Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 59(49): 4617-4621, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33226208

RESUMO

The time-averaged lateral organization of the lipids and proteins that make up mammalian cell membranes continues to be the subject of intense interest and debate. Since the introduction of the fluid mosaic model almost 50 years ago, the "lipid raft hypothesis" has emerged as a popular concept that has captured the imagination of a large segment of the biomembrane community. In particular, the notion that lipid rafts play a pivotal role in cellular processes such as signal transduction and membrane protein trafficking is now favored by many investigators. Despite the attractiveness of lipid rafts, their composition, size, lifetime, biological function, and even the very existence remain controversial. The central tenet that underlies this hypothesis is that cholesterol and high-melting lipids have favorable interactions (i.e., they pull together), which lead to transient domains. Recent nearest-neighbor recognition (NNR) studies have expanded the lipid raft hypothesis to include the influence that low-melting lipids have on the organization of lipid membranes. Specifically, it has been found that mimics of cholesterol and high-melting lipids are repelled (i.e., pushed away) by low-melting lipids in fluid bilayers. The picture that has emerged from our NNR studies is that lipid mixing is governed by a balance of these "push and pull" forces, which maximizes the number of hydrocarbon contacts and attractive van der Waals interactions within the membrane. The power of the NNR methodology is that it allows one to probe these push/pull interaction energies that are measured in tens of calories per mole.


Assuntos
Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Modelos Biológicos , Animais , Colesterol/química , Colesterol/metabolismo , Simulação por Computador , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Modelos Moleculares , Mimetismo Molecular , Método de Monte Carlo , Transição de Fase , Termodinâmica
2.
J Chem Phys ; 153(14): 144110, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33086798

RESUMO

Computational determination of the equilibrium state of heterogeneous phospholipid membranes is a significant challenge. We wish to explore the rich phase diagram of these multi-component systems. However, the diffusion and mixing times in membranes are long compared to typical time scales of computer simulations. Here, we evaluate the combination of the enhanced sampling techniques molecular dynamics with alchemical steps and Monte Carlo with molecular dynamics with a coarse-grained model of membranes (Martini) to reduce the number of steps and force evaluations that are needed to reach equilibrium. We illustrate a significant gain compared to straightforward molecular dynamics of the Martini model by factors between 3 and 10. The combination is a useful tool to enhance the study of phase separation and the formation of domains in biological membranes.


Assuntos
Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/química , Algoritmos , Membrana Celular/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Método de Monte Carlo , Fosfatidilserinas/química
3.
Int J Pharm ; 580: 119198, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32169353

RESUMO

Liposomes are lipid vesicles made of one or multiple lipid bilayers surrounding an internal aqueous core. They are broadly employed as models to study membrane structure and properties. Among these properties, liposome membrane permeability is crucial and widely assessed by fluorescence techniques. The first part of this review is devoted to describe the various techniques used for membrane permeability assessment. Attention is paid to fluorescence techniques based on vesicle leakage of self-quenching probes, dye/quencher pair or cation/ligand pair. Secondly, the membrane-active agents inducing membrane permeabilization is presented and details on their mechanisms of action are given. Emphasis is also laid on the intrinsic and extrinsic factors that can modulate the membrane permeability. Hence, a suitable liposomal membrane should be formulated according to the aim of the study and its application.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/fisiologia , Corantes Fluorescentes/metabolismo , Corantes Fluorescentes/farmacologia , Pele/efeitos dos fármacos , Pele/metabolismo , Animais , Fluoresceínas/química , Fluoresceínas/metabolismo , Fluoresceínas/farmacologia , Fluorescência , Corantes Fluorescentes/química , Humanos , Bicamadas Lipídicas/metabolismo , Lipossomos , Técnicas de Cultura de Órgãos , Espectrometria de Fluorescência/métodos
4.
Biophys J ; 116(6): 1085-1094, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30846364

RESUMO

Diffusion in cell membranes is not just simple two-dimensional Brownian motion but typically depends on the timescale of the observation. The physical origins of this anomalous subdiffusion are unresolved, and model systems capable of quantitative and reproducible control of membrane diffusion have been recognized as a key experimental bottleneck. Here, we control anomalous diffusion using supported lipid bilayers containing lipids derivatized with polyethylene glycol (PEG) headgroups. Bilayers with specific excluded area fractions are formed by control of PEG lipid mole fraction. These bilayers exhibit a switch in diffusive behavior, becoming anomalous as bilayer continuity is disrupted. Using a combination of single-molecule fluorescence and interferometric imaging, we measure the anomalous behavior in this model over four orders of magnitude in time. Diffusion in these bilayers is well described by a power-law dependence of the mean-square displacement with observation time. Anomaleity in this system can be tailored by simply controlling the mole fraction of PEG lipid, producing bilayers with diffusion parameters similar to those observed for anomalous diffusion in biological membranes.


Assuntos
Membrana Celular/química , Membrana Celular/metabolismo , Difusão , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Método de Monte Carlo , Polietilenoglicóis/química
5.
FEBS J ; 286(11): 2099-2117, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30851224

RESUMO

Autoxidation of polyunsaturated fatty acids (PUFAs) damages lipid membranes and generates numerous toxic by-products implicated in neurodegeneration, aging, and other pathologies. Abstraction of bis-allylic hydrogen atoms is the rate-limiting step of PUFA autoxidation, which is inhibited by replacing bis-allylic hydrogens with deuterium atoms (D-PUFAs). In cells, the presence of a relatively small fraction of D-PUFAs among natural PUFAs is sufficient to effectively inhibit lipid peroxidation (LPO). Here, we investigate the effect of various D-PUFAs on the stability of liposomes under oxidative stress conditions. The permeability of vesicle membranes to fluorescent dyes was measured as a proxy for bilayer integrity, and the formation of conjugated dienes was monitored as a proxy for LPO. Remarkably, both approaches reveal a similar threshold for the protective effect of D-PUFAs in liposomes. We show that protection rendered by D-PUFAs depends on the structure of the deuterated fatty acid. Our findings suggest that protection of PUFAs against autoxidation depends on the total level of deuterated bi-sallylic (CD2 ) groups present in the lipid bilayer. However, the phospholipid containing 6,6,9,9,12,12,15,15,18,18-d10 -docosahexaenoic acid exerts a stronger protective effect than should be expected from its deuteration level. These findings further support the application of D-PUFAs as preventive/therapeutic agents in numerous pathologies that involve LPO.


Assuntos
Antioxidantes/farmacologia , Deutério/química , Ácidos Graxos Insaturados/farmacologia , Bicamadas Lipídicas/metabolismo , Simulação por Computador , Sistemas de Liberação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Ácidos Graxos Insaturados/química , Peroxidação de Lipídeos/efeitos dos fármacos , Lipossomos , Modelos Químicos , Estrutura Molecular , Método de Monte Carlo , Estresse Oxidativo/efeitos dos fármacos , Fosfolipídeos/síntese química , Fosfolipídeos/metabolismo , Relação Estrutura-Atividade
6.
PLoS One ; 13(5): e0196827, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29799834

RESUMO

The technological development is associated with human daily life and had an impact on its social life. Due to the difficulty of estimating the daily exposure to light; research is needed to determine how much natural and man-made lights could affect the cornea. Visible light radiation could have damaging effect on the human eye; the type and degree of damage are related to the duration and the cumulative exposure as well as to the intensity of the rays. There are noticeable increases in using electronic devices and colored lamps in decoration and toys as well, without any specific regulation. We studied the effect of such human activity on the corneal structure and the vibrational characteristics of corneal tissue by Fourier transform infrared spectroscopy. To achieve these goals, Chinchilla rabbits were exposed to two different lux of blue, green or red color lamps. The results indicate that the corneal tissue responds non-specifically to each lux and accordingly the color. The detected changes are including corneal protein secondary structure as well as lipids, in particular phospholipids. This was concomitant with more ordered membrane bilayer and changes in the corneal membrane phase organization. No lux/color-response relationship was established.


Assuntos
Córnea/metabolismo , Córnea/fisiologia , Luz/efeitos adversos , Animais , Cor , Bicamadas Lipídicas/metabolismo , Coelhos
7.
Nat Commun ; 9(1): 1710, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29703992

RESUMO

G protein-coupled receptors (GPCRs) are the largest class of membrane receptors, playing a key role in the regulation of processes as varied as neurotransmission and immune response. Evidence for GPCR oligomerisation has been accumulating that challenges the idea that GPCRs function solely as monomeric receptors; however, GPCR oligomerisation remains controversial primarily due to the difficulties in comparing evidence from very different types of structural and dynamic data. Using a combination of single-molecule and ensemble FRET, double electron-electron resonance spectroscopy, and simulations, we show that dimerisation of the GPCR neurotensin receptor 1 is regulated by receptor density and is dynamically tuneable over the physiological range. We propose a "rolling dimer" interface model in which multiple dimer conformations co-exist and interconvert. These findings unite previous seemingly conflicting observations, provide a compelling mechanism for regulating receptor signalling, and act as a guide for future physiological studies.


Assuntos
Simulação de Dinâmica Molecular , Multimerização Proteica/fisiologia , Receptores de Neurotensina/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Bicamadas Lipídicas/metabolismo , Método de Monte Carlo , Neurotensina/metabolismo , Receptores de Neurotensina/agonistas , Receptores de Neurotensina/genética , Imagem Individual de Molécula/métodos
8.
Protein Sci ; 27(3): 702-713, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29247564

RESUMO

Cell-penetrating peptides (CPPs) are peptides that cross cell membranes, either alone or while carrying molecular cargo. Although their interactions with mammalian cells have been widely studied, much less is known about their interactions with fungal cells, particularly at the biophysical level. We analyzed the interactions of seven CPPs (penetratin, Pep-1, MPG, pVEC, TP-10, MAP, and cecropin B) with the fungal pathogen Candida albicans using experiments and molecular simulations. Circular dichroism (CD) of the peptides revealed a structural transition from a random coil or weak helix to an α-helix occurs for all peptides when the solvent is changed from aqueous to hydrophobic. However, CD performed in the presence of C. albicans cells showed that proximity to the cell membrane is not necessarily sufficient to induce this structural transition, as penetratin, Pep-1, and MPG did not display a structural shift in the presence of cells. Monte Carlo simulations were performed to further probe the molecular-level interaction with the cell membrane, and these simulations suggested that pVEC, TP-10, MAP, and cecropin B strongly penetrate into the hydrophobic domain of the membrane lipid bilayer, inducing a transition to an α-helical conformation. In contrast, penetratin, Pep-1 and MPG remained in the hydrophilic region without a shift in conformation. The experimental data and MC simulations combine to explain how peptide structure affects their interaction with cells and their mechanism of translocation into cells (direct translocation vs. endocytosis). Our work also highlights the utility of combining biophysical experiments, biological experiments, and molecular modeling to understand biological phenomena.


Assuntos
Candida albicans/metabolismo , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Candida albicans/citologia , Membrana Celular/química , Membrana Celular/metabolismo , Dicroísmo Circular , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Método de Monte Carlo , Estrutura Secundária de Proteína
9.
Colloids Surf B Biointerfaces ; 161: 413-419, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29121614

RESUMO

Unravelling the chemical language of insects has been the subject of intense research in the field of chemical ecology for the past five decades. Insect communication is mainly based on chemosensation due to the small body size of insects, which limits their ability to produce or perceive auditory and visual signals, especially over large distances. Chemicals involved in insect communication are called semiochemicals. These volatiles and semivolatiles compounds allow to Insects to find a mate, besides the oviposition site in reproduction and food sources. Actually, insect olfaction mechanism is subject to study, but systematic analyses of the role of neural membranes are scarce. In the present work we evaluated the interactions of α-pinene, benzaldehyde, eugenol, and grandlure, among others, with a lipid membrane model using surface pressure experiments and Monte Carlo computational analysis. This allowed us to propose a plausible membranotropic mechanism of interaction between semiochemicals and insect neural membrane.


Assuntos
Insetos/química , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Feromônios/química , Animais , Benzaldeídos/química , Benzaldeídos/metabolismo , Biofísica , Cicloparafinas/química , Cicloparafinas/metabolismo , Eugenol/química , Eugenol/metabolismo , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Método de Monte Carlo , Feromônios/metabolismo
10.
J Phys Chem B ; 122(21): 5336-5346, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29232131

RESUMO

Computational evaluation of the energetics of substrate binding, transport, and release events of neurotransmitter transporters at the molecular level is a challenge, as the structural transitions of these membrane proteins involve coupled global and local changes that span time scales of several orders of magnitude, from nanoseconds to seconds. Here, we provide a quantitative assessment of the energetics of dopamine (DA) translocation through the human DA transporter (hDAT), using a combination of molecular modeling, simulation, and analysis tools. DA-binding and -unbinding events, which generally involve local configurational changes, are evaluated using free-energy perturbation or adaptive biasing force methods. The global transitions between the outward-facing state and the inward-facing state, on the other hand, require a dual-boost accelerated molecular dynamics simulation. We present results on DA-binding/unbinding energetics under different conditions, as well as the conformational energy landscape of hDAT in both DA-bound and -unbound states. The study provides a tractable method of approach for quantitative evaluation of substrate-binding energetics and efficient estimation of conformational energy landscape, in general.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Dopamina/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato , Termodinâmica
11.
J Chem Theory Comput ; 13(12): 5933-5944, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29111720

RESUMO

An increasingly important endeavor is to develop computational strategies that enable molecular dynamics (MD) simulations of biomolecular systems with spontaneous changes in protonation states under conditions of constant pH. The present work describes our efforts to implement the powerful constant-pH MD simulation method, based on a hybrid nonequilibrium MD/Monte Carlo (neMD/MC) technique within the highly scalable program NAMD. The constant-pH hybrid neMD/MC method has several appealing features; it samples the correct semigrand canonical ensemble rigorously, the computational cost increases linearly with the number of titratable sites, and it is applicable to explicit solvent simulations. The present implementation of the constant-pH hybrid neMD/MC in NAMD is designed to handle a wide range of biomolecular systems with no constraints on the choice of force field. Furthermore, the sampling efficiency can be adaptively improved on-the-fly by adjusting algorithmic parameters during the simulation. Illustrative examples emphasizing medium- and large-scale applications on next-generation supercomputing architectures are provided.


Assuntos
Simulação de Dinâmica Molecular , Proteínas/química , Concentração de Íons de Hidrogênio , Cinética , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Nuclease do Micrococo/química , Nuclease do Micrococo/metabolismo , Método de Monte Carlo , Proteínas/metabolismo , Solventes/química , Termodinâmica
12.
Biophys J ; 112(6): 1198-1213, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28355547

RESUMO

To change conformation, a protein must deform the surrounding bilayer. In this work, a three-dimensional continuum elastic model for gramicidin A in a lipid bilayer is shown to describe the sensitivity to thickness, curvature stress, and the mechanical properties of the lipid bilayer. A method is demonstrated to extract the gramicidin-lipid boundary condition from all-atom simulations that can be used in the three-dimensional continuum model. The boundary condition affects the deformation dramatically, potentially much more than typical variations in the material stiffness do as lipid composition is changed. Moreover, it directly controls the sensitivity to curvature stress. The curvature stress and hydrophobic surfaces of the all-atom and continuum models are found to be in excellent agreement. The continuum model is applied to estimate the enrichment of hydrophobically matched lipids near the channel in a mixture, and the results agree with single-channel experiments and extended molecular dynamics simulations from the companion article by Beaven et al. in this issue of Biophysical Journal.


Assuntos
Elasticidade , Gramicidina/química , Gramicidina/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Fenômenos Biomecânicos , Força Compressiva , Difusão , Interações Hidrofóbicas e Hidrofílicas , Método de Monte Carlo , Termodinâmica
13.
Soft Matter ; 12(13): 3165-76, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26934592

RESUMO

One of the hallmarks of Alzheimer's disease is the formation of protein plaques in the brain, which mainly consist of amyloid-ß peptides of different lengths. While the role of these plaques in the pathology of the disease is not clear, the mechanism behind peptide aggregation is a topic of intense research and discussion. Because of their simplicity, synthetic membranes are promising model systems to identify the elementary processes involved. We prepared unsaturated zwitterionic/anionic lipid membranes made of 1-palmitoyl-2-oleoyl-sn-glycero-phosphocholine (POPC) and 1,2-dimyristoyl-sn-glycero-3-phospho-l-serine (DMPS) at concentrations of POPC/3 mol% DMPS containing 0 mol%, 3 mol%, 10 mol%, and 20 mol% amyloid-ß25-35 peptides. Membrane-embedded peptide clusters were observed at peptide concentrations of 10 and 20 mol% with a typical cluster size of ∼11 µm. Cluster density increased with peptide concentration from 59 (±3) clusters per mm(2) to 920 (±64) clusters per mm(2), respectively. While monomeric peptides take an α-helical state when embedded in lipid bilayers at low peptide concentrations, the peptides in peptide clusters were found to form cross-ß sheets and showed the characteristic pattern in X-ray experiments. The presence of the peptides was accompanied by an elastic distortion of the bilayers, which can induce a long range interaction between the peptides. The experimentally observed cluster patterns agree well with Monte Carlo simulations of long-range interacting peptides. This interaction may be the fundamental process behind cross-ß sheet formation in membranes and these sheets may serve as seeds for further growth into amyloid fibrils.


Assuntos
Peptídeos beta-Amiloides/química , Bicamadas Lipídicas/química , Fragmentos de Peptídeos/química , Peptídeos beta-Amiloides/metabolismo , Ânions/química , Bicamadas Lipídicas/metabolismo , Microscopia , Método de Monte Carlo , Fragmentos de Peptídeos/metabolismo , Fosfatidilcolinas/química , Estrutura Secundária de Proteína , Unitiol/química , Difração de Raios X
14.
Artigo em Inglês | MEDLINE | ID: mdl-26565280

RESUMO

We investigate the phenomenon of protein-induced tubulation of lipid bilayer membranes within a continuum framework using Monte Carlo simulations coupled with the Widom insertion technique to compute excess chemical potentials. Tubular morphologies are spontaneously formed when the density and the curvature-field strength of the membrane-bound proteins exceed their respective thresholds and this transition is marked by a sharp drop in the excess chemical potential. We find that the planar to tubular transition can be described by a micellar model and that the corresponding free-energy barrier increases with an increase in the curvature-field strength (i.e., of protein-membrane interactions) and also with an increase in membrane tension.


Assuntos
Bicamadas Lipídicas/metabolismo , Modelos Biológicos , Simulação por Computador , Micelas , Método de Monte Carlo , Tensão Superficial , Termodinâmica , Tubulina (Proteína)/metabolismo
15.
Soft Matter ; 11(19): 3780-5, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25833123

RESUMO

The adhesion bonds connecting a lipid bilayer to an underlying surface may undergo a condensation transition resulting from an interplay between a short range attractive potential between them, and a long range fluctuation-induced potential of mean force. Here, we use computer simulations of a coarse-grained molecular model of supported lipid bilayers to study this transition in confined membranes, and in membranes subjected to a non-vanishing surface tension. Our results show that confinement may alter significantly the condensation transition of the adhesion bonds, whereas the application of surface tension has a very minor effect on it. We also investigate domain formation in membranes under negative tension which, in free membranes, causes the enhancement of the amplitude of membrane thermal undulations. Our results indicate that in supported membranes, this effect of a negative surface tension on the fluctuation spectrum is largely eliminated by the pressure resulting from the mixing entropy of the adhesion bonds.


Assuntos
Membrana Celular/metabolismo , Estresse Mecânico , Adesão Celular , Membrana Celular/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Conformação Molecular , Método de Monte Carlo , Tensão Superficial
16.
Proc Natl Acad Sci U S A ; 112(15): E1908-15, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25825747

RESUMO

In bacteria, certain shape-sensing proteins localize to differently curved membranes. During sporulation in Bacillus subtilis, the only convex (positively curved) surface in the cell is the forespore, an approximately spherical internal organelle. Previously, we demonstrated that SpoVM localizes to the forespore by preferentially adsorbing onto slightly convex membranes. Here, we used NMR and molecular dynamics simulations of SpoVM and a localization mutant (SpoVM(P9A)) to reveal that SpoVM's atypical amphipathic α-helix inserts deeply into the membrane and interacts extensively with acyl chains to sense packing differences in differently curved membranes. Based on binding to spherical supported lipid bilayers and Monte Carlo simulations, we hypothesize that SpoVM's membrane insertion, along with potential cooperative interactions with other SpoVM molecules in the lipid bilayer, drives its preferential localization onto slightly convex membranes. Such a mechanism, which is distinct from that used by high curvature-sensing proteins, may be widely conserved for the localization of proteins onto the surface of cellular organelles.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Estrutura Secundária de Proteína , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Bicamadas Lipídicas/metabolismo , Espectroscopia de Ressonância Magnética , Microscopia de Fluorescência , Simulação de Dinâmica Molecular , Método de Monte Carlo , Mutação , Ligação Proteica
17.
Phys Biol ; 12(2): 026003, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25743228

RESUMO

An appreciable part of enzymes operating in vivo is associated with lipid membranes. The function of such enzymes can be influenced by the presence of domains containing proteins and/or composed of different lipids. The corresponding experimental model-system studies can be performed under well controlled conditions, e.g., on a planar supported lipid bilayer or surface-immobilized vesicles. To clarify what may happen in such systems, we propose general kinetic equations describing the enzyme-catalyzed substrate conversion occurring via the Michaelis-Menten (MM) mechanism on a membrane with domains which do not directly participate in reaction. For two generic situations when a relatively slow reaction takes place primarily in or outside domains, we take substrate saturation and lateral substrate-substrate interactions at domains into account and scrutinize the dependence of the reaction rate on the average substrate coverage. With increasing coverage, depending on the details, the reaction rate reaches saturation via an inflection point or monotonously as in the conventional MM case. In addition, we show analytically the types of reaction kinetics occurring primarily at domain boundaries. In the physically interesting situation when the domain growth is fast on the reaction time scale, the latter kinetics are far from conventional. The opposite situation when the reaction is fast and controlled by diffusion has been studied by using the Monte Carlo technique. The corresponding results indicate that the dependence of the reaction kinetics on the domain size may be weak.


Assuntos
Vesículas Citoplasmáticas/metabolismo , Enzimas/metabolismo , Bicamadas Lipídicas/metabolismo , Microdomínios da Membrana/química , Vesículas Citoplasmáticas/química , Difusão , Enzimas/química , Cinética , Microdomínios da Membrana/metabolismo , Modelos Teóricos , Método de Monte Carlo
18.
Essays Biochem ; 57: 33-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25658342

RESUMO

In the present chapter we discuss the complex mixing behaviour of plasma membrane lipids. To do so, we first introduce the plasma membrane and membrane mixtures often used to model its complexity. We then discuss the nature of lipid phase behaviour in bilayers and the distinction between these phases and other manifestations of non-random mixing found in one-phase mixtures, such as clusters, micelles and microemulsions. Finally, we demonstrate the applicability of Gibbs phase diagrams to the study of increasingly complex model membrane systems, with a focus on phase coexistence, morphology and their implications for the cell plasma membrane.


Assuntos
Bicamadas Lipídicas/química , Microdomínios da Membrana/química , Proteínas de Membrana/química , Modelos Químicos , Colesterol/química , Emulsões , Cinética , Bicamadas Lipídicas/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Micelas , Método de Monte Carlo , Transição de Fase , Fosfatidilcolinas/química , Termodinâmica
19.
Nat Commun ; 5: 5539, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25412574

RESUMO

Unravelling the complexity of the macroscopic world relies on understanding the scaling of single-molecule interactions towards integral macroscopic interactions. Here, we demonstrate the scaling of single acid-amine interactions through a synergistic experimental approach combining macroscopic surface forces apparatus experiments and single-molecule force spectroscopy. This experimental framework is ideal for testing the well-renowned Jarzynski's equality, which relates work performed under non-equilibrium conditions with equilibrium free energy. Macroscopic equilibrium measurements scale linearly with the number density of interfacial bonds, providing acid-amine interaction energies of 10.9 ± 0.2 kT. Irrespective of how far from equilibrium single-molecule experiments are performed, the Jarzynski's free energy converges to 11 ± 1 kT. Our results validate the applicability of Jarzynski's equality to unravel the scaling of non-equilibrium single-molecule experiments to scenarios where large numbers of molecules interacts simultaneously in equilibrium. The developed scaling strategy predicts large-scale properties such as adhesion or cell-cell interactions on the basis of single-molecule measurements.


Assuntos
Adesão Celular/fisiologia , Membrana Celular/fisiologia , Termodinâmica , Ácidos/metabolismo , Aminas/metabolismo , Comunicação Celular , Transferência de Energia , Bicamadas Lipídicas/metabolismo , Microscopia de Força Atômica , Nanotecnologia , Espectrofotometria Atômica
20.
Artigo em Inglês | MEDLINE | ID: mdl-25215768

RESUMO

Curvature-sensing and curvature-remodeling proteins, such as Amphiphysin, Epsin, and Exo70, are known to reshape cell membranes, and this remodeling event is essential for key biophysical processes such as tubulation, exocytosis, and endocytosis. Curvature-inducing proteins can act as curvature sensors; they aggregate to membrane regions matching their intrinsic curvature; as well as induce curvature in cell membranes to stabilize emergent high curvature, nonspherical, structures such as tubules, discs, and caveolae. A definitive understanding of the interplay between protein recruitment and migration, the evolution of membrane curvature, and membrane morphological transitions is emerging but remains incomplete. Here, within a continuum framework and using the machinery of Monte Carlo simulations, we introduce and compare three free-energy methods to delineate the free-energy landscape of curvature-inducing proteins on bilayer membranes. We demonstrate the utility of the Widom test particle (or field) insertion methodology in computing the excess chemical potentials associated with curvature-inducing proteins on the membrane-in particular, we use this method to track the onset of morphological transitions in the membrane at elevated protein densities. We validate this approach by comparing the results from the Widom method with those of thermodynamic integration and Bennett acceptance ratio methods. Furthermore, the predictions from the Widom method have been tested against analytical calculations of the excess chemical potential at infinite dilution. Our results are useful in precisely quantifying the free-energy landscape, and also in determining the phase boundaries associated with curvature-induction, curvature-sensing, and morphological transitions. This approach can be extended to studies exploring the role of thermal fluctuations and other external (control) variables, such as membrane excess area, in shaping curvature-mediated interactions on bilayer membranes.


Assuntos
Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Modelos Biológicos , Proteínas/metabolismo , Simulação por Computador , Método de Monte Carlo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA