Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 304
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 202: 105917, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879319

RESUMO

Owing to their beneficial functional capabilities, essential oils were largely used. However, their low aqueous solubility, instability, and high volatility urged scientists to their encapsulation with cyclodextrins (CDs) to tackle their shortcomings. In this study, the co-precipitation method was used to prepare ß-CD/Eucalyptus globulus essential oil (EGEO) inclusion complexes (ICs). ß-CD/EGEO ICs were prepared at ratios (w:w) 1:2 and 1:4 with an encapsulation efficiency of 93 and 96%, respectively. The ICs characterization using the Fourier transform Infrared spectroscopy, differential scanning calorimetry, X-ray powder diffraction, Dynamic Light Scattering, and Laser Doppler Velocimetry confirmed the formation of ß-CD/EGEO ICs. The insecticidal activity of the free EGEO and ICs was explored and displayed that the complex ß-CD/EGEO 1:4 had the highest activity with the lowest LC50 against Ephestia kuehniella larvae (5.03 ± 1.16 mg/g) when compared to the free oil (8.38 ± 1.95 mg/g). Molecular docking simulations stipulated that the compound α-Bisabolene epoxide had the best docking score (ΔG = -7.4 Kcal/mol) against the selected insecticidal target α-amylase. Additionally, toxicity evaluation of the studied essential oil suggested that it could be safely used as a potent bioinsecticide as compared to chemical insecticides. This study reveals that the formation of ß-CD/EGEO ICs enhanced the oil activity and stability and could be a promising and safe tool to boost its application in food or pharmaceutical fields.


Assuntos
Eucalyptus , Inseticidas , Larva , Simulação de Acoplamento Molecular , Óleos Voláteis , beta-Ciclodextrinas , Animais , Inseticidas/química , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Eucalyptus/química , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacologia , Besouros/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
2.
J Hazard Mater ; 474: 134793, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38850954

RESUMO

Progress in the development of biodegradable or biobased ionic liquids (ILs) has led to the design of green compounds for several applications. Herein, four biocompatible dicationic ionic liquids (DILs) with ammonium-phosphonium cations and amino acid anions were synthesized and investigated their environmental impact. The structures of the DILs were confirmed by spectral analyses (1H, 13C and 31P NMR). Furthermore, physicochemical properties such as density, viscosity and refractive index were determined. Water content, bromide content and solubility were thereafter determined as the parameters needed for further studies. Subsequently, their antifeedant activity towards economically important pests of grain in storage warehouses: the granary weevil, the confused flour beetle, and the khapra beetle was examined, showing the dependence on structure. Moreover, selected DILs were investigated for toxicity towards white mustard, Daphnia magna, and Artemia franciscana to specify the environmental impact. These studies were complemented by understand the biodegradation of DILs by bacterial communities derived from soil at the agricultural land. The result was DILs with limited environmental footprints that have great potential for further application studies.


Assuntos
Aminoácidos , Artemia , Daphnia , Líquidos Iônicos , Líquidos Iônicos/toxicidade , Líquidos Iônicos/química , Animais , Aminoácidos/química , Aminoácidos/análise , Daphnia/efeitos dos fármacos , Artemia/efeitos dos fármacos , Compostos de Amônio/química , Compostos Organofosforados/química , Cátions , Ânions/química , Meio Ambiente , Biodegradação Ambiental , Besouros/efeitos dos fármacos
3.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732123

RESUMO

The pine wood nematode (PWN) uses several Monochamus species as vehicles, through a temporary hitchhiking process known as phoresy, enabling it to access new host plant resources. Monochamus saltuarius acts as a new and major vector of the PWN in Northeastern China, showing lower PWN carrying capacity and a shorter transmission cycle compared to established vectors. The apparently altered symbiotic relationship offers an interesting area for researching the costs and adaptions involved in nematode-beetle, a specialized phoresy. We analyzed the response and fitness costs of M. saltuarius through physiological measurements and transcriptomics. The PWN exerted adverse repercussions on the growth and development of M. saltuarius. The PWN accelerated larval development into pupae, while beetle adults carrying the PWN exhibited an elevated abnormality rate and mortality, and reduced starvation resistance. During the pupal stage, the expression of growth-related genes, including ecdysone-inducible genes (E74EA), cuticle proteins, and chitin genes (CHTs), markedly increased. Meanwhile, the induced immune response, mainly by the IMD and Toll signaling pathways, could be a contributing factor to adult abnormality and mortality. Adult gonads and trachea exhibited enrichment in pathways related to fatty acid elongation, biosynthesis, and metabolism. FASN, ELOVL, and SCD possibly contributed to resistance against PWN. Our research indicated that phoretic interactions between vector beetles and PWN vary throughout the vector's lifespan, particularly before and after entry into the trachea. This study highlighted the fitness costs of immunity and metabolism on the vector beetle, indicating the adaptation mechanisms and evolutionary trade-offs to PWN.


Assuntos
Besouros , Transcriptoma , Animais , Besouros/fisiologia , Besouros/genética , Tylenchida/fisiologia , Tylenchida/genética , Tylenchida/patogenicidade , Perfilação da Expressão Gênica/métodos , Larva , Interações Hospedeiro-Parasita/genética , Aptidão Genética
4.
Neotrop Entomol ; 53(3): 682-693, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38656592

RESUMO

Insecticides efficient against the target species while conserving natural enemies in the agroecosystem are required for IPM. With the imminent discontinuation of fipronil, a broad-spectrum insecticide, ethiprole, which belongs to the same group as phenylpyrazole (2B), and isocycloseram, a novel isoxazoline insecticide with distinct mode of action (30), provide options for controlling boll weevil. The susceptibility of the boll weevil, Anthonomus grandis grandis (Boh.), and two natural enemies [Eriopis connexa (Germar) and Bracon vulgaris Ashmead] to these insecticides were studied. Furthermore, the survival and biological traits of the lady beetle, E. connexa, exposed to fipronil, isocycloseram, and ethiprole were assessed. The LC50s values for fipronil, ethiprole, and isocycloseram for A. grandis grandis were 2.71, 0.32, and 0.025 mg a.i./L, respectively; 0.86, > 200, and 3.21 mg a.i./L for E. connexa; and 2.31, 592.94, and 0.18 mg a.i./L for B. vulgaris, respectively. The recommended rates of ethiprole did not cause mortality in adult lady beetles, although fipronil and isocycloseram were highly toxic. Lady beetle larvae and adults survived more than 80% when exposed to dried residues of ethiprole, but less than 10% when exposed to fipronil and isocycloseram. Lady beetle larvae development, reproduction, and predation rates of adults were similar between ethiprole and the control group. Although fipronil and ethiprole belong to the same insecticide group, the difference in toxicity to boll weevils and natural enemies is presented and discussed. Ethiprole was more toxic to boll weevils than to its parasitoid and lady beetle, and isocycloseram was highly toxic to all three species.


Assuntos
Inseticidas , Gorgulhos , Animais , Gorgulhos/efeitos dos fármacos , Isoxazóis/toxicidade , Pirazóis/toxicidade , Besouros/efeitos dos fármacos
5.
Molecules ; 29(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542842

RESUMO

This study concentrates on assessing the insecticidal attributes of the γ-Al2O3 nanoparticles derived from the remnants of Mentha pulegium, which include essential oil, ethanolic extract, and plant waste. The synthesis of the γ-Al2O3 nanoparticles was executed using a direct sol-gel procedure, affirming the crystal structure according to extensive physicochemical analyses such as UV-Vis, XRD, FTIR, and SEM. Evaluation of the insecticidal activity in vitro was conducted against Xylosandrus crassiusculus, a pest that infests carob wood, utilizing strains from diverse forests in the Khenifra region, situated in the Moroccan Middle Atlas. The lethal doses 50 ranged from 40 mg/g to 68 mg/g, indicating moderate effectiveness compared to the commercial insecticide Permethrin. Optimization of the conditions for the efficiency of the γ-Al2O3 nanoparticles was determined using experimental plans, revealing that time, humidity, and temperature were influential factors in the lethal dose 50 of these nanomaterials. Moreover, this study encompasses the establishment of correlations using Principal Component Analysis (PCA) and Ascending Hierarchical Classification (AHC) among various geographic, biological, and physical data, amalgamating geographic altitude and γ-Al2O3 nanoparticle insecticide parameters, as well as the attributes of the mechanical tests conducted on the carob wood affected by insects. The correlations highlight the close connections between the effectiveness of the insecticide, mountain altitude, and the mechanical parameters that were examined. Ultimately, these nanoparticles demonstrate promising potential as alternative insecticides, thus opening up encouraging prospects for safeguarding against carob wood pests.


Assuntos
Besouros , Galactanos , Inseticidas , Mananas , Mentha pulegium , Nanopartículas , Gomas Vegetais , Gorgulhos , Animais , Inseticidas/farmacologia , Inseticidas/química , Mentha pulegium/química
6.
GM Crops Food ; 15(1): 15-31, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38238889

RESUMO

Farmers in North America face significant pressure from insects in their maize fields, particularly from corn rootworm (Diabrotica spp.). Research into proteins capable of insecticidal activity has found several produced by ferns. One protein, IPD079Ea, was derived from Ophioglossum pendulum and has shown activity against corn rootworm. An environmental risk assessment was conducted for maize event DP-915635-4, which provides control of corn rootworms via expression of the IPD079Ea protein. This assessment focused on IPD079Ea and characterized potential exposure and hazard to non-target organisms (NTOs). For exposure, estimated environmental concentrations (EECs) were calculated. For hazard, laboratory dietary toxicity studies were conducted with IPD079Ea and surrogate non-target organisms. Environmental risk was characterized by comparing hazard and exposure to calculate the margin of exposure (MOE). Based on the MOE values for DP-915635-4 maize, the IPD079Ea protein is not expected to result in unreasonable adverse effects on beneficial NTO populations at environmentally relevant concentrations.


Assuntos
Besouros , Zea mays , Animais , Zea mays/genética , Zea mays/metabolismo , Endotoxinas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Besouros/genética , Besouros/metabolismo , Medição de Risco
7.
Insect Sci ; 31(2): 524-532, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37469199

RESUMO

The scaling of the energetic cost of locomotion with body mass is well documented at the interspecific level. However, methodological restrictions limit our understanding of the scaling of flight metabolic rate (MR) in free-flying insects. This is particularly true at the intraspecific level, where variation in body mass and flight energetics may have direct consequences for the fitness of an individual. We applied a 13C stable isotope method to investigate the scaling of MR with body mass during free-flight in the beetle Batocera rufomaculata. This species exhibits large intraspecific variation in adult body mass as a consequence of the environmental conditions during larval growth. We show that the flight-MR scales with body mass to the power of 0.57, with smaller conspecifics possessing up to 2.3 fold higher mass-specific flight MR than larger ones. Whereas the scaling exponent of free-flight MR was found to be like that determined for tethered-flight, the energy expenditure during free-flight was more than 2.7 fold higher than for tethered-flight. The metabolic cost of flight should therefore be studied under free-flight conditions, a requirement now enabled by the 13C technique described herein for insect flight.


Assuntos
Besouros , Animais , Metabolismo Energético , Insetos , Larva , Voo Animal
8.
PeerJ ; 11: e16531, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089907

RESUMO

Several different techniques and methods are used to capture and study beetles (Coleoptera). One option is the use of window traps with various trapping liquids. However, these liquids used in comparative studies may have a biasing effect on the results. The effectiveness of the frequently used liquid baits, involving beer, wine, vinegar, and water as the reference liquid, was compared in this study. Twenty-four traps were assigned to two habitat categories (sunny and shady) and four kinds of bait: beer, wine, vinegar, and water. During the study from June to July 2021, a total of 29,944 invertebrates were captured; of these, 3,931 individuals belonged to Coleoptera. A total of 3,825 beetles were identified, belonging to 120 species and 36 families. The most abundant family was Nitidulidae, with 3,297 adults (86% of the total). The number of arthropods differed only in the trapping liquid, and the captures were similar between beer and wine and between vinegar and water. The trapping liquid had a more significant effect on beetle abundance and species richness. In contrast, exposure had a significant effect only on the number of beetle species and a higher ratio of beetles was found in the shade. Beer and wine were very attractive and collected similar beetle communities. However, the diversity (Shannon's index) was low due to the high abundance of several species. Traps with vinegar and water collected a similar composition and species richness. After removing sap beetles (Nitidulidae) from all traps, a significant difference was still recorded between trapping liquids in the number of individuals and species, and their communities were much more similar. Thus, at high abundances of sap beetles, it is possible to exclude them from analyses and obtain more accurate data when assessing environmental variables. The results showed that the type of trapping liquids used can have substantial effects on abundance and species composition captured beetles in traps especially for beer and wine. The beer and wine in traps can significantly influence the subsequent biodiversity assessment. We recommend the use of trapping liquids without the baiting effect to correctly assess the effect of environmental variables on beetle richness and abundance.


Assuntos
Besouros , Humanos , Animais , Ácido Acético , Ecossistema , Biodiversidade , Água
9.
J Vis Exp ; (199)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37843258

RESUMO

Forest wood borers (FWB) cause severe tree damage and economic losses worldwide. The release of entomopathogenic fungi (EPF) during the FWB emergence period is considered an acceptable alternative to chemical control. However, EPF resources have been significantly less explored for FWBs, in contrast to agricultural insect pests. This paper presents a protocol for exploring EPF resources from FWBs using wild Monochamus alternatus populations as an example. In this protocol, the assignment of traps baited with M. alternatus attractants to different populations guaranteed the collection of adequate samples with natural infection symptoms, during the emergence periods of the beetle. Following finely dissecting integuments and placing them onto a selective medium, fungal species were isolated from each part of beetle bodies and identified based on both molecular and morphological traits. Several fungal species were certified as parasitic EPFs via re-infection of healthy M. alternatus with spore suspensions. Their behavioral phenotypes on M. alternatus were observed using scanning electron microscopy and further compared with those on the Coleopteran model insect Tribolium castaneum. For EPFs that present consistent parasitism phenotypes on both beetle species, evaluation of their activities on T. castaneum provided valuable information on lethality for future study on M. alternatus. This protocol helped the discovery of EPF newly reported on M. alternatus populations in China, which could be applied as an efficient approach to explore more EPF resources from other FWBs.


Assuntos
Besouros , Madeira , Animais , Virulência , Besouros/genética , Insetos , Florestas , Fungos
10.
Chem Biodivers ; 20(12): e202301206, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37840218

RESUMO

Storage is a crucial part during grain production for the massive spoilage caused by stored product insects. Essential oils (EOs) of plant origin have been highly recommended to combating insects which are biodegradable and safe mode of action. Hence, to make the fullest use of natural resources, essential oils of different parts from Piper yunnanense (the whole part, PYW; fruits, PYF; leaves, PYL) and Piper boehmeriifolium (leaves, PBL) were extracted by steam distillation method in the present study. Gas chromatography-mass spectrometry (GC-MS) characterization revealed bicyclogermacrene (PYW), γ-muurolene (PYF), δ-cadinene (PYL) and methyl 4,7,10,13,16,19-docosahexaenoate (PBL) as the principal compound of each essential oil. Sesquiterpene hydrocarbons were also recognized as the richest class accounting for 56.3 %-94.9 % of the total oil. Three storage pests, Tribolium castaneum, Lasioderma serricorne and Liposceis bostrychophila, were exposed to different concentrations of EOs to determine their insecticidal effects. All tested samples performed modest contact toxicity in contrast to a bioactive ingredient pyrethrin, among which the most substantial effects were observed in PYF EOs against T. castaneum (35.84 µg/adult), PBL EOs against L. serricorne (15.76 µg/adult) and PYW EOs against L. bostrychophila (57.70 µg/cm2 ). In terms of repellency tests, essential oils of PYF at 78.63 nL/cm2 demonstrated to have a remarkable repellence against T. castaneum at 2h and 4h post-exposure. The investigations indicate diverse variations in the chemical profiles and insecticidal efficacies of P. yunnanense and P. boehmeriifolium EOs, providing more experimental evidence for the use of the Piper plants.


Assuntos
Besouros , Repelentes de Insetos , Inseticidas , Óleos Voláteis , Piper , Tribolium , Animais , Óleos Voláteis/química , Insetos , Repelentes de Insetos/farmacologia , Repelentes de Insetos/química , Inseticidas/química
11.
Sci Total Environ ; 905: 167075, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37714356

RESUMO

Pine wilt disease (PWD), caused by the pine wood nematode (PWN, Bursaphelenchus xylophilus), a destructive, invasive forest pathogen, poses a serious threat to global pine forest ecosystems. The global invasion of PWN has been described based on three successive phases, introduction, establishment, and dispersal. Risk assessments of the three successive PWN invasion phases can assist in targeted management efforts. Here, we present a risk assessment framework to evaluate the introduction, establishment, and dispersal risks of PWD in China using network analysis, species distribution models, and niche concepts. We found that >88 % of PWN inspection records were from the United States, South Korea, Japan, Germany, and Mexico, and 94 % of interception records were primarily from the Jiangsu, Shanghai, Shandong, Tianjin, and Zhejiang ports. Based on the nearly current climate, the areas of PWN overlap with its host Pinus species were primarily distributed in southern, eastern, Yangtze River Basin, central, and northeastern China regions. Areas of PWN overlap with its insect vector Monochamus alternatus were primarily distributed in southern, eastern, Yangtze River Basin, central, and northeastern China regions, and those of PWN overlap with the insect vector Monochamus saltuarius were primarily distributed in eastern and northeastern China. The niche between PWN and the insect vector M. alternatus was the most similar (0.68), followed by that between PWN and the insect vector M. saltuarius (0.47). Climate change will increase the suitable probabilities of PWN and its two insect vectors occurring at high latitudes, further increasing their threat to hosts in northeastern China. This risk assessment framework for PWD could be influential in preventing the entry of the PWN and mitigating their establishment and dispersal risks in China. Our study provides substantial clues for developing a framework to improve the risk assessment and surveillance of biological invasions worldwide.


Assuntos
Besouros , Nematoides , Pinus , Animais , Ecossistema , Doenças das Plantas , China , Insetos Vetores
12.
J Insect Sci ; 23(5)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721497

RESUMO

The Spodoptera complex of the family Noctuidae, represented here by S. frugiperda (J.E. Smith), S. eridania (Stoll), S. albula (Walker), and S. cosmioides (Walker), is an important group of crop pests in Brazil. Spodoptera frugiperda and S. eridania are invasive in Africa, and the former also in Asia and Oceania. The egg parasitoids Telenomus remus Nixon (Hymenoptera: Scelionidae) and Trichogramma spp. (Hymenoptera: Trichogrammatidae) are potential control agents for field use against these noctuids. We evaluated the parasitism efficiency, development, and flight capacity of an isofemale line and a regular line of T. remus, and 2 genetically variable populations of Trichogramma pretiosum Riley and Trichogramma atopovirilia Oatman and Platner (Hymenoptera: Trichogrammatidae) in these 4 members of the Spodoptera complex. All parasitoids were able to develop in the 4 hosts. The parasitoids showed good flight capacity, except for the regular line of T. remus. The Trichogramma species, despite having high viability and female:male sex ratios, showed poorer parasitism performances than T. remus. The regular T. remus line also showed good parasitism capacity and high viability but had a predominance of males. In general, the isofemale line of T. remus showed good rates of parasitism and flight capacity as well as a high viability and sex ratio, proving to be a potential candidate for an augmentative biological-control program for Spodoptera spp Guenée (Lepidoptera: Noctuidae).


Assuntos
Besouros , Himenópteros , Feminino , Masculino , Animais , Spodoptera , Óvulo , Brasil , Biologia
13.
Environ Entomol ; 52(4): 618-626, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37417547

RESUMO

Nitrogen (N) is a key nutrient required by all living organisms for growth and development, but is a limiting resource for many organisms. Organisms that feed on material with low N content, such as wood, might be particularly prone to N limitation. In this study, we investigated the degree to which the xylophagous larvae of the stag beetle Ceruchus piceus (Weber) use associations with N-fixing bacteria to acquire N. We paired acetylene reduction assays by cavity ring-down absorption spectroscopy (ARACAS) with 15N2 incubations to characterize rates of N fixation within C. piceus. Not only did we detect significant N fixation activity within C. piceus larvae, but we calculated a rate that was substantially higher than most previous reports for N fixation in insects. While taking these measurements, we discovered that N fixation within C. piceus can decline rapidly in a lab setting. Consequently, our results demonstrate that previous studies, which commonly keep insects in the lab for long periods of time prior to and during measurement, may have systematically under-reported rates of N fixation in insects. This suggests that within-insect N fixation may contribute more to insect nutrition and ecosystem-scale N budgets than previously thought.


Assuntos
Besouros , Animais , Ecossistema , Fixação de Nitrogênio , Nitrogênio , Insetos , Larva
14.
Sci Rep ; 13(1): 12127, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495616

RESUMO

Air pollution is a serious problem that affects economic development and people's health, so an efficient and accurate air quality prediction model would help to manage the air pollution problem. In this paper, we build a combined model to accurately predict the AQI based on real AQI data from four cities. First, we use an ARIMA model to fit the linear part of the data and a CNN-LSTM model to fit the non-linear part of the data to avoid the problem of blinding in the CNN-LSTM hyperparameter setting. Then, to avoid the blinding dilemma in the CNN-LSTM hyperparameter setting, we use the Dung Beetle Optimizer algorithm to find the hyperparameters of the CNN-LSTM model, determine the optimal hyperparameters, and check the accuracy of the model. Finally, we compare the proposed model with nine other widely used models. The experimental results show that the model proposed in this paper outperforms the comparison models in terms of root mean square error (RMSE), mean absolute error (MAE) and coefficient of determination (R2). The RMSE values for the four cities were 7.594, 14.94, 7.841 and 5.496; the MAE values were 5.285, 10.839, 5.12 and 3.77; and the R2 values were 0.989, 0.962, 0.953 and 0.953 respectively.


Assuntos
Poluição do Ar , Besouros , Animais , Algoritmos , Cidades , Desenvolvimento Econômico
15.
J Econ Entomol ; 116(4): 1165-1170, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37338591

RESUMO

The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an invasive woodboring pest of ash trees (Fraxinus sp.) in North America. Among the Asiatic parasitoids being released for the management of EAB in North America, Oobius agrili Zhang and Huang (Hymenoptera: Encyrtidae) is the only EAB egg parasitoid. To date, more than 2.5 million O. agrili have been released in North America; however, few studies have examined its success as a biological control agent of EAB. We conducted studies to assess O. agrili establishment, persistence, spread, and EAB egg parasitism rates in Michigan at the earliest release sites (2007-2010), as well as at more recent release sites (2015-2016) in 3 Northeastern United States (Connecticut, Massachusetts, New York). In both regions, we documented successful O. agrili establishment at all but one release site. In Michigan, O. agrili has persisted at release sites for over a decade and spread to all control sites located 0.6-3.8 km from release sites. Overall, EAB egg parasitism ranged from 1.5% to 51.2% (mean of 21.4%) during 2016-2020 in Michigan and from 2.6% to 29.2% (mean of 16.1%) during 2018-2020 in the Northeastern states. Future research efforts should focus on factors affecting the spatiotemporal variation in EAB egg parasitism rates by O. agrili, as well as its potential range in North America.


Assuntos
Besouros , Fraxinus , Himenópteros , Animais , Larva , Michigan , New England
16.
J Econ Entomol ; 116(4): 1352-1359, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37262318

RESUMO

The Colorado potato beetle, Leptinotarsa decemlineata (Say) ([Coleoptera]: [Chrysomelidae]), is the most important defoliator of solanaceous plants worldwide. This insect displays a notorious ability in adapting to biological and synthetic insecticides, although in some cases this adaptation carries relevant fitness costs. Insecticidal gene silencing by RNA interference is a novel mode of action pesticide against L. decemlineata that is activated by ingestion of a double stranded RNA (dsRNA) targeting a vital L. decemlineata gene. We previously reported laboratory selection of a > 11,000-fold resistant strain of L. decemlineata to a dsRNA delivered topically to potato leaves. In this work, we tested the existence of fitness costs in this dsRNA-resistant colony by comparing biological parameters to the parental strain and an additional susceptible reference strain. Biological parameters included length of egg incubation period, number of eggs per clutch, egg viability, larval viability, length of larval and pupal periods, adult emergence, number of eggs laid per day, sex ratio, and adult longevity. Comparisons between the 3 beetle strains detected no fitness costs associated with resistance to dsRNA. This information is important to guide effective insect resistance management plans for dsRNA insecticides against L. decemlineata applied topically to potato leaves.


Assuntos
Besouros , Inseticidas , Solanum tuberosum , Animais , Inseticidas/farmacologia , RNA de Cadeia Dupla/genética , Larva , Interferência de RNA , Solanum tuberosum/genética
17.
J Econ Entomol ; 116(4): 1372-1378, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37366322

RESUMO

Xylosandrus compactus (Eichhoff) (Coleoptera: Curculionidae, Scolytinae) is a worldwide invasive species that causes huge economic loss and environmental damage in many countries. Traditional morphological characteristics make it hard to identify scolytines due to their tiny size. Besides, the intercepted insect samples are incomplete, and the limitation of insect (larvae and pupae) morphology makes morphological identification more difficult. The majority of the damage is caused by adults and fungi that serve as nutrition for their larvae. They destroy plant trunks, branches, and twigs, affecting plant transport tissues in both weak and healthy plants. An accurate, efficient, and economical molecular identification technique for X. compactus not restricted by professional taxonomic knowledge is necessary. In the present study, a molecular identification tool based on the mitochondrial DNA gene, cytochrome C oxidase subunit I (COI) was developed. A species-specific COI (SS-COI) PCR assay was designed to identify X. compactus regardless of the developmental stage. Twelve scolytines commonly found in eastern China, namely Xylosandrus compactus, X. crassiusculus, X. discolor, X. germanus, X. borealis, X. amputates, X. eupatorii, X. mancus, Xyleborinus saxesenii, Euwallacea interjectus, E. fornicatus, and Acanthotomicus suncei, were included in the study. Additionally, specimens of X. compactus from 17 different areas in China, as well as a specimen collected from the United Stated, were also analyzed. Results demonstrated the accuracy and high efficiency of the assay, regardless of the developmental stage or the type of specimen. These features provide a good application prospect for fundamental departments and can be used to prevent the harmful consequences of the spread of X. compactus.


Assuntos
Besouros , Gorgulhos , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Besouros/genética , Gorgulhos/genética , Gorgulhos/microbiologia , Reação em Cadeia da Polimerase , Larva/genética
18.
Sci Total Environ ; 886: 163931, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37156379

RESUMO

The effects of non-insecticidal agrochemicals on pest natural predators remain largely unexplored except bees and silkworm. The herbicide quizalofop-p-ethyl (QpE), fungicide thiophanate-methyl (TM), and plant growth regulator mepiquat chloride (MC) have been extensively applied as non-insecticidal agrochemicals. Here, we systematically evaluated multiple effects of these 3 non-insecticidal agrochemicals on three generations of Propylea japonica, an important agroforestry predatory beetle, including the effects on its development, reproduction, enterobacteria, and transcriptomic response. The results showed that QpE exhibited a hormetic effect on P. japonica, thus significantly increasing the survival rate of generation 2 (F2) females, generation 3 (F3) females, and F3 males and body weight of F3 males. However, three successive generations exposed to TM and MC had no significant effect on longevity, body weight, survival rate, pre-oviposition period, and fecundity of P. japonica. Additionally, we investigated the effects of MC, TM, and QpE exposure on gene expression and gut bacterial community of F3 P. japonica. Under MC, TM, and QpE exposure, the overwhelming genes of P. japonica (99.90 %, 99.45 %, and 99.7 %) remained unaffected, respectively. Under TM and MC exposure, differentially expressed genes (DEGs) were not significantly enriched in any KEGG pathway, indicating TM and MC did not significantly affect functions of P. japonica, but under QpE exposure, the expression levels of drug metabolism-related genes were down-regulated. Although QpE treatment did not affect gut dominant bacterial community composition, it significantly increased relative abundances of detoxification metabolism-related bacteria such as Wolbachia, Pseudomonas and Burkholderia in P. japonica. However, TM and MC had no significant effect on the gut bacterial community composition and relative abundance in P. japonica. This study revealed for the first time the mechanism by which P. japonica might compensate for gene downregulation-induced detoxification metabolism decline through altering symbiotic bacteria under QpE exposure. Our findings provide reference for the rational application of non-insecticidal agrochemicals.


Assuntos
Besouros , Feminino , Masculino , Animais , Abelhas , Besouros/fisiologia , Bactérias , Medição de Risco
19.
Environ Pollut ; 328: 121669, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37080512

RESUMO

Nanoemulsions (NEs) have been extensively studied as carriers for drug delivery, since these provide a good alternative to the existing non-nano systems, while promoting their target delivery and controlled release. NEs are considered safe drug carriers from a pre-clinical perspective, but there is currently no information on their ecotoxicological effects. In the present study we investigated the toxicity of a NE material (lecithin, sunflower oil, borate buffer) designed to be used as a liposomal excipient for eye drops, further referred to as (Lipid Particle:LP) LP_Eye and its dispersant (borate buffer) (LP_Eye disp.). Effects were assessed using two model species in soil ecotoxicology in LUFA 2.2 soil: Enchytraeus crypticus (Oligochaeta) and Folsomia candida (Collembola), based on the OECD standard guideline (28 days) and its extension, a longer-term exposure (56 days). The endpoints evaluated included survival, reproduction, and size. LP_Eye and LP_Eye disp. were toxic to E. crypticus and F. candida, affecting all measured endpoints. The toxicity of LP_Eye in E. crypticus seemed to be induced by the dispersant, whereas for F. candida, more sensitive, this was less explanatory. There were no indications that toxicity increased with longer exposure. Current results provide ecotoxicological data for a group of NMs that was absent, revealing toxicity to relevant environmental species. Indications were that the dispersant contributed to most of the observed effects, thus there is room to improve the formulation and achieve lower environmental impact.


Assuntos
Artrópodes , Besouros , Oligoquetos , Poluentes do Solo , Animais , Boratos , Ecotoxicologia , Solo , Poluentes do Solo/análise , Reprodução
20.
J Econ Entomol ; 116(2): 513-519, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36881670

RESUMO

Coffee is the second most economically important agricultural crop in Hawaii, valued at around $175M for green and roasted coffee in the 2021-2022 season. With the introduction of coffee berry borer (CBB, Hypothenemus hampei Ferrari) to Hawaii in 2010, growers have faced a significant challenge in producing the specialty coffee that the region is known for. This tiny beetle infests the coffee seed and reduces the yield and quality of coffee products. While field sanitation, frequent harvesting and strip-picking are known to be essential for controlling CBB, the associated costs and benefits of these cultural control practices have not been estimated for Hawaii. In the present study, we examined two CBB management strategies across 10 commercial coffee farms on Hawaii Island: (i) conventional management including frequent sprays of pesticides and few rounds of sanitation and harvesting, and (ii) cultural control-focused management consisting of few sprays of pesticides and frequent sanitation and harvesting. Cultural management resulted in significantly lower mean CBB infestation (4.6% vs. 9.0%), total defects (5.5% vs. 9.1%), and CBB damage to processed coffee (1.6% vs. 5.7%) compared to conventional management. Additionally, yields were higher (mean increase of 3,024 lbs of cherry/acre) and harvested more efficiently (4.8 vs. 7.9 raisins/tree) on culturally managed vs. conventional farms. Lastly, the cost of chemical controls was 55% lower and the net benefit of frequent harvesting was 48% higher on cultural vs. conventional farms. Our findings demonstrate that frequent and efficient harvesting is an effective and economically viable alternative to frequent pesticide applications.


Assuntos
Coffea , Besouros , Praguicidas , Gorgulhos , Animais , Havaí , Fazendas , Gorgulhos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA