Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 365
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 285, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573360

RESUMO

CHO cells are extensively employed in biological drug industry to manufacture therapeutic proteins. Nevertheless, production of biopharmaceuticals faces obstacles such as limited growth and inadequate productivity. Employing host cell engineering techniques for CHO cells serves as a valuable approach to address the constraints encountered in biologics manufacturing. Despite advancements, most techniques focus on specific genes to address individual cellular challenges. The significance of YAP, transcriptional co-activator, cannot be overstated due to its involvement in regulating organ size and tumor formation. YAP's influence extends to various cellular processes and is regulated by kinase cascade in the Hippo pathway, which phosphorylates serine residues in specific LATS recognition motifs. Activation of YAP has been observed to impact both the size and quantity of cells. This research investigates the effects of YAP5SA on proliferation, apoptosis, and productivity in CHO-K1 cells. YAP5SA, with mutations in all five LATS-target sites, is selected for its heightened activity and resistance to repression through the Hippo-LATS1/2 kinase signaling pathway. Plasmid harboring YAP5SA was transfected into EPO-CHO and the influence of YAP5SA overexpression was investigated. According to our findings, transfection of EPO-CHO cells with YAP5SA exhibited a substantial enhancement in CHO cell productivity, resulting in a 3-fold increase in total protein and EPO, as well as a 1.5-fold increase in specific productivity. Additionally, it significantly contributes in augmenting viability, size, and proliferation. Overall, the findings of this study exemplify the potential of utilizing YAP5SA to impact particular cellular mechanisms, thereby presenting an avenue for customizing cells to fulfill production demands. KEY POINTS: • YAP5SA in CHO cells boosts growth, reduces apoptosis, and significantly improves productivity. • YAP5SA regulates genes involved in proliferation, survival, and mTOR activation. • YAP5SA increases productivity by improving cell cycle, c-MYC expression, and mTOR pathway.


Assuntos
Proteínas Oncogênicas , Proteínas de Sinalização YAP , Animais , Cricetinae , Células CHO , Cricetulus , Fatores de Transcrição/genética , Divisão Celular , Serina-Treonina Quinases TOR
2.
Neurotherapeutics ; 21(1): e00296, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38241158

RESUMO

While loss-of-function (LoF) variants in KCNQ2 are associated with a spectrum of neonatal-onset epilepsies, gain-of-function (GoF) variants cause a more complex phenotype that precludes neonatal-onset epilepsy. In the present work, the clinical features of three patients carrying a de novo KCNQ2 Y141N (n â€‹= â€‹1) or G239S variant (n â€‹= â€‹2) respectively, are described. All three patients had a mild global developmental delay, with prominent language deficits, and strong activation of interictal epileptic activity during sleep. Epileptic seizures were not reported. The absence of neonatal seizures suggested a GoF effect and prompted functional testing of the variants. In vitro whole-cell patch-clamp electrophysiological experiments in Chinese Hamster Ovary cells transiently-transfected with the cDNAs encoding Kv7.2 subunits carrying the Y141N or G239S variants in homomeric or heteromeric configurations with Kv7.2 subunits, revealed that currents from channels incorporating mutant subunits displayed increased current densities and hyperpolarizing shifts of about 10 â€‹mV in activation gating; both these functional features are consistent with an in vitro GoF phenotype. The antidepressant drug amitriptyline induced a reversible and concentration-dependent inhibition of current carried by Kv7.2 Y141N and G239S mutant channels. Based on in vitro results, amitriptyline was prescribed in one patient (G239S), prompting a significant improvement in motor, verbal, social, sensory and adaptive behavior skillsduring the two-year-treatment period. Thus, our results suggest that KCNQ2 GoF variants Y141N and G239S cause a mild DD with prominent language deficits in the absence of neonatal seizures and that treatment with the Kv7 channel blocker amitriptyline might represent a potential targeted treatment for patients with KCNQ2 GoF variants.


Assuntos
Amitriptilina , Epilepsia , Recém-Nascido , Cricetinae , Animais , Humanos , Cricetulus , Células CHO , Mutação com Ganho de Função , Fenótipo , Convulsões , Canal de Potássio KCNQ2/genética
3.
Compr Rev Food Sci Food Saf ; 22(4): 3422-3443, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37306528

RESUMO

The cultivated meat industry, also known as cell-based meat, cultured meat, lab-grown meat, or meat alternatives, is a growing field that aims to generate animal tissues ex-vivo in a cost-effective manner that achieves price parity with traditional agricultural products. However, cell culture media costs account for 55%-90% of production costs. To address this issue, efforts are aimed at optimizing media composition. Systems biology-driven approaches have been successfully used to improve the biomass and productivity of multiple bioproduction platforms, like Chinese hamster ovary cells, by accelerating the development of cell line-specific media and reducing research and development and production costs related to cell media and its optimization. In this review, we summarize systems biology modeling approaches, methods for cell culture media and bioprocess optimization, and metabolic studies done in animals of interest to the cultivated meat industry. More importantly, we identify current gaps in knowledge that prevent the identification of metabolic bottlenecks. These include the lack of genome-scale metabolic models for some species (pigs and ducks), a lack of accurate biomass composition studies for different growth conditions, and 13 C-metabolic flux analysis (MFA) studies for many of the species of interest for the cultivated meat industry (only shrimp and duck cells have been subjected to 13 C-MFA). We also highlight the importance of characterizing the metabolic requirements of cells at the organism, breed, and cell line-specific levels, and we outline future steps that this nascent field needs to take to achieve price parity and production efficiency similar to those of other bioproduction platforms. Practical Application: Our article summarizes systems biology techniques for cell culture media design and bioprocess optimization, which may be used to significantly reduce cell-based meat production costs. We also present the results of experimental studies done on some of the species of interest to the cultivated meat industry and highlight why modeling approaches are required for multiple species, cell-types, and cell lines.


Assuntos
Carne , Biologia de Sistemas , Cricetinae , Animais , Suínos , Células CHO , Biologia de Sistemas/métodos , Cricetulus , Técnicas de Cultura de Células/métodos
4.
Biotechnol Prog ; 39(2): e3323, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36598038

RESUMO

A single-stage clarification was developed using a single-use chromatographic clarification device (CCD) to recover a recombinant protein from Chinese Hamster Ovary (CHO) harvest cell culture fluid (HCCF). Clarification of a CHO HCCF is a complex and costly process, involving multiple stages of centrifugation and/or depth filtration to remove cells and debris and to reduce process-related impurities such as host cell protein (HCP), nucleic acids, and lipids. When using depth filtration, the filter train consists of multiple filters of varying ratios, layers, pore sizes, and adsorptive properties. The depth filters, in combination with a 0.2-micron membrane filter, clarify the HCCF based on size-exclusion, adsorptive, and charge-based mechanisms, and provide robust bioburden control. Each stage of the clarification process requires time, labor, and utilities, with product loss at each step. Here, use of the 3M™ Harvest RC Chromatographic Clarifier, a single-stage CCD, is identified as an alternative strategy to a three-stage filtration train. The CCD results in less overall filter area, less volume for flushing, and higher yield. Using bioprocess cost modeling, the single-stage clarification process was compared to a three-stage filtration process. By compressing the CHO HCCF clarification to a single chromatographic stage, the overall cost of the clarification process was reduced by 17%-30%, depending on bioreactor scale. The main drivers for the cost reduction were reduced total filtration area, labor, time, and utilities. The benefits of the single-stage harvest process extended throughout the downstream process, resulting in a 25% relative increase in cumulative yield with comparable impurity clearance.


Assuntos
Reatores Biológicos , Cromatografia , Cricetinae , Animais , Cricetulus , Células CHO , Filtração/métodos , Proteínas Recombinantes/genética
5.
Eur J Pharmacol ; 941: 175442, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36470447

RESUMO

Ozanimod is approved in multiple countries for the treatment of adults with either relapsing multiple sclerosis or moderately to severely active ulcerative colitis. Ozanimod is metabolized in humans to form seven active plasma metabolites, including two major active metabolites CC112273 and CC1084037, and an inactive metabolite. Here, the binding and activity of ozanimod and its metabolites across human sphingosine 1-phosphate receptors were determined. Binding affinity was assessed in Chinese hamster ovary cell membranes expressing recombinant human sphingosine 1-phosphate receptors 1 and 5 via competitive radioligand binding using tritium-labeled ozanimod; selectivity via functional potency assessment was performed using [35S]-guanosine-5'-(γ-thio)-triphosphate binding assays. Receptor internalization was assessed in human embryonic kidney 293 cells overexpressing sphingosine 1-phosphate receptor 1-green fluorescent protein and Chinese hamster ovary cells overexpressing sphingosine 1-phosphate receptor 5-hemagglutinin via fluorescence activated cell sorting. Functional activity was assessed in primary cultures of human astrocytes via phosphorylation assays. Ozanimod and its functionally active metabolites bound to the same sites within sphingosine 1-phosphate receptors 1 and 5, with metabolites displaying the same selectivity profile as ozanimod. Agonism at sphingosine 1-phosphate receptor 1 induced receptor internalization, whereas sphingosine 1-phosphate receptor 5 did not. Ozanimod, CC112273, and CC1084037 elicited functional intracellular signaling in human astrocytes, pharmacologically characterized to be mediated by sphingosine 1-phosphate receptor 1. The active plasma metabolites of ozanimod bound to sphingosine 1-phosphate receptors 1 and 5 and displayed similar pharmacologic profiles as their parent compound, likely contributing to clinical efficacy in patients with relapsing multiple sclerosis or moderately to severely active ulcerative colitis.


Assuntos
Colite Ulcerativa , Esclerose Múltipla , Adulto , Animais , Cricetinae , Humanos , Receptores de Esfingosina-1-Fosfato/metabolismo , Colite Ulcerativa/tratamento farmacológico , Células CHO , Cricetulus , Indanos/farmacologia , Indanos/uso terapêutico , Oxidiazóis/farmacologia , Esfingosina , Esclerose Múltipla/tratamento farmacológico
6.
Mol Biotechnol ; 65(4): 570-580, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36087216

RESUMO

The production of vaccines in plant cells, termed plant-made pharmaceuticals or molecular farming, is a promising technology for scalable production. Compared to mammalian cell lines, like Chinese Hamster Ovary (CHO) or bacterial cells, plants can be grown with less cost on a large scale to make vaccines antigens and therapeutics affordable and accessible worldwide. An innovative application of this alternative system is the production of vaccines in edible tissues that can be consumed orally to deliver protein antigen without any further processing. In this project, we report stable expression of amino acid sequences corresponding to the TM-1 gene of Mycoplasma gallisepticum as a candidate vaccine antigen against Chronic Respiratory Disease (CRD) in chickens using wheat seed's tissues as a production host. Molecular and immunoblotting analysis confirmed the ubiquitous expression of a recombinant 41.8-kDa protein with an expression level of 1.03 mg/g dry weight in the endosperm tissues. When orally delivered, the plant-made vaccine was effective in terms of developing antibody response in animal model i.e., chicken without any detectable weight loss. Two doses of orally delivered plant-made TM-1 vaccine candidate elicited the immune response and protective effect against MG virus challenge at the level comparable to commercially available inactivated vaccine against CRD. Our study demonstrates that plant-made vaccines are not only safe but also scalable and cost-effective with prolonged stability at room temperature.


Assuntos
Galinhas , Vacinas , Animais , Cricetinae , Células CHO , Análise Custo-Benefício , Cricetulus , Plantas , Sementes , Proteínas Recombinantes/genética
7.
NanoImpact ; 28: 100442, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36436823

RESUMO

Establishing toxicological predictive modeling frameworks for heterogeneous nanomaterials is crucial for rapid environmental and health risk assessment. However, existing structure-toxicity correlation models for such nanomaterials are only based on simple linear regression algorithms that are prone to underfitting the training data. These models rely heavily on experimental and expensive computational quantum mechanical descriptors, which significantly limit their practical use. Herein, we present the application of empirical descriptors and complex machine learning algorithms to the development of high-performance quantitative structure-toxicity relationship (QSTR) models of TiO2 hybridized with multi-metallic (Ag, Au, Pt) alloy nanoparticles (multi-metallic NPs/TiO2). To confirm the viability of empirical descriptors as model input, we selected five distinct machine learning algorithms for predicting the toxicity of multi-metallic alloy NPs/TiO2 system in Chinese hamster ovary cell line. Notably, an empirical descriptor-based QSTR model (kernel ridge regression) revealed a predictive performance that is on par with density functional theory (DFT) descriptor-based counterparts. More specifically, the results indicated that model selection is influenced by descriptor choice, such that complex DFT descriptors worked best with a complex algorithm (random forest regression; RMSET = 0.0954, MAET = 0.0811, RT2 = 0.9411), whereas more straightforward empirical descriptors were most suitable with a simpler algorithm (kernel ridge regression; RMSET = 0.1244, MAET = 0.1106, RT2 = 0.8999). Moreover, our model outperforms existing QSAR models built on the same data set. This study offers a new perspective on using empirical features to develop accurate predictive computational models for the rapid discovery and profiling of safe-by-design nanomaterials.


Assuntos
Ligas , Aprendizado de Máquina , Cricetinae , Animais , Ligas/toxicidade , Células CHO , Cricetulus
8.
Biotechnol Bioeng ; 119(12): 3567-3583, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36109341

RESUMO

Continuous biomanufacturing is a promising alternative to current batch operation as it offers benefits in terms of improved productivity, product quality, and reduced footprint. This study aims to build a fully integrated continuous platform for monoclonal antibody (mAb) production incorporating novel technologies (like intensified seed expansion and continuous high cell density perfusion operations, single-pass tangential flow filtration, and single-use technologies) as well as media and buffer preparation steps. Economic assessment is performed on the basis of the total cost of goods (COGs), which is $102.2/g in the base-case scenario with a bioreactor scale of 500 L. E-factor is used as an environmental indicator and the result shows that 4865.6kg of process water and 11.1 kg of consumables are required to produce 1 kg mAbs. After the development and analysis of the benchmark process, scenario analysis is performed to assess the impacts of the bioreactor scale (60-2000 L) and upstream titers (1.12-2.08 g/L) on the process economics as well as on the environmental footprint. With the increase of bioreactor scale and mAb titer, the operating COGs per unit product decrease. Moreover, increasing the mAb titer is more favorable in terms of the ecological impacts. To investigate the production capacity, the upstream production is increased and the downstream bottlenecks are determined. It is found that only the multicolumn chromatographic (MCC) operations become the process bottleneck and the order of the MCC unit operation that becomes the process bottleneck depends on capacity utilization for that step. Finally, a new platform is built with the integration of membrane chromatography and the two designed processes are compared in terms of economic and ecological impacts.


Assuntos
Produtos Biológicos , Cricetinae , Animais , Células CHO , Cricetulus , Reatores Biológicos , Anticorpos Monoclonais/química
9.
Vaccine ; 40(32): 4513-4521, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35717266

RESUMO

Testing for inactivation of pertussis toxin and reversion to toxicity in aP vaccines has historically relied on the murine histamine sensitization test, that lacks mechanistic understanding, suffers from standardization problems and is associated with severe animal suffering. Though the regulatory requirements for in vivo testing of acellular pertussis (aP) vaccine products have been waived in Europe, it is still common practice globally. Easy and quantitative in vitro methods are therefore urgently needed. One of the alternatives under development is our reporter cell line - CHO-CRE cells - that carries a cAMP-reporter construct. After exposure to pertussis toxin, cells are stimulated with a low concentration of forskolin to allow detection of pertussis toxin dependent changes in intracellular cAMP levels. Here, the results of two prevalidation studies with purified pertussis toxin and pertussis toxin spiked aP vaccines are described that were performed according to the principles of the ICH Q2(R1) guidelines for a content assay. We confirmed the assay's specificity, accuracy, precision, linearity and range. The cAMP-PTx reporter assay allows for objective, reliable and quantitative assessment of pertussis toxin levels in aP vaccines and can thereby boost broad and global replacement of the histamine sensitization test.


Assuntos
Coqueluche , Animais , Células CHO , Cricetinae , Cricetulus , Histamina , Camundongos , Toxina Pertussis , Vacina contra Coqueluche , Vacinas Acelulares , Coqueluche/prevenção & controle
10.
Biotechnol Bioeng ; 119(8): 2221-2238, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35508759

RESUMO

The biomanufacturing industry is advancing toward continuous processes that will involve longer culture durations and older cell ages. These upstream trends may bring unforeseen challenges for downstream purification due to fluctuations in host cell protein (HCP) levels. To understand the extent of HCP expression instability exhibited by Chinese hamster ovary (CHO) cells over these time scales, an industry-wide consortium collaborated to develop a study to characterize age-dependent changes in HCP levels across 30, 60, and 90 cell doublings, representing a period of approximately 60 days. A monoclonal antibody (mAb)-producing cell line with bulk productivity up to 3 g/L in a bioreactor was aged in parallel with its parental CHO-K1 host. Subsequently, both cell types at each age were cultivated in an automated bioreactor system to generate harvested cell culture fluid (HCCF) for HCP analysis. More than 1500 HCPs were quantified using complementary proteomic techniques, two-dimensional electrophoresis (2DE) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). While up to 13% of proteins showed variable expression with age, more changes were observed when comparing between the two cell lines with up to 47% of HCPs differentially expressed. A small subset (50 HCPs) with age-dependent expression were previously reported to be problematic as high-risk and/or difficult-to-remove impurities; however, the vast majority of these were downregulated with age. Our findings suggest that HCP expression changes over this time scale may not be as dramatic and pose as great of a challenge to downstream processing as originally expected but that monitoring of variably expressed problematic HCPs remains critical.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Animais , Anticorpos Monoclonais/química , Reatores Biológicos , Células CHO , Cromatografia Líquida/métodos , Cricetinae , Cricetulus , Proteômica/métodos
11.
Biotechnol Bioeng ; 119(8): 2088-2104, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35437754

RESUMO

Host cell proteins (HCPs) are a significant class of process-related impurities commonly associated with the manufacturing of biopharmaceuticals. However, due to the increased use of crude enzymes as biocatalysts for modern organic synthesis, HCPs can also be introduced as a new class of impurities in chemical drugs. In both cases, residual HCPs need to be adequately controlled to ensure product purity, quality, and patient safety. Although a lot of attentions have been focused on defining a universally acceptable limit for such impurities, the risks associated with residual HCPs on product quality, safety, and efficacy often need to be determined on a case-by-case basis taking into consideration the residual HCP profile in the product, the dose, dosage form, administration route, and so forth. Here we describe the unique challenges for residual HCP control presented by the biocatalytic synthesis of an investigational stimulator of interferon genes protein agonist, MK-1454, which is a cyclic dinucleotide synthesized using Escherichia coli cell lysate overexpressing cyclic GMP-AMP synthase as a biocatalyst. In this study, a holistic characterization of residual protein impurities using a variety of analytical tools including nanoscale liquid chromatography coupled to tandem mass spectrometry, together with in silico immunogenicity prediction of identified proteins, facilitated risk assessment and guided process development to achieve adequate removal of residual protein impurities in MK-1454 active pharmaceutical ingredient.


Assuntos
Proteínas , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Preparações Farmacêuticas , Proteínas/análise , Medição de Risco
12.
Sci Rep ; 12(1): 6050, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410414

RESUMO

Ongoing research efforts to identify potent regulatory sequences that deliver robust and sustained transgene expression are critical for Chinese hamster ovary (CHO) cell line development technologies to meet the growing demand for recombinant proteins. Here we report the engineering and validation of a highly customizable single vector toolkit that comprises an all-in-one dual luciferase reporter system for quantitative and systematic interrogation of transcriptional regulatory sequences in transient and stable transfectants of CHO cells. To model the execution of the reporter system, we implemented a battery of known constitutive promoters including human CMV-mIE, SV40, HSV-TK, mouse PGK, human EF1α, EF1α short (EFS), human UBC, synthetic CAG, and Chinese hamster EF1α (CHEF1α). Of the nine promoters, CMV-mIE yielded the highest transcriptional activity in transient transfection settings, while CHEF1α was the strongest among a select subset of promoters in stable transfectants of CHO-DG44 pools. Remodeling the vector toolkit to build a dual fluorescent reporter system featured an alternative to bioluminescence based reporters. We infer that the findings of this study may serve as a basis to establish new vectors with weak or strong constitutive promoters. Furthermore, the modular all-in-one architecture of the reporter system proved to be a viable tool for discovering novel regulatory sequences that ensure high levels of transient and stable transgene expression in CHO and perhaps other mammalian cell lines.


Assuntos
Infecções por Citomegalovirus , Animais , Células CHO , Cricetinae , Cricetulus , Vetores Genéticos/genética , Luciferases/genética , Camundongos , Proteínas Recombinantes/metabolismo , Transfecção , Transgenes
13.
J Immunother Cancer ; 10(12)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36600560

RESUMO

PURPOSE: CD103, an integrin specifically expressed on the surface of cancer-reactive T cells, is significantly increased during successful immunotherapy across human malignancies. In this study, we describe the generation and zirconium-89 (89Zr) radiolabeling of monoclonal antibody (mAb) clones that specifically recognize human CD103 for non-invasive immune positron-emission tomography (PET) imaging of T cell infiltration as potential biomarker for effective anticancer immune responses. EXPERIMENTAL DESIGN: First, to determine the feasibility of anti-CD103 immuno-PET to visualize CD103-positive cells at physiologically and clinically relevant target densities, we developed an 89Zr-anti-murine CD103 PET tracer. Healthy, non-tumor bearing C57BL/6 mice underwent serial PET imaging after intravenous injection, followed by ex vivo biodistribution. Tracer specificity and macroscopic tissue distribution were studied using autoradiography combined with CD103 immunohistochemistry. Next, we generated and screened six unique mAbs that specifically target human CD103 positive cells. Optimal candidates were selected for 89Zr-anti-human CD103 PET development. Nude mice (BALB/cOlaHsd-Foxn1nu) with established CD103 expressing Chinese hamster ovary (CHO) or CHO wild-type xenografts were injected with 89Zr-anti-human CD103 mAbs and underwent serial PET imaging, followed by ex vivo biodistribution. RESULTS: 89Zr-anti-murine CD103 PET imaging identified CD103-positive tissues at clinically relevant target densities. For human anti-human CD103 PET development two clones were selected based on strong binding to the CD103+ CD8+ T cell subpopulation in ovarian cancer tumor digests, non-overlapping binding epitopes and differential CD103 blocking properties. In vivo, both 89Zr-anti-human CD103 tracers showed high target-to-background ratios, high target site selectivity and a high sensitivity in human CD103 positive xenografts. CONCLUSION: CD103 immuno-PET tracers visualize CD103 T cells at relevant densities and are suitable for future non-invasive assessment of cancer reactive T cell infiltration.


Assuntos
Neoplasias , Tomografia por Emissão de Pósitrons , Humanos , Camundongos , Animais , Cricetinae , Distribuição Tecidual , Camundongos Nus , Células CHO , Camundongos Endogâmicos C57BL , Cricetulus , Tomografia por Emissão de Pósitrons/métodos , Anticorpos Monoclonais/metabolismo
14.
Biotechnol Prog ; 38(1): e3215, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34586757

RESUMO

In recent years, assurance of clonality of the production cell line has been emphasized by health authorities during review of regulatory submissions. When insufficient assurance of clonality is provided, augmented control strategies may be required for a commercial production process. In this study, we conducted a retrospective assessment of clonality of a legacy cell line through analysis of subclones from the master cell bank (MCB). Twenty-four subclones were randomly selected based on a predetermined acceptance sampling plan. All these subclones share a conserved integration junction, thus providing a high level of assurance that the cell population in the MCB was derived from a single progenitor cell. However, Southern blot analysis indicates that at least four subpopulations possibly exist in the MCB. Additional characterization of these four subpopulations demonstrated that the resulting changes in product quality attributes of some subclones are not related to the genetic heterogeneity observed in Southern blot hybridization. Furthermore, process consistency, process comparability, and analytical comparability have been demonstrated in batches produced across varying manufacturing processes, scales, facilities, cell banks, and cell ages. Finally, process and product consistency together with a high level of assurance of clonal origin of the MCB helped clear the hurdle for regulatory approval without requirement of additional control strategies.


Assuntos
Heterogeneidade Genética , Animais , Células CHO , Cricetinae , Cricetulus , Estudos Retrospectivos
15.
Biotechnol Bioeng ; 119(2): 423-434, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34778948

RESUMO

The application of process analytical technology (PAT) for biotherapeutic development and manufacturing has been employed owing to technological, economic, and regulatory advantages across the industry. Typically, chromatographic, spectroscopic, and/or mass spectrometric sensors are integrated into upstream and downstream unit operations in in-line, on-line, or at-line fashion to enable real-time monitoring and control of the process. Despite the widespread utility of PAT technologies at various unit operations of the bioprocess, a holistic business value assessment of PAT has not been well addressed in biologics. Thus, in this study, we evaluated PAT technologies based on predefined criteria for their technological attributes such as enablement of better process understanding, control, and high-throughput capabilities; as well as for business attributes such as simplicity of implementation, lead time, and cost reduction. The study involved an industry-wide survey, where input from subject matter industry experts on various PAT tools were collected, assessed, and ranked. The survey results demonstrated on-line liquid Chromatography (LC), in-line Raman, and gas analysis techniques are of high business value especially at the production bioreactor unit operation of upstream processing. In-line variable path-length UV/VIS measurements (VPE), on-line LC, multiangle light scattering (MALS), and automated sampling are of high business value in Protein A purification and polishing steps of the downstream process. We also provide insights, based on our experience in clinical and commercial manufacturing of biologics, into the development and implementation of some of the PAT tools. The results presented in this study are intended to be helpful for the current practitioners of PAT as well as those new to the field to gauge, prioritize and steer their projects for success.


Assuntos
Produtos Biológicos , Biotecnologia , Cromatografia/métodos , Análise Espectral/métodos , Animais , Produtos Biológicos/análise , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Reatores Biológicos , Biotecnologia/métodos , Biotecnologia/normas , Células CHO , Cricetinae , Cricetulus , Tecnologia Farmacêutica
16.
MAbs ; 14(1): 2005507, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34923915

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a serious public health crisis worldwide, and considering the novelty of the disease, preventative and therapeutic measures alike are urgently needed. To accelerate such efforts, the development of JS016, a neutralizing monoclonal antibody directed against the SARS-CoV-2 spike protein, was expedited from a typical 12- to 18-month period to a 4-month period. During this process, transient Chinese hamster ovary cell lines are used to support preclinical, investigational new drug-enabling toxicology research, and early Chemistry, Manufacturing and Controls development; mini-pool materials to supply Phase 1 clinical trials; and a single-clone working cell bank for late-stage and pivotal clinical trials were successively adopted. Moreover, key process performance and product quality investigations using a series of orthogonal and state-of-the-art techniques were conducted to demonstrate the comparability of products manufactured using these three processes, and the results indicated that, despite observed variations in process performance, the primary and high-order structures, purity and impurity profiles, biological and immunological functions, and degradation behaviors under stress conditions were largely comparable. The study suggests that, in particular situations, this strategy can be adopted to accelerate the development of therapeutic biopharmaceuticals and their access to patients.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/uso terapêutico , Afinidade de Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Células CHO , COVID-19/prevenção & controle , COVID-19/virologia , Cromatografia Líquida de Alta Pressão/métodos , Dicroísmo Circular , Células Clonais , Cricetinae , Cricetulus , Humanos , Imunoglobulina G/química , Imunoglobulina G/imunologia , Imunoglobulina G/uso terapêutico , Ponto Isoelétrico , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo
18.
Food Chem Toxicol ; 158 Suppl 1: 112624, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34678356

RESUMO

In addition, the total systemic exposure to (2-endo,3-exo)-ethyl 3-(1-methylethyl)bicyclo[2.2.1]hept-5-ene-2-carboxylate (3.3 µg/kg/day) is below the TTC (9 µg/kg/day; Kroes, 2007) for the repeated dose toxicity endpoint of a Cramer Class II material at the current level of use.


Assuntos
Ácidos Carboxílicos/toxicidade , Perfumes/toxicidade , Testes de Toxicidade , Animais , Células CHO , Cricetulus , Feminino , Masculino , Ratos Sprague-Dawley , Medição de Risco
19.
J Neuroimmunol ; 360: 577706, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34507014

RESUMO

BACKGROUND: Diagnosis of neuromyelitis optica spectrum disorders (NMOSD) in India is hindered by limited access to cost effective and sensitive assays for detection of aquaporin-4 antibody (AQP4-IgG) in India. OBJECTIVE: To develop a cost effective, sensitive, cell based assay (CBA) for detection of AQP4-IgG and to evaluate the serological status in patients with NMOSD diagnosed by 2015 diagnostic criteria. METHOD: Stably transfected Chinese hamster ovary (CHO) cell line expressing aquaporin M23 isomer was established. A fixed CBA was developed and validated in 381 samples including clinically definite NMOSD (n = 87), high risk NMOSD (n = 51), other demyelinating disorders (n = 92), other neurological disorders (n = 51) and healthy volunteers (n = 100). We tested the same samples again using a commercially available CBA and compared the results. All assays were performed by 2 independent investigators blinded to clinical and serological status. RESULTS: Our "in house"(Mangalore) assay showed sensitivity of 81.6% (95% CI 71.86-89.11%) for clinically definite NMOSD and 29.41% (95% CI 17.50-43.8%) for high risk NMOSD. Specificity was 100% for both groups. Both assays showed similar results for 67/ 87 (77.01%) patients with definite NMOSD while 4 samples tested positive by our assay alone (Cohen's kappa coefficient [K] - 0.86). Among the high risk group 14/51 (27.5%) samples showed similar results, one patient additionally was positive by the Mangalore assay (K - 0.95).


Assuntos
Aquaporina 4/imunologia , Autoanticorpos/sangue , Autoantígenos/imunologia , Técnica Indireta de Fluorescência para Anticorpo/métodos , Imunoglobulina G/sangue , Neuromielite Óptica/diagnóstico , Adulto , Animais , Células CHO , Análise Custo-Benefício , Cricetulus , Doenças Desmielinizantes/diagnóstico , Países em Desenvolvimento , Diagnóstico Diferencial , Feminino , Técnica Indireta de Fluorescência para Anticorpo/economia , Recursos em Saúde/economia , Humanos , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Doenças do Sistema Nervoso/diagnóstico , Neuromielite Óptica/epidemiologia , Neuromielite Óptica/imunologia , Proteínas Recombinantes/imunologia , Sensibilidade e Especificidade , Adulto Jovem
20.
J Immunol Methods ; 498: 113134, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34464606

RESUMO

Immune checkpoint Inhibitors (ICIs) are effective immunno-therapeutic agents for cancer. Rapid and sensitive determination of the blocking activity of ICIs is important for ICIs development and immunological research. Among various immune checkpoint (IC) binding assays, cell-based binding assays are widely regarded, and the functional ELISA is a convenient alternative. However, these methodologies are limited by time-consuming preparation of cell lines stably expressing IC molecules, or long turnaround time with high cost. In this study, two magnetic bead based binding assays were developed to evaluate activity of ICIs, which was determined by a soluble ligand/bead immobilized receptor based binding assay (sL/bR binding assay) that assessed efficacy to block binding of one soluble IC ligand on its cognate receptor immobilized beads, or by a soluble receptor/bead immobilized ligand based binding assay (sR/bL binding assay) that assessed efficacy to block binding of soluble IC receptor on its cognate ligand immobilized beads. Half maximal inhibitory concentration (IC50) values of ICIs were calculated to determine ICIs activity. The sL/bR binding assay accurately determined the activity of two TIGIT blocking antibodies, since the relative blocking activity of two TIGIT antibodies determined by the sL/bR binding assay established in this study and that by the cell based binding assay were almost identical. In contrast, the sR/bL binding assay showed significantly improved sensitivity to determine activity of two PD-1 blocking antibodies than the sL/bR binding assay that was tested in this study and previous reports. Moreover, both amount of the used recombinant protein of ICI receptor/ligand and turnaround time of the two binding assays were more than 10 times less than those of the functional ELISA. These data indicate that the two magnetic bead based binding assays are sensitive, rapid and cost-effective methods to determine blocking activity of ICIs.


Assuntos
Inibidores de Checkpoint Imunológico/farmacologia , Imunoensaio/economia , Nivolumabe/farmacologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptores Imunológicos/antagonistas & inibidores , Animais , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Células CHO , Linhagem Celular Tumoral , Redução de Custos , Análise Custo-Benefício , Cricetulus , Ensaio de Imunoadsorção Enzimática/economia , Citometria de Fluxo/economia , Células HEK293 , Humanos , Camundongos , Valor Preditivo dos Testes , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Reprodutibilidade dos Testes , Fatores de Tempo , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA