RESUMO
Given their ecological importance, bioindicators are used for the assessment of the health of river ecosystems. This study explored the fungal compositions and the potential of fungal taxa as bioindicators for indicating the water quality of the Mekong River, as the use of fungal indicators of the Mekong River was not previously well characterized. The Mekong River exhibited dynamic variations in both physicochemical/hydrochemical properties and fungal communities according to seasons and locations. The results revealed the dominance of alkaline earth metal ions and weak acids in the water. The magnesium-bicarbonate water type was found in the dry season, but the water became the chloride-calcium type or mixed type of magnesium-bicarbonate and chloride-calcium in the rainy season at downstream sites. Fungal composition analysis revealed the dominance of Chytridiomycota in the dry season and intermediate periods, and Ascomycota and Basidiomycota in the rainy season. The fungal communities were influenced by stochastic and deterministic assembly processes, mainly homogeneous selection, heterogeneous selection, and dispersal limitation. The extent of environmental filtering implied that some fungal taxa were affected by environmental conditions, suggesting the possibility of identifying certain fungal taxa suitable for being bioindicators of water quality. Subsequently, machine learning with recursive feature elimination identified specific fungal bins mostly consisting of Agaricomycetes (mainly Polyporales, Agaricales, and Auriculariales), Dothideomycetes (mainly Pleosporales), Saccharomycetes (mainly Saccharomycetales), Chytridiomycota, and Rozellomycota as bioindicators that could predict ambient and irrigation water quality with high selectivity and sensitivity. These results thus promote the use of fungal indicators to assess the health of the river.
Assuntos
Micobioma , Qualidade da Água , Ecossistema , Monitoramento Ambiental/métodos , Biomarcadores Ambientais , Cálcio , Bicarbonatos , Cloretos , Magnésio , Biodiversidade , Estações do AnoRESUMO
To assess the impact of sand mining on resource utilization by the red seabream (Pagrus major) and the trophic structure of fish assemblages two years after mining activities, we compared stable isotope ratios (δ13C and δ15N) and isotopic niches between aggregated mining and control sites in April and August 2022. Our results showed no spatial differences in the δ13C and δ15N values of red seabream between the sand mining and control sites, suggesting that the mining did not affect their dietary resources. Furthermore, the considerable overlap among fish consumers suggested that the fish food web in mining areas has trophic functions similar to those in natural habitats after mining activities. Overall, our study enhances our understanding of ecosystem conservation and the ecological-based management of coastal areas.
Assuntos
Perciformes , Dourada , Animais , Humanos , Ecossistema , Biomarcadores Ambientais , Isótopos de Carbono/análise , Areia , Isótopos de Nitrogênio/análise , Cadeia Alimentar , Peixes , Atividades Humanas , República da CoreiaRESUMO
The rapid expansion in commercial seaweed farming has highlighted the need for more effective monitoring methods, and health diagnostics. The production of the reactive oxygen species (ROS) hydrogen peroxide (H2O2) is a trait that is tied to all major macroalgal groups and holds significance both for its involvement in the oxidative stress response and in the production of climatically relevant gases such as halocarbons. Observations of increased production of H2O2 by plants as a stress response, along with its comparative stability and ease of quantification in seawater in comparison to other ROS, suggest that H2O2 could be used as an indicator of health. In this study we characterized aqueous H2O2 dynamics across a diel cycle, in response to small shifts in light and temperature, as well as when exposed to acute stress. Our results reveal that exposure to acute stressors leads to rapid and sustained concentrations of H2O2 that are orders of magnitude higher than changes in H2O2 concentrations observed throughout the day. These findings provide tantalizing evidence that monitoring H2O2 could be used as a health indicator in seaweed aquaculture and serve as an early warning sign of stress.
Assuntos
Biomarcadores Ambientais , Alga Marinha , Peróxido de Hidrogênio , Espécies Reativas de Oxigênio , Verduras , Aquicultura , DeutérioRESUMO
Highly anthropized areas as ports represent complex scenarios that require accurate monitoring plans aimed to address the environmental status. In this context, the activities of the EU Interreg Project "GEstione dei REflui per il MIglioramento delle Acque portuali (GEREMIA)" were focused on comparing sites differently affected by human presence, as the Port of Genoa and the natural area of the S'Ena Arrubia fishpond: a panel of analyses was carried out on Mugilidae fish sampled in these two areas, aimed to address trace metal accumulation in the liver, gills, and muscle, as well as cytochrome P450 (CYP450) induction in liver and biliary polycyclic aromatic hydrocarbon (PAH) metabolites, and histopathological alterations in the liver and gills. Chemical analyses in the liver, gills, and muscle of specimens collected in the port area showed an overall higher degree of trace metal contamination compared to the natural fishpond, and similar results were obtained in terms of CYP450 induction and biliary PAH metabolites, suggesting a higher exposure to organic compounds. In addition, histopathological analyses revealed a significant alteration and then a loss of functionality of liver and gill tissue in individuals from the port. Overall, this study describes the complex environmental pollution scenario in the Port of Genoa, confirming the importance of using multidisciplinary approaches and different types of analyses to address both the presence and the effects of contaminants in marine environments.
Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Gerenciamento de Resíduos , Poluentes Químicos da Água , Animais , Humanos , Biomarcadores Ambientais , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Citocromo P-450 CYP1A1/metabolismo , Peixes/metabolismo , Fígado , Nível de Saúde , Hidrocarbonetos Policíclicos Aromáticos/análise , Brânquias/metabolismoRESUMO
Due to its persistence and potential ecological and health impacts, mercury (Hg) is a global pollutant of major concern that may reach high concentrations even in remote polar oceans. In contrast to the Arctic Ocean, studies documenting Hg contamination in the Southern Ocean are spatially restricted and large-scale monitoring is needed. Here, we present the first circumpolar assessment of Hg contamination in Antarctic marine ecosystems. Specifically, the Adélie penguin (Pygoscelis adeliae) was used as a bioindicator species, to examine regional variation across 24 colonies distributed across the entire Antarctic continent. Mercury was measured on body feathers collected from both adults (n = 485) and chicks (n = 48) between 2005 and 2021. Because penguins' diet represents the dominant source of Hg, feather δ13C and δ15N values were measured as proxies of feeding habitat and trophic position. As expected, chicks had lower Hg concentrations (mean ± SD: 0.22 ± 0.08 µg·gâ1) than adults (0.49 ± 0.23 µg·gâ1), likely because of their shorter bioaccumulation period. In adults, spatial variation in feather Hg concentrations was driven by both trophic ecology and colony location. The highest Hg concentrations were observed in the Ross Sea, possibly because of a higher consumption of fish in the diet compared to other sites (krill-dominated diet). Such large-scale assessments are critical to assess the effectiveness of the Minamata Convention on Mercury. Owing to their circumpolar distribution and their ecological role in Antarctic marine ecosystems, Adélie penguins could be valuable bioindicators for tracking spatial and temporal trends of Hg across Antarctic waters in the future.
Assuntos
Mercúrio , Spheniscidae , Animais , Mercúrio/análise , Ecossistema , Biomarcadores Ambientais , Regiões Antárticas , Monitoramento AmbientalRESUMO
In the context of the increasing environmental and sanitary crisis, it is accepted that soil pollution can cause health alterations and disturb natural population dynamics. Consequently, the assessment of the genotoxic potential of compounds found in contaminated soils is important. Indeed, the alteration of genomic integrity may increase the risk of cancer development and may impair reproduction and long-term population dynamics. Among the methodologies to assess terrestrial genotoxic potential, there has been growing interest during the last decade in monitoring alterations of the genome in bioindicators of soil quality. As some land snail species are recognized bioindicators of soil quality, especially to assess the environmental and toxicological bioavailability of compounds, this review focuses on current knowledge regarding the genotoxicology of land snails. Classical biomarkers to assess genotoxic effects have been used (e.g., DNA breakage, micronuclei, random amplification polymorphic DNA) at various stages of the life cycle, including embryos. The studies were performed in vitro, in vivo, in situ and ex situ and covered a diverse set of contaminants (nanoparticles, metal(loid)s, pesticides, polycyclic aromatic hydrocarbons) and snail species (Cantareus aspersus, Eobania vermiculata, Theba pisana, Helix lucorum). Based on recent studies reviewed here, the use of land snails to map soil genotoxic potential is promising due to their ability to reveal pollution and subsequent environmental risks. Moreover, the position of snails in the trophic chain and the existing bridges between contaminant bioavailability to snails and bioaccessibility to humans reinforce the value of land snail-based ecotoxicological assessment.
Assuntos
Monitoramento Ambiental , Poluentes do Solo , Humanos , Monitoramento Ambiental/métodos , Biomarcadores Ambientais , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Solo/química , DNARESUMO
Echinoderms play a crucial role in the functioning of marine ecosystems and due to their extensive distribution, rapid response, and the high sensitivity of their planktonic larvae to a large range of stressors, some species are widely used as biological indicators. In addition to sea urchins, sea cucumbers have recently been implemented in embryotoxicity bioassays showing high potential in ecotoxicological studies. However, the use of this species is still hindered by a lack of knowledge regarding their comparative responsiveness. The present study aimed to investigate the responsiveness of different echinoderm species to environmental pollution in order to develop their integration in batteries of ecotoxicological bioassays. To this end, the embryos of two sea urchins (Paracentrotus lividus and Arbacia lixula) and two sea cucumbers (Holothuria polii and Holothuria tubulosa) were incubated with inorganic and organic toxicants (cadmium, copper, mercury, lead, sodium dodecyl sulphate and 4-n-Nonhyphenol) and elutriates from contaminated marine sediments, chosen as a case study model. The results obtained, expressed through the percentage of abnormal embryos and Integrative Toxicity Indices (ITI), indicated species-specific sensitivities to pollutants, with comparable and correlated responsiveness between sea urchins and sea cucumbers. More specifically, sea cucumber larvae exposed to elutriates appear to be more sensitive than sea urchins, especially when incubated with samples containing trace metals, PCB and TBT. These results indicate that toxic responses in embryos exposed to environmental matrices are probably modulated by interactions between different variables, including additive, synergistic and antagonistic effects. These findings suggest that performing a larval test using different echinoderm classes can integrate the interactive effects of bioavailable fraction of contaminants on various levels, providing sensitive, representative and all year-round batteries of bioassays to apply in ecotoxicological studies.
Assuntos
Paracentrotus , Pepinos-do-Mar , Animais , Biomarcadores Ambientais , Larva , Ecossistema , Ouriços-do-Mar , Poluição AmbientalRESUMO
Due to their uncontrolled use, plastics has become an environmental concern, not only for their varying dimension but also for the potential release of substances such as phthalates (PAEs) and non-phthalates (NPPs) into the water. Phthalates are the most common plasticizers of concern, but non-phthalate plasticizers such as di (2-ethylhexyl) terephthalate (DEHT) have also been lately found in the marine environment. Mytilus galloprovincialis is a well-known bioindicator of aquatic environments due to its ability to accumulate a wide variety of xenobiotics, including plasticizers. Hence, aim of this study was to evaluate the potential bioaccumulation and effects of the NPP DEHT on M. galloprovincialis. To this purpose, following exposure to DEHT at 1 mg/l (DEHT1) and 100 mg/l (DEHT100), its accumulation in tissues and its effects on total lipids and fatty acid (FA) composition, protein content, cell viability, ability to recover volume and changes in biomarkers of oxidative stress were assessed. Mussels were able to bioaccumulate DEHT in their tissues, with a statistically significant increase compared to the control organisms. Differences in FA composition were observed after exposure, since C16:0, C18:0, C20:5ω-3 and C22:6ω-3 were significantly decreased from control to exposed groups. As a result, total SFA, MUFA and PUFA were affected in DEHT-exposed groups. Also, total protein varied following DEHT exposure, and significantly decreased in the DEHT100-group. Considering the physiological responses, both DEHT-exposed groups lost their ability to return to the original volume of digestive gland (DG) cells. On the other hand, oxidative biomarkers in the gills and DG were not significantly affected by the DEHT exposure. Overall, this study showed for the first time that DEHT exposure differentially affect mussels, in their lipid and protein metabolism, as well as cellular parameters.
Assuntos
Mytilus , Plastificantes , Animais , Plastificantes/análise , Mytilus/metabolismo , Ácidos Graxos , Biomarcadores AmbientaisRESUMO
This study proposes using the network of urban gardens to grow vegetables and to monitor air quality, and it also evaluates whether food grown on a clean substrate in an urban environment is safe for consumption. For this purpose, lettuces were exposed to different degrees of air pollution in five locations in the city of Copenhagen, plus a reference site. Six specimens were placed at each site and, after the exposure period, half of each sample was washed. Subsamples were then digested by a total extraction method and a bioaccessible extraction method, and the concentration of 23 elements subsequently measured by ICP-MS. The results showed that exposed samples in areas of higher atmospheric pollution accumulated a larger amount of trace elements associated with typical urban sources. They also highlighted the importance of washing food to remove particles that adhere to their surface. However, bioaccessibility testing demonstrated the importance of including bioaccessibility in risk analyses and how this factor varies depending on the type of matrix. In this case, bioaccessibility was higher for plant tissue than for particulate matter. Lastly, metal concentrations in lettuce were compared with legal values and an analysis of daily intake showed that the levels in Copenhagen were within limits for the protection of human health.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Lactuca , Biomarcadores Ambientais , Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Poluição do Ar/análise , Material Particulado/análise , Poluentes Atmosféricos/análiseRESUMO
Currently, there are no standard international test methods for assessing aquatic and soil toxicity, with aquatic toxicity tests based on limited Euglena species. Here, we proposed Euglena species as extended test species, especially as new soil test species for a paper-disc soil method, considering its ecologically important roles in providing highly bioavailable in-vivo nutrients to upper trophic level organisms. We conducted experiments to identify the optimal exposure duration for two Euglena species (Euglena viridis and Euglena geniculata). We demonstrated the toxic effects of nickel (model contaminant) on their photosynthetic parameters and growth in freshwater. The growth and photosynthetic activity of three Euglena species were significantly inhibited in nickel-contaminated soil during paper-disc soil tests, especially the test species adsorbed onto paper-disc soil. Euglena gracilis was more sensitive to nickel than E. viridis and E. geniculata in freshwater and soil. Thus, E. viridis and E. geniculata have potential as additional test species for improving test species diversity, while all three species have potential as new soil test species for soil toxicity assessment. Thus, results these species may be suitable for routine aquatic toxicity testing and new soil toxicity testing, addressing the current paucity of test species in freshwater and soil toxicity assessment.
Assuntos
Euglena gracilis , Euglena , Biomarcadores Ambientais , Níquel/toxicidade , FotossínteseRESUMO
A comprehensive and scientific assessment of benthic ecosystem health is key to the rational selection of endogenous pollution reduction technologies for lakes. However, current assessments are mainly limited to biological indicators and ignore the actual benthic ecosystem situations, such as the impact of eutrophication and heavy metal pollution, which may lead to the one-sidedness of the evaluation results. In this study, taking Baiyangdian Lake, the largest shallow mesotrophic-eutrophic lake in the North China Plain, as an example, the chemical assessment index and biological integrity index were first combined to estimate the biological conditions, nutritional status and heavy metal pollution of lakes. The indicator system incorporated three biological assessments (benthic index of biotic integrity (B-IBI), submerged aquatic vegetation index of biological integrity (SAV-IBI) and microbial index of biological integrity (M-IBI)) and three chemical assessments (dissolved oxygen (DO), comprehensive trophic level index (TLI) and index of geoaccumulation (Igeo)). Twenty-three attributes of B-IBI, fourteen attributes of SAV-IBI and twelve attributes of M-IBI were screened by range, responsiveness, and redundancy tests to keep the core metrics that were significantly correlated with disturbance gradients or showed strong discriminatory power between reference and impaired sites. The assessment results of B-IBI, SAV-IBI, and M-IBI showed significant differences in the response to anthropogenic activities and seasonal change, among which the submerged plants showed more significant seasonal differences. It is difficult to reach a comprehensive conclusion regarding the benthic ecosystem health status based on a single biological community. In comparison with biological indicators, the score of chemical indicators is relatively low. DO, TLI and Igeo provide an essential supplement for the benthic ecosystem health assessment of lakes with eutrophication and heavy metal pollution problems. Using the new integrated assessment method, the benthic ecosystem health of Baiyangdian Lake was rated as fair, especially the northern parts of the lake adjacent to the inflow mouth of the Fu River, which were in poor condition, indicating that the lake has experienced anthropogenic disturbance, resulting in eutrophication, heavy metal pollution and biological community degradation. Whether it's spring or summer, the integrated assessment method provides a more plausible and comprehensive view of benthic ecosystem health under the pressure of increasing human activities and changing habitat and hydrological conditions, overcoming the narrow perspective and uncertainties of the single-index method. Thus, it can assist lake managers in providing technical support for ecological indication and restoration.
Assuntos
Ecossistema , Metais Pesados , Humanos , Lagos , Biomarcadores Ambientais , Monitoramento Ambiental/métodos , ChinaRESUMO
Water quality index (WQI) of Narora channel and health of endemic fish Bagarius bagarius and plant Eichhornia crassipes, district Bulandshahar, Uttar Pradesh, India were studied. Among the physicochemical properties of water, pH, D.O, Cr, Fe, Ni, and Cd were above the recommended standards. These factors lead to high WQI (4124.83), indicating poor quality and not suitable for drinking and domestic usage. In fish tissues, the highest metal load was reported in the liver (58.29) and the lowest in the kidney (33.73). Heavy metals also cause a lowering of condition indices. As expected, decreased serum protein (- 63.41%) and liver glycogen (- 79.10%) were recorded in the exposed fish. However, blood glucose (47.22%) and serum glycogen (74.69%) showed elevation. In the plant, roots (21.50) contained the highest, and leaves (16.87) had the lowest heavy metal load. Bioaccumulation factor (BAF) > 1, indicates hyperaccumulation of all metals. E. crassipes roots showed the highest translocation factor (TF) > 1 for Ni (1.57) and Zn (1.30). The high mobility factor (MF) reflected the suitability of E. crassipes for phytoextraction of Mn, Cd, Zn, Fe, Ni, and Cu. Moreover, Bagarius sp. consumption could not pose any non-cancer risk. Although, lower cancer risk can be expected from Ni and Cr.
Assuntos
Eichhornia , Metais Pesados , Poluentes Químicos da Água , Biomarcadores Ambientais , Eichhornia/química , Cádmio , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Metais Pesados/toxicidade , Metais Pesados/análise , Plantas , Medição de Risco , Monitoramento AmbientalRESUMO
Many human activities can greatly influence and alter the health of aquatic ecosystems. In this regard, the quantitative analysis of macroinvertebrates and their relationships with ecological variables is an effective method in environmental monitoring programs. Here, we used the benthic macroinvertebrate community as bioindicators for assessing anthropogenic impacts on coastal waters in southeast Bangladesh. Sediment samples were collected seasonally from three different sites influenced either by mangrove forests, aquaculture activity or sewage input. The indicator value index (IndVal) analysis revealed 23 species of benthic macroinvertebrates as potential bioindicators namely Enigmonia aenigmatica, Mactra chinensis and Pharella javanica of the class Bivalvia; Tubifex tubifex of the class Clitellata; Lithopoma brevispina, Bullia vittata, Pomacea maculata and Umbonium vestiarium of the class Gastropoda; Gammarus roeselii of the class Malacostraca; and Amphicteis gunneri, Amphitrite ornata, Aricidea simplex, Cirratulus cirratus, Heterospio catalinensis, Hypereteone foliosa, Lopadorrhynchus henseni, Neanthes chingrighattensis, Micronephthys oligobranchia, Nephtys hombergii, Nereis jacksoni, Nereis zonata, Polyodontes maxillosus and Stygocapitella subterranean of the class Polychaeta. Their composition across three sites varied significantly (P < 0.05) due to influence of environmental conditions as inferred from redundancy analysis. Polychaeta, Gastropoda and Malacostraca were susceptible to sewage input, while Bivalvia and Clitellata were susceptible to aquaculture effluent. The results of this baseline study suggest that the identified benthic macroinvertebrate species can potentially be used to monitor anthropogenic disturbances in the marine environment.
Assuntos
Ecossistema , Invertebrados , Animais , Humanos , Biomarcadores Ambientais , Esgotos , Efeitos Antropogênicos , Bangladesh , Monitoramento Ambiental/métodosRESUMO
Flesh of 141 fish specimens collected along the southern coast of New Caledonia, close to the mining industry Prony Resources New Caledonia, were analyzed for 10 elements (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni and Zn). The leopard coral grouper Plectopomus leopardus revealed significant spatial variations for Cr, Fe, Mn and Zn and size-dependent accumulation of Hg. Sanitary risk assessment suggests that Hg and Me-Hg could potentially be a concern for heavy fish consumers. A previous study in New Caledonia had demonstrated the capacity of P. leopardus to differentially accumulate Ag, Cd, Cu, Hg and Zn and as such its potential as bioindicator specie to monitor contamination status in urban areas (Metian et al., 2013). Our results demonstrate that this specie can also to be used as a bioindicator to monitor the contamination status of Cr, Fe and Mn in New Caledonian lagoon in relation to mining activities.
Assuntos
Bass , Mercúrio , Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Animais , Oligoelementos/análise , Biomarcadores Ambientais , Monitoramento Ambiental/métodos , Cádmio , Poluentes Químicos da Água/análise , Músculos/química , Medição de Risco , Metais Pesados/análiseRESUMO
The toxicity of triphenyl phosphate (TPhP) to aquatic organisms in surface waters has been demonstrated; However, an understanding of toxicity profiles of TPhP in amphibians is limited. Therefore, the adverse effects and threshold concentrations of TPhP on metamorphosis, growth, locomotion, and hepatic antioxidants of Gosner stage 25 Polypedates megacephalus tadpoles under long-term (35 d) exposure to six TPhP concentrations until complete metamorphosis were assessed. Additionally, the overall effect of using integrated multiple biomarkers were determined to demonstrate the potential ecological risks of waterborne TPhP at environmentally relevant concentrations in amphibian tadpoles. With increasing TPhP concentrations, physical parameters (snout-vent length, body mass, condition factor, and hepatic somatic index), jumping distance, hepatic catalase, and superoxide dismutase activities decreased, whereas metamorphosis time and malondialdehyde content increased. The threshold concentration of TPhP that affected the tadpole biomarker, except for metamorphosis rate and jumping distance, was 50-400 µg/L. Furthermore, the standardized scores of the examined integrated biomarkers in the six TPhP concentrations were visualized using radar plots and calculated as the integrated biomarker responses (IBRs). The varying TPhP concentrations had different scores in the radar plots, and the threshold for affecting the IBR value was 10 µg/L, which was close to the TPhP concentration in surface waters. Additionally, IBR values were strongly positively correlated with the TPhP concentrations. These findings indicate that environmentally relevant exposure to waterborne TPhP can pose an ecological risk to amphibian tadpoles. This study can serve as a reference and assist in the formulation of relevant policies and strategies to control TPhP pollution in water bodies.
Assuntos
Antioxidantes , Biomarcadores Ambientais , Animais , Catalase , Larva , Malondialdeído , Organofosfatos/toxicidade , Superóxido Dismutase , ÁguaRESUMO
Despite the biodiversity and ecosystem services provided by lotic ecosystems, they are strongly affected by anthropogenic activities. Therefore, biological monitoring and assessment strategies are crucial in helping maintain these ecosystems and developing mitigation policies. We provide a global overview of the use of benthic diatoms as bioindicators in lotic environments, by analyzing 764 articles published in the past 20 years. We analyzed the influence of substrate type on samplings, which species have been highlighted as indicators and for which type of impacts, which anthropogenic impacts have been most commonly evaluated, and which metrics have been commonly used in studies using diatoms to assess and monitor the quality of lotic environments. We found that the most studied anthropogenic impact is artificial eutrophication and that some species, especially Nitzschia palea, have been thoroughly mentioned as indicators of this impact. Indicator species related to other types of impact are less common, demonstrating the need for studies on this issue. Moreover, we verified that traditional taxonomic metrics, such as diversity and diatom indices, have been widely used. Some alternative metrics have been used recently, such as those based on teratological valves, lipid bodies, valve size, and DNA metabarcoding. The number of biomonitoring and assessment studies based on diatoms has increased considerably in the past 20 years. Nonetheless, the demand for natural resources and consequently the degradation of lotic ecosystems have accelerated significantly. Thus, the development of low-cost and time-efficient biological assessment and monitoring strategies is essential for evaluating the health of lotic environments.
Assuntos
Diatomáceas , Ecossistema , Biomarcadores Ambientais , Monitoramento Ambiental , EutrofizaçãoRESUMO
The ecological response of nematode communities to dam construction has limited attention. In this study, the response of intertidal nematode communities in the Ba Lai River (Mekong Delta, Vietnam) to the construction of an irrigation dam was investigated. Nematode communities and environmental parameters were investigated during the rainy season of 2015. The obtained results showed that the Ba Lai dam had caused negative impacts on the local environment by disrupting longitudinal connectivity, the accumulation of nutrients (total organic carbon, total nitrogen, total phosphorus), and heavy metals (copper, iron, arsenic, lead) in the upstream and the lateral sides of the dam, consequently leading to changes in the nematode communities. The response of nematode communities to the dam's presence was clear based on their abundance, diversity, dominant genera, and community composition. Furthermore, changes in the abundance and diversity of nematodes in the Ba Lai River appeared to be controlled primarily by acidity (pH), total suspended solids (TSS), iron (Fe), clay, and salinity most responsible for changes to nematode communities. Because the nematode communities are well adapted to the physicochemical disturbances caused by dam construction, they are a potential tool for ecological monitoring and understanding the influence of dams on aquatic ecosystems.
Assuntos
Ecossistema , Biomarcadores Ambientais , Vietnã , FerroRESUMO
Bioindicators can provide pollution information with longer temporal duration and larger spatial scale. It is an ideal strategy for long-term monitoring of bioaccumulative contaminants. Bioindicator monitoring has been widely used; however, there were seldom detailed studies about bioindicator methodology in literature. The present study proposed a bioindicator framework suitable for the local conditions of China, including selection of bioindicator species, evaluation of impact factors, and derivation of threshold values using per- and polyfluoroalkyl substances (PFASs) as an example. The criteria that proper bioindicator species should meet and the procedure how the bioindicator species is selected were proposed, under which crucian carp (Carassius auratus) was selected as the local bioindicator for studied PFASs. Several factors which may affect accumulation of contaminants in bioindicators were suggested to produce reliable and comparable results. Derivation method of bioindicator thresholds for ecological risk assessment of aquatic ecosystems was firstly developed. The long-term and short-term ecological thresholds of perfluorooctanesulfonate using crucian carp as bioindicator are 3.329 and 1.402 µg/g wet weight respectively. Using the long-term thresholds derived from chronic toxicity data and the accumulative concentrations of contaminants obtained by bioindicator results, the bioindicator monitoring can be used for long-term ecological risk surveillance. The threshold derivation method can extend the application of bioindicator monitoring from the occurrence study to ecological risk surveillance, which is especially important for China who has made progresses on regular contaminant control and starts to be concerned about the ecological risks of the emerging contaminants. The framework can be used to create national and regional long-term freshwater bioindicator monitoring programs, with the purposes of ecological risk assessment, occurrence and temporal trend study, pollution source identification, international convention fulfillment, retrospective study, etc. The bioindicator framework will benefit the aquatic environmental safety and the hazardous chemical management in China.
Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Biomarcadores Ambientais , Monitoramento Ambiental/métodos , Ecossistema , Poluentes Químicos da Água/análise , Estudos Retrospectivos , Água Doce , Medição de Risco , Substâncias Perigosas , ChinaRESUMO
Terrestrial mosses are promising species to study concerning metal deposition, absorption, and soil fertility as moss biocrusts. However, acrocarpous moss, as a kind of terrestrial mosses, has not yet been well understood, both in environmental monitoring and ecological application, especially exposed to an abandoned pyrite mining. Herein, we investigated the concentrations of different heavy metals in soil underlying acrocarpous moss Campylopus schmidii at three distances from an abandoned pyrite mine tailings (0.5, 1, 2 km) by sampling analysis, as well as the accumulation properties of heavy metals in different parts of mosses and soil nutrients under intact mosses and moss-free layers. The results indicated that the soil we researched was heavily polluted by Cr, Cu, and Cd, which was 4.46, 4.18, and 1.77 times higher than the standard of risk screening values for soil environment quality in China. And there was a marked difference in the concentrations and distribution of heavy metals in mosses, with higher concentrations of Cr, Cu, Ni and Pb mainly in the ageing parts. In addition, mosses can effectively promote soil fertility. Compared with the bare soil without the moss layer, the total organic matter and total potassium concentrations of the soil covered by the intact moss layer were significantly increased, by 113.91% and 186.08% respectively. Correlation analysis indicated that similar pollution sources for Zn, Cd, Cu, and Pb, and the concentrations of these heavy metals in soil connected with the distance from the source of pollution. Overall, we expected that these findings could assess the greater potential of single native dominant moss species C.schmidii to act as biomonitors in specific pyrite mine tailings characterized by barren soil with strong acids (pH < 4.0) and polymetallic pollution. Meanwhile, our results revealed may serve as a possibility reference for similar areas and is recommended for developing a vegetative cover utilizing local acrocarpous mosses to achieve greening of degraded tailings in the future, as well as environmental management and protection.
Assuntos
Briófitas , Metais Pesados , Poluentes do Solo , Cádmio/análise , China , Biomarcadores Ambientais , Monitoramento Ambiental/métodos , Ferro , Chumbo/análise , Metais Pesados/análise , Medição de Risco , Solo/química , Poluentes do Solo/análise , SulfetosRESUMO
Microplastics (MPs) are characterized by their high persistence in marine ecosystems, and due to their small size, they can be easily ingested by very diverse organisms. Although the presence of MPs in wild fish is well documented, there is still limited information on their potential to induce adverse effects. Pelagic fish species, because of their wide distribution, are considered good bioindicators for monitoring environmental pollution of marine ecosystems. This study investigated the presence of MPs in the gastrointestinal tract of the predatory pelagic fish (Seriola dumerili) in the Balearic Islands (Mediterranean Sea), and the possible relationship with oxidative stress through the analysis of biomarkers in liver tissue. The results showed the presence of MPs in 98% of total samples examined (n = 52) with an average of 12.2 ± 1.3 MPs/individual. A greater amount of fibre-like particles was isolated compared to fragments. No correlation between the presence of MPs in the gastrointestinal contents and the size of the fishes was noted. Antioxidant enzymes (superoxide dismutase and catalase) and the phase II detoxification enzyme glutathione-S-transferase showed increased activities in fish with higher MPs load. The activity ethoxyresorufin-O-deethylase and the levels of malondialdehyde were similar in both groups. In conclusion, the present results provide an important database on the assessment of the presence of MP debris in S. dumerili gastrointestinal tract and, the potential capability to cause oxidative stress.