressed LV systolic function, the E/A ratio, the ratio between the peak early (E) and the peak late (A) transmitral flow velocity, is the first step to defining the grade of diastolic dysfunction. Doppler echocardiography (echo) is the preferred imaging technique for diastolic function assessment, while cardiovascular magnetic resonance (CMR) is less established as a method. Previous four-dimensional (4D) Flow-based studies have looked at the E/A ratio proximal to the mitral valve, requiring manual interaction. In this study, we compare an automated, deep learning-based and two semi-automated approaches for 4D Flow CMR-based E/A ratio assessment to conventional, gold-standard echo-based methods. METHODS: Ninety-seven subjects with chronic ischemic heart disease underwent a cardiac echo followed by CMR investigation. 4D Flow-based E/A ratio values were computed using three different approaches; two semi-automated, assessing the E/A ratio by measuring the inflow velocity (MVvel) and the inflow volume (MVflow) at the mitral valve plane, and one fully automated, creating a full LV segmentation using a deep learning-based method with which the E/A ratio could be assessed without constraint to the mitral plane (LVvel). RESULTS: MVvel, MVflow, and LVvel E/A ratios were strongly associated with echocardiographically derived E/A ratio (R2 = 0.60, 0.58, 0.72). LVvel peak E and A showed moderate association to Echo peak E and A, while MVvel values were weakly associated. MVvel and MVflow EA ratios were very strongly associated with LVvel (R2 = 0.84, 0.86). MVvel peak E was moderately associated with LVvel, while peak A showed a strong association (R2 = 0.26, 0.57). CONCLUSION: Peak E, peak A, and E/A ratio are integral to the assessment of diastolic dysfunction and may expand the utility of CMR studies in patients with cardiovascular disease. While underestimation of absolute peak E and A velocities was noted, the E/A ratio measured with all three 4D Flow methods was strongly associated with the gold standard Doppler echocardiography. The automatic, deep learning-based method performed best, with the most favorable runtime of ∼40 seconds. As both semi-automatic methods associated very strongly to LVvel, they could be employed as an alternative for estimation of E/A ratio.


Assuntos
Automação , Aprendizado Profundo , Diástole , Interpretação de Imagem Assistida por Computador , Imagem Cinética por Ressonância Magnética , Valor Preditivo dos Testes , Disfunção Ventricular Esquerda , Função Ventricular Esquerda , Humanos , Pessoa de Meia-Idade , Feminino , Masculino , Idoso , Reprodutibilidade dos Testes , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/diagnóstico por imagem , Velocidade do Fluxo Sanguíneo , Isquemia Miocárdica/fisiopatologia , Isquemia Miocárdica/diagnóstico por imagem , Doença Crônica , Ecocardiografia Doppler , Valva Mitral/diagnóstico por imagem , Valva Mitral/fisiopatologia
15.
Methods Mol Biol ; 2759: 217-225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38285153

RESUMO

Salvia is a very valuable medicinal plant for the pharmaceutical industry. Tissue culture techniques can be used to increase the number of plants in a shorter time. Although protocols for in vitro propagation of more than 15 plant species have been developed, they are not yet efficient enough to increase mass propagation of plants. Therefore, the use of temporary immersion systems is necessary to increase the morphological quality of plants as well as their biomass in several Salvia species. In this chapter, progress in in vitro propagation in several Salvia species using liquid medium and automation is described.


Assuntos
Imersão , Salvia , Biomassa , Automação , Indústria Farmacêutica
16.
Stud Health Technol Inform ; 310: 911-915, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38269941

RESUMO

D1ental caries remains the most common chronic disease in childhood, affecting almost half of all children globally. Dental care and examination of children living in remote and rural areas is an ongoing challenge that has been compounded by COVID. The development of a validated system with the capacity to screen large numbers of children with some degree of automation has the potential to facilitate remote dental screening at low costs. In this study, we aim to develop and validate a deep learning system for the assessment of dental caries using color dental photos. Three state-of-the-art deep learning networks namely VGG16, ResNet-50 and Inception-v3 were adopted in the context. A total of 1020 child dental photos were used to train and validate the system. We achieved an accuracy of 79% with precision and recall respectively 95% and 75% in classifying 'caries' versus 'sound' with inception-v3.


Assuntos
Aprendizado Profundo , Cárie Dentária , Criança , Humanos , Cor , Cárie Dentária/diagnóstico por imagem , Automação
17.
Accid Anal Prev ; 195: 107372, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37979464

RESUMO

By the year 2045, it is projected that Autonomous Vehicles (AVs) will make up half of the new vehicle market. Successful adoption of AVs can reduce drivers' stress and fatigue, curb traffic congestion, and improve safety, mobility, and economic efficiency. Due to the limited intelligence in relevant technologies, human-in-the-loop modalities are still necessary to ensure the safety of AVs at current or near future stages, because the vehicles may not be able to handle all emergencies. Therefore, it is important to know the takeover readiness of the drivers to ensure the takeover quality and avoid any potential accidents. To achieve this, a comprehensive understanding of the drivers' physiological states is crucial. However, there is a lack of systematic analysis of the correlation between different human physiological responses and takeover behaviors which could serve as important references for future studies to determine the types of data to use. This paper provides a comprehensive analysis of the effects of takeover behaviors on the common physiological indicators. A program for conditional automation was developed based on a game engine and applied to a driving simulator. The experiment incorporated three types of secondary tasks, three takeover events, and two traffic densities. Brain signals, Skin Conductance Level (SCL), and Heart Rate (HR) of the participants were collected while they were performing the driving simulations. The Frontal Asymmetry Index (FAI) (as an indicator of engagement) and Mental Workload (MWL) were calculated from the brain signals to indicate the mental states of the participants. The results revealed that the FAI of the drivers would slightly decrease after the takeover alerts were issued when they were doing secondary tasks prior to the takeover activities, and the higher difficulty of the secondary tasks could lead to lower overall FAI during the takeover periods. In contrast, The MWL and SCL increased during the takeover periods. The HR also increased rapidly at the beginning of the takeover period but dropped back to a normal level quickly. It was found that a fake takeover alert would lead to lower overall HR, slower increase, and lower peak of SCL during the takeover periods. Moreover, the higher traffic density scenarios were associated with higher MWL, and a more difficult secondary task would lead to higher MWL and HR during the takeover activities. A preliminary discussion of the correlation between the physiological data, takeover scenario, and vehicle data (that relevant to takeover readiness) was then conducted, revealing that although takeover event, SCL, and HR had slightly higher correlations with the maximum acceleration and reaction time, none of them dominated the takeover readiness. In addition, the analysis of the data across different participants was conducted, which emphasized the importance of considering standardization or normalization of the data when they were further used as input features for estimating takeover readiness. Overall, the results presented in this paper offer profound insights into the patterns of physiological data changes during takeover periods. These findings can be used as benchmarks for utilizing these variables as indicators of takeover preparedness and performance in future research endeavors.


Assuntos
Condução de Veículo , Humanos , Acidentes de Trânsito/prevenção & controle , Tempo de Reação/fisiologia , Automação , Fadiga
18.
Soc Stud Sci ; 54(2): 231-256, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37427796

RESUMO

Calling attention to the growing intersection between the insurance and technology sectors-or 'insurtech'-this article is intended as a bat signal for the interdisciplinary fields that have spent recent decades studying the explosion of digitization, datafication, smartification, automation, and so on. Many of the dynamics that attract people to researching technology are exemplified, often in exaggerated ways, by emerging applications in insurance, an industry that has broad material effects. Based on in-depth mixed-methods research into insurance technology, I have identified a set of interlocking logics that underly this regime of actuarial governance in society: ubiquitous intermediation, continuous interaction, total integration, hyper-personalization, actuarial discrimination, and dynamic reaction. Together these logics describe how enduring ambitions and existing capabilities are motivating the future of how insurers engage with customers, data, time, and value. This article surveys each logic, laying out a techno-political framework for how to orient critical analysis of developments in insurtech and where to direct future research on this growing industry. Ultimately, my goal is to advance our understanding how insurance-a powerful institution that is fundamental to the operations of modern society-continues to change, and what dynamics and imperatives, whose desires and interests are steering that change. The stuff of insurance is far too important to be left to the insurance industry.


Assuntos
Seguro de Vida , Tecnologia , Humanos , Automação , Indústrias , Inquéritos e Questionários
19.
Am J Health Syst Pharm ; 81(9): e240-e248, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38146919

RESUMO

PURPOSE: The objective of this study was to understand at what level of the Autonomous Pharmacy Framework facilities are operating, in terms of the current state of data collection and analysis in the medication-use process, and to gather insights about systems integration and automation use. METHODS: The Autonomous Pharmacy Advisory Board, a group of chief pharmacy officers and operational leaders, developed a self-assessment instrument based on the previously published Autonomous Pharmacy Framework, made the self-assessment instrument available via the internet, and reviewed respondents' self-reported results. The data collection period for the survey started in March of 2021 and ended in January of 2023. RESULTS: A total of 119 facility-level self-assessments were completed and analyzed. On a scale of 1 to 5, where 1 represented little or no data-driven automation with lots of manual tasks and 5 represented the utmost data-driven automation with few manual tasks, the average overall facility-level score was 2.77 (range, 1.38-4.41). Results revealed slight variance by facility bed capacity. Much more variation was found in the degrees to which individual facilities have automated core processes like inventory management, intravenous medication preparation, and financial reporting. CONCLUSION: As a baseline, this automation-focused facility self-assessment suggests that for essentially all health-system pharmacy facilities and their larger organizations, a substantial body of work needs to be done to further develop and upgrade technology and practice in tandem, greatly expand data collection and analysis, and thereby achieve better operational, financial, and clinical outcomes. Significant advancements are needed to arrive at the highly reliable, highly automated, data-driven medication-use process involving few repetitive manual tasks envisioned in the Autonomous Pharmacy Framework.


Assuntos
Farmácias , Serviço de Farmácia Hospitalar , Farmácia , Humanos , Autoavaliação (Psicologia) , Automação
20.
Res Synth Methods ; 15(2): 178-197, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38115736

RESUMO

The amount of grey literature and 'softer' intelligence from social media or websites is vast. Given the long lead-times of producing high-quality peer-reviewed health information, this is causing a demand for new ways to provide prompt input for secondary research. To our knowledge, this is the first review of automated data extraction methods or tools for health-related grey literature and soft data, with a focus on (semi)automating horizon scans, health technology assessments (HTA), evidence maps, or other literature reviews. We searched six databases to cover both health- and computer-science literature. After deduplication, 10% of the search results were screened by two reviewers, the remainder was single-screened up to an estimated 95% sensitivity; screening was stopped early after screening an additional 1000 results with no new includes. All full texts were retrieved, screened, and extracted by a single reviewer and 10% were checked in duplicate. We included 84 papers covering automation for health-related social media, internet fora, news, patents, government agencies and charities, or trial registers. From each paper, we extracted data about important functionalities for users of the tool or method; information about the level of support and reliability; and about practical challenges and research gaps. Poor availability of code, data, and usable tools leads to low transparency regarding performance and duplication of work. Financial implications, scalability, integration into downstream workflows, and meaningful evaluations should be carefully planned before starting to develop a tool, given the vast amounts of data and opportunities those tools offer to expedite research.


Assuntos
Literatura Cinzenta , Avaliação da Tecnologia Biomédica , Humanos , Reprodutibilidade dos Testes , Automação , Internet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA