Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biomol Biomed ; 24(4): 923-938, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431834

RESUMO

Over the past several decades, dental health products containing fluoride have been widely employed to mitigate tooth decay and promote oral hygiene. However, concerns regarding the potential toxicological repercussions of fluoride exposure have incited continuous scientific inquiry. The current study investigated the cytotoxicity of sodium fluoride (NaF) and xylitol (Xyl), both individually and in combination, utilizing human keratinocyte (HaCaT) and osteosarcoma (SAOS-2) cell lines. In HaCaT cells, NaF decreased proliferation in a concentration-dependent manner and induced apoptosis-related morphological changes at low concentrations, whereas Xyl exhibited dose-dependent cytotoxic effects. The combination of NaF and Xyl reduced cell viability, particularly at higher concentrations, accompanied by apoptosis-like morphological alterations. Sub-cytotoxic NaF concentrations (0.2%) significantly affected caspase activity and the expression of pro-apoptotic genes. Conversely, Xyl demonstrated no discernible effect on these biological parameters. In SAOS-2 cells, NaF increased proliferation at high concentrations, contrasting with Xyl's concentration-dependent cytotoxic effects. The combination of NaF and Xyl had a minimal impact on cell viability. Sub-cytotoxic NaF concentrations did not influence caspase activity or gene expression, while Xyl induced dose-dependent morphological alterations, increased caspase activity, and upregulated pro-apoptotic gene expression. In ovo experiments on the chorioallantoic membrane (CAM) revealed that only NaF induced irritant effects, suggesting potential vascular adverse outcomes. This study advocates for the combined use of NaF and Xyl, highlighting their cytotoxicity benefits in healthy cells while maintaining safety considerations for tumor cells.


Assuntos
Apoptose , Proliferação de Células , Sobrevivência Celular , Fluoreto de Sódio , Xilitol , Fluoreto de Sódio/toxicidade , Humanos , Xilitol/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sinergismo Farmacológico , Animais , Embrião de Galinha , Queratinócitos/efeitos dos fármacos , Células HaCaT
3.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445992

RESUMO

The survival fraction of epithelial HaCaT cells was analysed to assess the biological damage caused by intraoperative radiotherapy electron beams with varying energy spectra and intensities. These conditions were achieved by irradiating the cells at different depths in water using nominal 6 MeV electron beams while consistently delivering a dose of 5 Gy to the cell layer. Furthermore, a Monte Carlo simulation of the entire irradiation procedure was performed to evaluate the molecular damage in terms of molecular dissociations induced by the radiation. A significant agreement was found between the molecular damage predicted by the simulation and the damage derived from the analysis of the survival fraction. In both cases, a linear relationship was evident, indicating a clear tendency for increased damage as the averaged incident electron energy and intensity decreased for a constant absorbed dose, lowering the dose rate. This trend suggests that the radiation may have a more pronounced impact on surrounding healthy tissues than initially anticipated. However, it is crucial to conduct additional experiments with different target geometries to confirm this tendency and quantify the extent of this effect.


Assuntos
Células Epiteliais , Radioterapia de Alta Energia , Células HaCaT , Sobrevivência Celular , Elétrons , Humanos , Método de Monte Carlo , Radioterapia de Alta Energia/efeitos adversos , Células Epiteliais/efeitos da radiação , Relação Dose-Resposta à Radiação
4.
J Toxicol Environ Health A ; 85(6): 230-242, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-34781835

RESUMO

The objective of this study was to determine the chemical composition as well as antioxidant, antibacterial, and cytotoxic properties of the essential oil of Mentha piperita L. (peppermint). Fifteen chemical constituents were identified in the essential oil, for a total of 99.99% of the compounds. The essential oil exhibited antimicrobial activity against two Gram-positive bacteria Staphylococcus aureus and Listeria monocytogenes. The minimum inhibitory concentration (MIC) of essential oil of Mentha piperita L. for Staphylococcus aureus and Listeria monocytogenes was 1.84 µg/ml, whereas the minimum bactericidal concentration (MBC) values were 3.7 and 7.43 µg/ml, respectively. The oil displayed potent antioxidant activity inhibiting up to approximately73% of 2,2'-azinothiobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals. In the cytotoxicity assay, the highest essential oil concentration (100 µg/ml) resulted in viability of approximately 90% human epidermal keratinocyte (HaCaT) cells. With respect to antitumor activity in C6 rat glioma cells, there was significant reduction in cell viability: 56-74% in 24 hr, and 71-77% in 48 hr. Data suggest that in presence of the essential oil of Mentha piperita L. antioxidant, antibacterial, antitumor and non-cytotoxic properties were noted.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Óleos de Plantas/farmacologia , Células HaCaT , Humanos , Listeria monocytogenes/efeitos dos fármacos , Mentha piperita/química , Mentha piperita/toxicidade , Testes de Sensibilidade Microbiana , Óleos Voláteis/farmacologia , Óleos Voláteis/toxicidade , Extratos Vegetais/farmacologia , Óleos de Plantas/química , Óleos de Plantas/toxicidade , Medição de Risco , Staphylococcus aureus/efeitos dos fármacos
5.
J Ind Microbiol Biotechnol ; 48(5-6)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33904924

RESUMO

Probiotics are beneficial microorganisms, and the evaluation of their safety for human use in the food industry has become critical. This study examines the safety of Bacillus coagulans IDCC 1201 isolated from green malt by analyzing its genomic and phenotypic characteristics and determining its toxicity. The presence of antibiotic resistance and toxigenic genes and gene transferability were investigated using whole-genome analysis. The strain's hemolytic and enzyme activities, minimum inhibitory concentrations of antibiotics, and biogenic amine and D-lactate production were also examined. Furthermore, the principal properties of B. coagulans IDCC 1201 as probiotics, such as resistance to abiotic stress and intestinal adhesion, were studied. The whole-genome analysis demonstrated that B. coagulans IDCC 1201 had no antibiotic resistance or toxigenic genes; the strain was susceptible to the nine antibiotics proposed by the European Food Safety Authority. Moreover, this strain lacked hemolytic and ß-glucuronidase activities. Additionally, it was confirmed that B. coagulans IDCC 1201 produced undesirable metabolites, including biogenic amines or D-lactate, at a safe level. Finally, the strain exhibited functional potential as a probiotic in terms of abiotic tolerance, such as bile tolerance and intestinal adhesion in in vitro experiments. In conclusion, B. coagulans IDCC 1201 can be considered as a safe probiotic with regard to human health.


Assuntos
Bacillus coagulans/efeitos dos fármacos , Bacillus coagulans/genética , Probióticos , Células A549 , Animais , Antibacterianos/farmacologia , Aminas Biogênicas/metabolismo , Linhagem Celular , Resistência Microbiana a Medicamentos , Feminino , Estudo de Associação Genômica Ampla , Instabilidade Genômica , Genômica , Células HaCaT , Células Endoteliais da Veia Umbilical Humana , Humanos , Ácido Láctico/metabolismo , Metaboloma , Testes de Sensibilidade Microbiana , Modelos Animais , Filogenia , Probióticos/toxicidade , Ratos , Fatores de Virulência/genética , Sequenciamento Completo do Genoma
6.
J Nanosci Nanotechnol ; 21(7): 3667-3672, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33715671

RESUMO

Vitamin C (VC) is well-known as a hydrophilic antioxidant commonly used in cosmeceutical formulations due to its protection and maintenance of youthful skin. Aminoclay (AC), a synthetic organic-nanoclay, has shown great potential for delivery of VC. However, the practical cosmeceutical applications of aminoclay for delivery of VC are severely limited due to the paucity of reported research on its cytotoxicity to human skin. Therefore, in the present study, we evaluated the biosafety of a calcium aminoclay-vitamin C (CaAC-VC) hybrid through an In-Vitro cytotoxicity assessment in HaCaT cells and an In-Vivo embryotoxicity assay in zebrafish. HaCaT cell viability and changes in the morphology and hatching rate of the zebrafish were investigated. The results indicated that the CaAC-VC hybrid showed a lower cytotoxicity relative to pure VC and that as such, it should be considered to be a promising candidate for VC-delivery applications.


Assuntos
Ácido Ascórbico , Peixe-Zebra , Animais , Ácido Ascórbico/farmacologia , Cálcio , Sobrevivência Celular , Células HaCaT , Humanos
7.
Molecules ; 26(4)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33672029

RESUMO

Exposure to reactive oxygen species can easily result in serious diseases, such as hyperproliferative skin disorders or skin cancer. Herbal extracts are widely used as antioxidant sources in different compositions. The importance of antioxidant therapy in inflammatory conditions has increased. Innovative formulations can be used to improve the effects of these phytopharmacons. The bioactive compounds of Plantago lanceolata (PL) possess different effects, such as anti-inflammatory, antioxidant, and bactericidal pharmacological effects. The objective of this study was to formulate novel liquid crystal (LC) compositions to protect Plantago lanceolata extract from hydrolysis and to improve its effect. Since safety is an important aspect of pharmaceutical formulations, the biological properties of applied excipients and blends were evaluated using assorted in vitro methods on HaCaT cells. According to the antecedent toxicity screening evaluation, three surfactants were selected (Gelucire 44/14, Labrasol, and Lauroglycol 90) for the formulation. The dissolution rate of PL from the PL-LC systems was evaluated using a Franz diffusion chamber apparatus. The antioxidant properties of the PL-LC systems were evaluated with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and malondialdehyde (MDA) assessments. Our results suggest that these compositions use a nontraditional, rapid-permeation pathway for the delivery of drugs, as the applied penetration enhancers reversibly alter the barrier properties of the outer stratum corneum. These excipients can be safe and highly tolerable thus, they could improve the patient's experience and promote adherence.


Assuntos
Composição de Medicamentos , Cristais Líquidos/química , Extratos Vegetais/farmacologia , Plantago/química , Pele/efeitos dos fármacos , Compostos de Bifenilo/química , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Impedância Elétrica , Sequestradores de Radicais Livres/farmacologia , Células HaCaT , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos da radiação , Malondialdeído/metabolismo , Permeabilidade , Picratos/química , Pele/efeitos da radiação , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA