Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38203791

RESUMO

This study reports the effect of the not-calcining process on the bioresorption and biomineralization of hydroxyapatite through in vitro dissolution assessment. The prepared calcined hydroxyapatite (c-HAp) and uncalcined hydroxyapatite (unc-HAp) have a particle size of 2 µm and 13 µm, surface areas of 4.47 m2/g and 108.08 m2/g, and a Ca/P ratio of 1.66 and 1.52, respectively. In vitro dissolution assessments of c-HAp and unc-HAp were performed for 20 days at 37 °C in a citric acid buffer according to ISO 10993-14. During the dissolution, the c-HAp and unc-HAp confirmed an increase in weight, and the calcium and phosphorous ions were rapidly released. The calcium ions released from c-HAp formed rod-shaped particles with a longer and thinner morphology, while in unc-HAp, they appeared thicker and shorter. In the ICP-OES results, the concentrations of calcium elements were initially increased and then decreased by this formation. The rod-shaped particles identified as calcium citrate (Ca-citrate) through the XRD pattern. The calcium content of Ca-citrate particles from unc-HAp was higher than that from c-HAp. The unc-HAp demonstrated non-toxic properties in a cytotoxicity evaluation. Therefore, due to its higher bioresorption and biomineralization, unc-HAp exhibits enhanced biocompatibility compared to c-HAp.


Assuntos
Biomineralização , Cálcio , Citrato de Cálcio , Cálcio da Dieta , Durapatita , Íons
2.
Water Sci Technol ; 87(8): 1879-1892, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37119161

RESUMO

Soluble iron and sulfate in acid mine drainage (AMD) can be greatly removed through the formation of minerals facilitated by seed crystals. However, the difference in the effects of jarosite and schwertmannite as endogenous seed crystals to induce AMD mineralization remains unclear. This paper intends to study the effect of Fe2+ oxidation and Fe3+ mineralization in the biosynthesis of minerals using different addition amounts and methods of jarosite or schwertmannite. The results showed that the addition amount and method of different seed crystals had no effect on the Fe2+ bio-oxidation but would change the Fe3+ mineralization efficiency. With the same amount of seed crystals added, jarosite exhibited a higher capacity to promote Fe3+ mineralization than schwertmannite. Adding seed crystals before the initiation of Fe2+ oxidation (0 h) could significantly promote Fe3+ mineralization efficiency. With the increase of seed crystals, jarosite could not only shorten the time required for mineral synthesis but also improve the final mineral yield, whereas schwertmannite could only shorten the time required for mineral synthesis. When Fe2+ was completely oxidized to Fe3+ (48 h), the supplementary of jarosite could still effectively improve Fe3+ mineralization efficiency, but the addition of schwertmannite no longer affected the final mineralization degree.


Assuntos
Acidithiobacillus , Compostos de Ferro , Ferro , Biomineralização , Compostos de Ferro/química , Compostos Férricos/química , Minerais , Oxirredução
3.
Lasers Med Sci ; 36(1): 131-137, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32372236

RESUMO

The current work explores the surface morphology of the laser-ablated bone using Yb-fiber coupled Nd:YAG laser (λ = 1064 nm) in continuous wave mode. As the laser-ablated region contains physiochemically modified carbonized and nonstructural region, it becomes unknown material for the body. Thus, biomineralization on such a laser-ablated region was assessed by in vitro immersion test in noncellular simulated body fluid. The presence of hydroxyapatite was detected in the precipitated mineral product using scanning electron microscopy equipped with energy dispersive spectroscopy, and X-ray diffraction analysis. The effect of varying laser parameters on distribution of surface morphology features was identified and its corresponding effect on biomineralization was studied.


Assuntos
Biomineralização/efeitos da radiação , Osso e Ossos/efeitos da radiação , Lasers de Estado Sólido , Osso e Ossos/ultraestrutura , Durapatita/química , Espectrometria por Raios X , Propriedades de Superfície , Temperatura , Difração de Raios X
4.
J Appl Microbiol ; 130(4): 1232-1244, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33025710

RESUMO

AIMS: Microbial induced calcium carbonate precipitation (MICP) is one of the bio-cementation methods for improving granular soils. This study evaluate the feasibility of obtaining a bacterial solution with high optical density and urease activity by an inexpensive corn steep liquor (CSL) medium in non-sterile conditions in order to achieve sand improvement. METHODS AND RESULTS: Corn steep liquor media with different concentrations (different dilution rates) were prepared and, without any autoclaving (non-sterile conditions), different percentage of the inoculum solutions were added to them and incubated. Effect of inoculum solution percentage and CSL dilution rates on specifications of bacterial solution was evaluated. Urease activity and scanning electron microscope (SEM) and X-Ray Diffraction (XRD) were used to efficiency of CLS media in sand improvement. The considerable urease activity was measured as 5·7 mS cm-1  min-1 using nonsterile CLS. By using CYNU (CSL-Yeast extract-NH4Cl-Urea) bacterial solution, the urease activity of 5·5 mS cm-1  min-1 for the OD600 (optical density at 600 nm) of 1·88 and, consequently, specific urease activity of 2·93 mS cm-1  min-1  OD600 -1 was obtained. The highest unconfined compressive strength (811 kPa) was obtained for the CYNU. XRD revealed new calcite peaks next to the quartz peaks. CONCLUSIONS: Production of inexpensive bacterial solution using diluted CSL as the inexpensive, effective and powerful culture media for Sporosarcina pasteurii cultivation in nonsterile conditions, allows geotechnical and biotechnological engineers to use MICP technology more widely in land improvement and field-scale bio-cementation and bioremediation projects. SIGNIFICANCE AND IMPACT OF THE STUDY: Obtaining high urease activity of inexpensive microbial solution using diluted CSL as the culture medium in nonsterile conditions, as the unique results of this study, can be significant in the field of bioremediation studies using MICP.


Assuntos
Areia/química , Sporosarcina/crescimento & desenvolvimento , Zea mays/química , Biodegradação Ambiental , Biomineralização , Carbonato de Cálcio/análise , Carbonato de Cálcio/metabolismo , Força Compressiva , Análise Custo-Benefício , Meios de Cultura/química , Areia/microbiologia , Sporosarcina/metabolismo , Urease/metabolismo
5.
PLoS One ; 15(2): e0228708, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32097412

RESUMO

The biomineralization protein Mms6 has been shown to be a major player in the formation of magnetic nanoparticles both within the magnetosomes of magnetotactic bacteria and as an additive in synthetic magnetite precipitation assays. Previous studies have highlighted the ferric iron binding capability of the protein and this activity is thought to be crucial to its mineralizing properties. To understand how this protein binds ferric ions we have prepared a series of single amino acid substitutions within the C-terminal binding region of Mms6 and have used a ferric binding assay to probe the binding site at the level of individual residues which has pinpointed the key residues of E44, E50 and R55 involved in Mms6 ferric binding. No aspartic residues bound ferric ions. A nanoplasmonic sensing experiment was used to investigate the unstable EER44, 50,55AAA triple mutant in comparison to native Mms6. This suggests a difference in interaction with iron ions between the two and potential changes to the surface precipitation of iron oxide when the pH is increased. All-atom simulations suggest that disruptive mutations do not fundamentally alter the conformational preferences of the ferric binding region. Instead, disruption of these residues appears to impede a sequence-specific motif in the C-terminus critical to ferric ion binding.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biomineralização , Óxido Ferroso-Férrico/metabolismo , Ferro/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Magnetospirillum , Método de Monte Carlo , Mutação
6.
Clin Oral Investig ; 23(1): 169-177, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29572687

RESUMO

OBJECTIVE: Evaluate, in vivo, the biocompatibility via subcutaneous inflammatory tissue response and mineralization ability of the new MTA Flow compared to MTA Angelus and ProRoot MTA. MATERIALS AND METHODS: Forty male Wistar rats were assigned and received subcutaneous polyethylene tube implants containing the test materials and a control group with empty tube (n = 10 animals/group). After days 7, 15, 30, and 60, the animals were euthanized and the polyethylene tubes were removed with the surrounding tissues. Inflammatory infiltrate and thickness of the fibrous capsule were histologically evaluated. Mineralization was analyzed by Von Kossa staining and under polarized light. Data were analyzed via Kruskal-Wallis and Dunn's test with a significance level of 5%. RESULTS: MTA Angelus induced the mildest reaction after 7 (P > .05) and 15 days (P < .05) followed by MTA Flow, both cements achieving mild inflammatory reaction after 15 days. ProRoot MTA induced a severe inflammation on day 7 and was reducing after day 15 (P > .05). No difference was observed after days 30 or 60 (P > .05). Von Kossa staining and birefringent structures were positive to all materials. CONCLUSIONS: At the end of the experiment, the novel MTA Flow showed biocompatibility and induced biomineralization in all time periods. CLINICAL RELEVANCE: The final consistence obtained in MTA Flow may facilitate several procedures, indicating that the MTA Flow has a promising application in endodontics.


Assuntos
Compostos de Alumínio/farmacologia , Materiais Biocompatíveis/farmacologia , Biomineralização , Compostos de Cálcio/farmacologia , Óxidos/farmacologia , Silicatos/farmacologia , Tela Subcutânea/efeitos dos fármacos , Animais , Bismuto , Combinação de Medicamentos , Implantes de Medicamento , Masculino , Ratos , Ratos Wistar , Materiais Restauradores do Canal Radicular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA