Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
PLoS One ; 8(4): e62136, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23637983

RESUMO

There is a growing interest in the Non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) of microbes, fungi and plants because they can produce bioactive peptides such as antibiotics. The ability to identify the substrate specificity of the enzyme's adenylation (A) and acyl-transferase (AT) domains is essential to rationally deduce or engineer new products. We here report on a Hidden Markov Model (HMM)-based ensemble method to predict the substrate specificity at high quality. We collected a new reference set of experimentally validated sequences. An initial classification based on alignment and Neighbor Joining was performed in line with most of the previously published prediction methods. We then created and tested single substrate specific HMMs and found that their use improved the correct identification significantly for A as well as for AT domains. A major advantage of the use of HMMs is that it abolishes the dependency on multiple sequence alignment and residue selection that is hampering the alignment-based clustering methods. Using our models we obtained a high prediction quality for the substrate specificity of the A domains similar to two recently published tools that make use of HMMs or Support Vector Machines (NRPSsp and NRPS predictor2, respectively). Moreover, replacement of the single substrate specific HMMs by ensembles of models caused a clear increase in prediction quality. We argue that the superiority of the ensemble over the single model is caused by the way substrate specificity evolves for the studied systems. It is likely that this also holds true for other protein domains. The ensemble predictor has been implemented in a simple web-based tool that is available at http://www.cmbi.ru.nl/NRPS-PKS-substrate-predictor/.


Assuntos
Aciltransferases/metabolismo , Nucleotidiltransferases/metabolismo , Biossíntese de Peptídeos Independentes de Ácido Nucleico/fisiologia , Policetídeo Sintases/química , Especificidade por Substrato , Máquina de Vetores de Suporte , Monofosfato de Adenosina/metabolismo , Domínio Catalítico , Cadeias de Markov , Policetídeo Sintases/metabolismo , Estrutura Terciária de Proteína , Alinhamento de Sequência
2.
PLoS One ; 7(3): e34064, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22479523

RESUMO

New bioinformatic tools are needed to analyze the growing volume of DNA sequence data. This is especially true in the case of secondary metabolite biosynthesis, where the highly repetitive nature of the associated genes creates major challenges for accurate sequence assembly and analysis. Here we introduce the web tool Natural Product Domain Seeker (NaPDoS), which provides an automated method to assess the secondary metabolite biosynthetic gene diversity and novelty of strains or environments. NaPDoS analyses are based on the phylogenetic relationships of sequence tags derived from polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes, respectively. The sequence tags correspond to PKS-derived ketosynthase domains and NRPS-derived condensation domains and are compared to an internal database of experimentally characterized biosynthetic genes. NaPDoS provides a rapid mechanism to extract and classify ketosynthase and condensation domains from PCR products, genomes, and metagenomic datasets. Close database matches provide a mechanism to infer the generalized structures of secondary metabolites while new phylogenetic lineages provide targets for the discovery of new enzyme architectures or mechanisms of secondary metabolite assembly. Here we outline the main features of NaPDoS and test it on four draft genome sequences and two metagenomic datasets. The results provide a rapid method to assess secondary metabolite biosynthetic gene diversity and richness in organisms or environments and a mechanism to identify genes that may be associated with uncharacterized biochemistry.


Assuntos
Biologia Computacional/métodos , Computadores , Variação Genética , Genoma , Internet , Funções Verossimilhança , Cadeias de Markov , Biossíntese de Peptídeos Independentes de Ácido Nucleico , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Filogenia , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Estrutura Terciária de Proteína , Análise de Sequência de DNA , Microbiologia do Solo , Streptomyces/metabolismo
3.
Anal Chem ; 81(11): 4200-9, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19413302

RESUMO

Natural and non-natural cyclic peptides are a crucial component in drug discovery programs because of their considerable pharmaceutical properties. Cyclosporin, microcystins, and nodularins are all notable pharmacologically important cyclic peptides. Because these biologically active peptides are often biosynthesized nonribosomally, they often contain nonstandard amino acids, thus increasing the complexity of the resulting tandem mass spectrometry data. In addition, because of the cyclic nature, the fragmentation patterns of many of these peptides showed much higher complexity when compared to related counterparts. Therefore, at the present time it is still difficult to annotate cyclic peptides MS/MS spectra. In this current work, an annotation program was developed for the annotation and characterization of tandem mass spectra obtained from cyclic peptides. This program, which we call MS-CPA is available as a web tool (http://lol.ucsd.edu/ms-cpa_v1/Input.py). Using this program, we have successfully annotated the sequence of representative cyclic peptides, such as seglitide, tyrothricin, desmethoxymajusculamide C, dudawalamide A, and cyclomarins, in a rapid manner and also were able to provide the first-pass structure evidence of a newly discovered natural product based on predicted sequence. This compound is not available in sufficient quantities for structural elucidation by other means such as NMR. In addition to the development of this cyclic annotation program, it was observed that some cyclic peptides fragmented in unexpected ways resulting in the scrambling of sequences. In summary, MS-CPA not only provides a platform for rapid confirmation and annotation of tandem mass spectrometry data obtained with cyclic peptides but also enables quantitative analysis of the ion intensities. This program facilitates cyclic peptide analysis, sequencing, and also acts as a useful tool to investigate the uncommon fragmentation phenomena of cyclic peptides and aids the characterization of newly discovered cyclic peptides encountered in drug discovery programs.


Assuntos
Biossíntese de Peptídeos Independentes de Ácido Nucleico , Peptídeos Cíclicos/análise , Software , Espectrometria de Massas em Tandem/métodos , Antibacterianos/análise , Íons/química , Estrutura Molecular , Peptídeos Cíclicos/química , Espectrometria de Massas em Tandem/economia , Fatores de Tempo , Tirocidina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA