Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Behav Brain Res ; 469: 115043, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729219

RESUMO

Social hierarchy is a fundamental feature of social organization that can influence brain and emotional processing regarding social ranks. Several areas, including the medial prefrontal cortex (mPFC), the hippocampus, and the basolateral nucleus of the amygdala (BLA), are recognized to be involved in the regulation of emotional processing. However, its delicate structural correlates in brain regions are poorly understood. To address this issue, social hierarchy in home-caged sibling Wistar rats (three male rats/cage) was determined by employing a social confrontation tube test (postnatal weeks 9-12). Then, locomotor activity and anxiety-like behaviors were evaluated using an open-field test (OFT) and elevated plus-maze (EPM) at 13 weeks of age. The rapid Golgi impregnation method was conducted to quantify the spine density of the first secondary branch of the primary dendrite in 20 µm length. The results indicated that dominant rats had significantly higher anxiety-like behaviors compared to subordinates, as was evident by lower open-arm entries and time spent in the EPM and lower entries and time spent in the center of OFT. The spine density analysis revealed a significantly higher number of spines in subordinates compared to the dominant rats in dmPFC pyramidal neurons and the apical and basal dendrites of hippocampal CA1 pyramidal neurons. However, the spine density of pyramidal-like neurons in the BLA was higher in dominant rats. Our findings suggest that dominant social rank is associated with higher anxiety and differential density of the dendritic spine in the prefrontal cortex and limbic regions of the brain in male rats.


Assuntos
Ansiedade , Espinhas Dendríticas , Hierarquia Social , Córtex Pré-Frontal , Ratos Wistar , Animais , Córtex Pré-Frontal/patologia , Masculino , Espinhas Dendríticas/fisiologia , Ansiedade/patologia , Ansiedade/fisiopatologia , Ratos , Células Piramidais/patologia , Células Piramidais/fisiologia , Comportamento Animal/fisiologia , Sistema Límbico/patologia , Complexo Nuclear Basolateral da Amígdala/patologia , Hipocampo/patologia
2.
Nat Commun ; 12(1): 2605, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972521

RESUMO

Brain-body interactions are thought to be essential in emotions but their physiological basis remains poorly understood. In mice, regular 4 Hz breathing appears during freezing after cue-fear conditioning. Here we show that the olfactory bulb (OB) transmits this rhythm to the dorsomedial prefrontal cortex (dmPFC) where it organizes neural activity. Reduction of the respiratory-related 4 Hz oscillation, via bulbectomy or optogenetic perturbation of the OB, reduces freezing. Behavioural modelling shows that this is due to a specific reduction in freezing maintenance without impacting its initiation, thus dissociating these two phenomena. dmPFC LFP and firing patterns support the region's specific function in freezing maintenance. In particular, population analysis reveals that network activity tracks 4 Hz power dynamics during freezing and reaches a stable state at 4 Hz peak that lasts until freezing termination. These results provide a potential mechanism and a functional role for bodily feedback in emotions and therefore shed light on the historical James-Cannon debate.


Assuntos
Medo/fisiologia , Bulbo Olfatório/fisiologia , Córtex Pré-Frontal/fisiologia , Respiração , Potenciais de Ação/fisiologia , Animais , Antitireóideos/administração & dosagem , Antitireóideos/farmacologia , Eletrofisiologia , Interneurônios/citologia , Interneurônios/fisiologia , Masculino , Cadeias de Markov , Metimazol/administração & dosagem , Metimazol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Psicológicos , Optogenética , Periodicidade , Células Piramidais/citologia , Células Piramidais/fisiologia , Respiração/efeitos dos fármacos
3.
Sci Rep ; 10(1): 14992, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929133

RESUMO

Long-lasting confusion and memory difficulties during the postictal state remain a major unmet problem in epilepsy that lacks pathophysiological explanation and treatment. We previously identified that long-lasting periods of severe postictal hypoperfusion/hypoxia, not seizures per se, are associated with memory impairment after temporal lobe seizures. While this observation suggests a key pathophysiological role for insufficient energy delivery, it is unclear how the networks that underlie episodic memory respond to vascular constraints that ultimately give rise to amnesia. Here, we focused on cellular/network level analyses in the CA1 of hippocampus in vivo to determine if neural activity, network oscillations, synaptic transmission, and/or synaptic plasticity are impaired following kindled seizures. Importantly, the induction of severe postictal hypoperfusion/hypoxia was prevented in animals treated by a COX-2 inhibitor, which experimentally separated seizures from their vascular consequences. We observed complete activation of CA1 pyramidal neurons during brief seizures, followed by a short period of reduced activity and flattening of the local field potential that resolved within minutes. During the postictal state, constituting tens of minutes to hours, we observed no changes in neural activity, network oscillations, and synaptic transmission. However, long-term potentiation of the temporoammonic pathway to CA1 was impaired in the postictal period, but only when severe local hypoxia occurred. Lastly, we tested the ability of rats to perform object-context discrimination, which has been proposed to require temporoammonic input to differentiate between sensory experience and the stored representation of the expected object-context pairing. Deficits in this task following seizures were reversed by COX-2 inhibition, which prevented severe postictal hypoxia. These results support a key role for hypoperfusion/hypoxia in postictal memory impairments and identify that many aspects of hippocampal network function are resilient during severe hypoxia except for long-term synaptic plasticity.


Assuntos
Amnésia/fisiopatologia , Hipocampo/fisiopatologia , Convulsões/fisiopatologia , Acetaminofen/farmacologia , Animais , Região CA1 Hipocampal/fisiopatologia , Hipocampo/efeitos dos fármacos , Hipóxia/fisiopatologia , Potenciação de Longa Duração , Masculino , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Células Piramidais/fisiologia , Ratos Long-Evans , Convulsões/induzido quimicamente , Convulsões/complicações , Transmissão Sináptica , Vasoconstrição
4.
Nat Commun ; 11(1): 1172, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32127543

RESUMO

von Economo neurons (VENs) are bipolar, spindle-shaped neurons restricted to layer 5 of human frontoinsula and anterior cingulate cortex that appear to be selectively vulnerable to neuropsychiatric and neurodegenerative diseases, although little is known about other VEN cellular phenotypes. Single nucleus RNA-sequencing of frontoinsula layer 5 identifies a transcriptomically-defined cell cluster that contained VENs, but also fork cells and a subset of pyramidal neurons. Cross-species alignment of this cell cluster with a well-annotated mouse classification shows strong homology to extratelencephalic (ET) excitatory neurons that project to subcerebral targets. This cluster also shows strong homology to a putative ET cluster in human temporal cortex, but with a strikingly specific regional signature. Together these results suggest that VENs are a regionally distinctive type of ET neuron. Additionally, we describe the first patch clamp recordings of VENs from neurosurgically-resected tissue that show distinctive intrinsic membrane properties relative to neighboring pyramidal neurons.


Assuntos
Neurônios/fisiologia , Lobo Temporal/citologia , Transcriptoma , Animais , Encéfalo/citologia , Encéfalo/fisiologia , Eletrofisiologia/métodos , Perfilação da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Camundongos , Neurônios/citologia , Células Piramidais/fisiologia , Telencéfalo/citologia , Lobo Temporal/fisiologia
5.
PLoS One ; 11(11): e0165915, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27832100

RESUMO

Ever since Cajal hypothesized that the structure of neurons is designed in such a way as to save space, time and matter, numerous researchers have analyzed wiring properties at different scales of brain organization. Here we test the hypothesis that individual pyramidal cells, the most abundant type of neuron in the cerebral cortex, optimize brain connectivity in terms of wiring length. In this study, we analyze the neuronal wiring of complete basal arborizations of pyramidal neurons in layer II, III, IV, Va, Vb and VI of the hindlimb somatosensory cortical region of postnatal day 14 rats. For each cell, we search for the optimal basal arborization and compare its length with the length of the real dendritic structure. Here the optimal arborization is defined as the arborization that has the shortest total wiring length provided that all neuron bifurcations are respected and the extent of the dendritic arborizations remain unchanged. We use graph theory and evolutionary computation techniques to search for the minimal wiring arborizations. Despite morphological differences between pyramidal neurons located in different cortical layers, we found that the neuronal wiring is near-optimal in all cases (the biggest difference between the shortest synthetic wiring found for a dendritic arborization and the length of its real wiring was less than 5%). We found, however, that the real neuronal wiring was significantly closer to the best solution found in layers II, III and IV. Our studies show that the wiring economy of cortical neurons is related not to the type of neurons or their morphological complexities but to general wiring economy principles.


Assuntos
Rede Nervosa/fisiologia , Células Piramidais/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Simulação por Computador , Dendritos/fisiologia , Modelos Neurológicos , Rede Nervosa/citologia , Células Piramidais/citologia , Ratos , Ratos Wistar , Córtex Somatossensorial/anatomia & histologia
6.
Cereb Cortex ; 26(10): 3945-52, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27384059

RESUMO

Some neural circuits operate with simple dynamics characterized by one or a few well-defined spatiotemporal scales (e.g. central pattern generators). In contrast, cortical neuronal networks often exhibit richer activity patterns in which all spatiotemporal scales are represented. Such "scale-free" cortical dynamics manifest as cascades of activity with cascade sizes that are distributed according to a power-law. Theory and in vitro experiments suggest that information transmission among cortical circuits is optimized by scale-free dynamics. In vivo tests of this hypothesis have been limited by experimental techniques with insufficient spatial coverage and resolution, i.e., restricted access to a wide range of scales. We overcame these limitations by using genetically encoded voltage imaging to track neural activity in layer 2/3 pyramidal cells across the cortex in mice. As mice recovered from anesthesia, we observed three changes: (a) cortical information capacity increased, (b) information transmission among cortical regions increased and (c) neural activity became scale-free. Our results demonstrate that both information capacity and information transmission are maximized in the awake state in cortical regions with scale-free network dynamics.


Assuntos
Córtex Cerebral/fisiologia , Células Piramidais/fisiologia , Vigília/fisiologia , Anestesia , Animais , Córtex Cerebral/efeitos dos fármacos , Análise por Conglomerados , Teoria da Informação , Cadeias de Markov , Camundongos Transgênicos , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Imagem Óptica , Optogenética , Células Piramidais/efeitos dos fármacos , Descanso , Processamento de Sinais Assistido por Computador , Vigília/efeitos dos fármacos
7.
PLoS One ; 11(2): e0147708, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26866597

RESUMO

Hippocampal neural systems consolidate multiple complex behaviors into memory. However, the temporal structure of neural firing supporting complex memory consolidation is unknown. Replay of hippocampal place cells during sleep supports the view that a simple repetitive behavior modifies sleep firing dynamics, but does not explain how multiple episodes could be integrated into associative networks for recollection during future cognition. Here we decode sequential firing structure within spike avalanches of all pyramidal cells recorded in sleeping rats after running in a circular track. We find that short sequences that combine into multiple long sequences capture the majority of the sequential structure during sleep, including replay of hippocampal place cells. The ensemble, however, is not optimized for maximally producing the behavior-enriched episode. Thus behavioral programming of sequential correlations occurs at the level of short-range interactions, not whole behavioral sequences and these short sequences are assembled into a large and complex milieu that could support complex memory consolidation.


Assuntos
Comportamento Animal , Hipocampo/fisiologia , Sono/fisiologia , Potenciais de Ação , Animais , Mapeamento Encefálico , Cognição , Eletrodos , Eletroencefalografia , Eletromiografia , Funções Verossimilhança , Masculino , Cadeias de Markov , Memória , Modelos Neurológicos , Células Piramidais/fisiologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
8.
Braz. dent. j ; 25(5): 409-415, Sep-Oct/2014. tab, graf
Artigo em Inglês | LILACS | ID: lil-731057

RESUMO

Chemical solutions play important roles in endodontic treatment and promote ultrastructural changes in dentin surface. The aim of this study was to quantify root canal roughness at different concentrations of calcium hypochlorite (Ca(OCl)2) and sodium hypochlorite (NaOCl) by confocal laser scanning microscopy (CLSM). Fifty-two human mandibular premolars were sectioned and randomly organized into thirteen groups (n=8): saline (control); 1%, 2.5% and 5% NaOCl; 1%, 2.5% and 5% Ca(OCl)2; the hypochlorite groups were further divided into with or without EDTA. The chlorine concentrations of the different solutions were measured by iodine titration (%). The superficial roughness (Sa) was quantified by CLSM. Ca(OCl)2 presented substantial decrease in chlorine concentration that differed from the package indication, but without compromising the dentin ultrastructure changes. There were no significant differences in dentin roughness between Ca(OCl)2 or NaOCl at all studied concentrations. The combination with EDTA provided similar roughness values among the solutions (p>0.05). The 5% Ca(OCl)2 and NaOCl solutions significantly increased dentin roughness and did not differ from the EDTA association (p>0.05). Ca(OCl)2 promoted similar dentin roughness as the NaOCl at the same concentrations and combined with EDTA. It may be concluded that Ca(OCl)2 modified the root canal dentin roughness similarly to NaOCl, at the same concentrations and EDTA combinations used in this study. Ca(OCl)2 and NaOCl, both at 5%, significantly altered dentin roughness, overcoming EDTA association, thus Ca(OCl)2 concentrations ranging from 1% to 2.5% may be suitable solutions for root canal irrigation protocols.


Soluções químicas são fundamentais para o tratamento endodôntico; entretanto, promovem alterações ultraestruturais na superfície dentinária. O objetivo deste estudo foi quantificar a rugosidade da dentina radicular com diferentes concentrações de hipoclorito de cálcio (Ca(OCl)2) e hipoclorito de sódio (NaOCl) utilizando microscopia confocal à laser (CLSM). Foram utilizados 52 premolares humanos inferiores e aleatoriamente divididos em treze grupos (n=8): Soro fisiológico (controle); NaOCl a 1%, 2,5% and 5%; Ca(OCl)2 a 1%, 2,5% and 5%; os grupos de hipoclorito foram subdivididos pela associação ou não ao ácido etilenodiaminotetracético (EDTA). A concentração de cloro ativo foi avaliada para diferentes soluções utilizando titulação iodométrica (%). A rugosidade superficial (Sa) foi quantificada por CLSM. Ca(OCl)2 apresentou perda substancial de cloro ativo e que foi distinta da condição descrita pelo fabricante, sem entretanto comprometer as alterações no substrato dentinário. Não houve diferenças significantes na rugosidade dentinária produzida pelos Ca(OCl)2 e NaOCl em todas as concentrações estudadas e associação com EDTA. A associação ao EDTA produziu rugosidade semelhante entre as soluções (p>0.05). O Ca(OCl)2 e NaOCl na concentração de 5% aumentaram significativamente a rugosidade dentinária e não apresentaram diferenças dos valores obtidos com a associação de EDTA (p>0.05). O Ca(OCl)2 alterou a rugosidade da dentina radicular de forma semelhante ao NaOCl, nas concentrações e associações utilizadas neste estudo. Como a concentração de 5% de Ca(OCl)2 e NaOCl, apresentou maior rugosidade dentinária, independente da associação ao EDTA, pode-se concluir que Ca(OCl)2 nas concentrações de 1% e 2,5% pode ser considerado uma solução adequada para a irrigação de canais radiculares.


Assuntos
Animais , Ratos , Cálcio/metabolismo , Hipocampo/fisiologia , Células Piramidais/fisiologia , Sinapses/fisiologia , Limiar Diferencial , Estimulação Elétrica , Hipocampo/citologia , Técnicas In Vitro , Ratos Sprague-Dawley
9.
Eur J Pharmacol ; 736: 55-62, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-24791681

RESUMO

Although it is known that general anesthetics can suppress cortical neurons׳ activity, the underlying mechanisms are still poorly understood, especially the kinetic changes of voltage-gated Na(+) channels, which are mostly related to neuronal excitability. Some general anesthetics have been reported to affect the voltage-gated Na(+) channels in cell culture derived from humans and animals. However no one has ever investigated the effects of etomidate on voltage-gated Na(+) channels in pyramidal neurons using a brain slice. The present study uses a whole cell patch-clamp technique to investigate the changes of voltage-gated Na(+) channels on primary somatosensory cortex pyramidal neurons under the influence of etomidate. We found that etomidate dose-dependently inhibited Na(+) currents of primary somatosensory cortex pyramidal neurons, while shifted the steady-state inactivation curve towards the left and prolonged the recovery time from inactivation. Conversely, etomidate has no effects on the steady-state activation curve. We demonstrated the detailed suppression process of neural voltage-gated Na(+) channels by etomidate on slice condition. This may offer new insights into the mechanical explanation for the etomidate anesthesia. Finding the effects of anesthetics on primary somatosensory cortex also provides evidence to help elucidate the potential mechanism by which tactile information integrates during general anesthesia.


Assuntos
Anestésicos Intravenosos/farmacologia , Etomidato/farmacologia , Células Piramidais/efeitos dos fármacos , Canais de Sódio Disparados por Voltagem/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Técnicas In Vitro , Masculino , Células Piramidais/fisiologia , Ratos Sprague-Dawley , Córtex Somatossensorial/citologia
10.
J Comput Neurosci ; 37(1): 181-91, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24469252

RESUMO

Characteristics of action potential generation are important to understanding brain functioning and, thus, must be understood and modeled. It is still an open question what model can describe concurrently the phenomena of sharp spike shape, the spike threshold variability, and the divisive effect of shunting on the gain of frequency-current dependence. We reproduced these three effects experimentally by patch-clamp recordings in cortical slices, but we failed to simulate them by any of 11 known neuron models, including one- and multi-compartment, with Hodgkin-Huxley and Markov equation-based sodium channel approximations, and those taking into account sodium channel subtype heterogeneity. Basing on our voltage-clamp data characterizing the dependence of sodium channel activation threshold on history of depolarization, we propose a 3-state Markov model with a closed-to-open state transition threshold dependent on slow inactivation. This model reproduces the all three phenomena. As a reduction of this model, a leaky integrate-and-fire model with a dynamic threshold also shows the effect of gain reduction by shunt. These results argue for the mechanism of gain reduction through threshold dynamics determined by the slow inactivation of sodium channels.


Assuntos
Potenciais de Ação/fisiologia , Cadeias de Markov , Modelos Neurológicos , Dinâmica não Linear , Células Piramidais/fisiologia , Canais de Sódio/fisiologia , Animais , Animais Recém-Nascidos , Biofísica , Córtex Cerebral/citologia , Estimulação Elétrica , Técnicas In Vitro , Masculino , Rede Nervosa/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Wistar
11.
Nat Neurosci ; 15(7): 1007-14, 2012 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-22660478

RESUMO

Action potential generation and conduction requires large quantities of energy to restore Na(+) and K(+) ion gradients. We investigated the subcellular location and voltage dependence of this metabolic cost in rat neocortical pyramidal neurons. Using Na(+)/K(+) charge overlap as a measure of action potential energy efficiency, we found that action potential initiation in the axon initial segment (AIS) and forward propagation into the axon were energetically inefficient, depending on the resting membrane potential. In contrast, action potential backpropagation into dendrites was efficient. Computer simulations predicted that, although the AIS and nodes of Ranvier had the highest metabolic cost per membrane area, action potential backpropagation into the dendrites and forward propagation into axon collaterals dominated energy consumption in cortical pyramidal neurons. Finally, we found that the high metabolic cost of action potential initiation and propagation down the axon is a trade-off between energy minimization and maximization of the conduction reliability of high-frequency action potentials.


Assuntos
Potenciais de Ação/fisiologia , Córtex Cerebral/metabolismo , Metabolismo Energético/fisiologia , Neurônios/metabolismo , Células Piramidais/metabolismo , Animais , Córtex Cerebral/fisiologia , Masculino , Neurônios/fisiologia , Técnicas de Cultura de Órgãos , Células Piramidais/fisiologia , Ratos , Ratos Wistar
12.
PLoS Comput Biol ; 6(11): e1000987, 2010 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21085618

RESUMO

Calmodulin (CaM) is a ubiquitous Ca(2+) buffer and second messenger that affects cellular function as diverse as cardiac excitability, synaptic plasticity, and gene transcription. In CA1 pyramidal neurons, CaM regulates two opposing Ca(2+)-dependent processes that underlie memory formation: long-term potentiation (LTP) and long-term depression (LTD). Induction of LTP and LTD require activation of Ca(2+)-CaM-dependent enzymes: Ca(2+)/CaM-dependent kinase II (CaMKII) and calcineurin, respectively. Yet, it remains unclear as to how Ca(2+) and CaM produce these two opposing effects, LTP and LTD. CaM binds 4 Ca(2+) ions: two in its N-terminal lobe and two in its C-terminal lobe. Experimental studies have shown that the N- and C-terminal lobes of CaM have different binding kinetics toward Ca(2+) and its downstream targets. This may suggest that each lobe of CaM differentially responds to Ca(2+) signal patterns. Here, we use a novel event-driven particle-based Monte Carlo simulation and statistical point pattern analysis to explore the spatial and temporal dynamics of lobe-specific Ca(2+)-CaM interaction at the single molecule level. We show that the N-lobe of CaM, but not the C-lobe, exhibits a nano-scale domain of activation that is highly sensitive to the location of Ca(2+) channels, and to the microscopic injection rate of Ca(2+) ions. We also demonstrate that Ca(2+) saturation takes place via two different pathways depending on the Ca(2+) injection rate, one dominated by the N-terminal lobe, and the other one by the C-terminal lobe. Taken together, these results suggest that the two lobes of CaM function as distinct Ca(2+) sensors that can differentially transduce Ca(2+) influx to downstream targets. We discuss a possible role of the N-terminal lobe-specific Ca(2+)-CaM nano-domain in CaMKII activation required for the induction of synaptic plasticity.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Espinhas Dendríticas/metabolismo , Modelos Biológicos , Algoritmos , Animais , Região CA1 Hipocampal/citologia , Cálcio/química , Calmodulina/química , Modelos Moleculares , Método de Monte Carlo , Células Piramidais/fisiologia , Ratos
13.
Learn Mem ; 17(2): 117-29, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20154358

RESUMO

Different physiological and behavioral events activate transcription of Arc/Arg3.1 in neurons in vivo, but the signal transduction pathways that mediate induction in particular situations remain to be defined. Here, we explore the relationships between induction of Arc/Arg3.1 transcription in dentate granule cells in vivo and activation of mitogen-activated protein (MAP) kinase as measured by extracellular-regulated kinase 1/2 (ERK1/2) phosphorylation. We show that ERK1/2 phosphorylation is strongly induced in dentate granule cells within minutes after induction of perforant path long-term potentiation (LTP). Phospho-ERK staining appears in nuclei within minutes after stimulation commences, and ERK phosphorylation returns to control levels within 60 min. Electroconvulsive seizures, which strongly induce prolonged Arc/Arg3.1 transcription in dentate granule cells, induced ERK1/2 phosphorylation in granule cells that returned to control levels within 30 min. Following 30, 60, and 120 min of exploration in a novel complex environment, Arc/Arg3.1 transcription was activated in many more granule cells than stained positively for p-ERK at all time points. Although Arc/Arg3.1 transcription was induced in most pyramidal neurons in CA1 following exploration, very few pyramidal neurons exhibited nuclear p-ERK1/2 staining. Local delivery of U0126 during the induction of perforant path LTP blocked transcriptional activation of Arc/Arg3.1 in a small region near the injection site and blocked Arc/Arg3.1 protein expression over a wider region. Our results indicate that activation of Arc/Arg3.1 transcription in dentate granule cells in vivo is mediated in part by MAP kinase activation, but other signaling pathways also contribute, especially in the case of Arc/Arg3.1 induction in response to experience.


Assuntos
Proteínas do Citoesqueleto/biossíntese , Giro Denteado/enzimologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Ativação Transcricional/fisiologia , Animais , Butadienos/farmacologia , Proteínas do Citoesqueleto/fisiologia , Giro Denteado/metabolismo , Giro Denteado/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Feminino , Masculino , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/fisiologia , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Nitrilas/farmacologia , Fosforilação , Células Piramidais/fisiologia , Ratos , Ratos Sprague-Dawley
14.
PLoS Comput Biol ; 5(10): e1000532, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19816557

RESUMO

The theoretical setting of hierarchical Bayesian inference is gaining acceptance as a framework for understanding cortical computation. In this paper, we describe how Bayesian belief propagation in a spatio-temporal hierarchical model, called Hierarchical Temporal Memory (HTM), can lead to a mathematical model for cortical circuits. An HTM node is abstracted using a coincidence detector and a mixture of Markov chains. Bayesian belief propagation equations for such an HTM node define a set of functional constraints for a neuronal implementation. Anatomical data provide a contrasting set of organizational constraints. The combination of these two constraints suggests a theoretically derived interpretation for many anatomical and physiological features and predicts several others. We describe the pattern recognition capabilities of HTM networks and demonstrate the application of the derived circuits for modeling the subjective contour effect. We also discuss how the theory and the circuit can be extended to explain cortical features that are not explained by the current model and describe testable predictions that can be derived from the model.


Assuntos
Inteligência Artificial , Córtex Cerebral/fisiologia , Modelos Neurológicos , Teorema de Bayes , Retroalimentação , Cadeias de Markov , Memória/fisiologia , Reconhecimento Automatizado de Padrão/métodos , Células Piramidais/fisiologia
15.
J Comp Neurol ; 515(2): 243-59, 2009 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-19412956

RESUMO

Von Economo neurons (VENs) are a type of large, layer V spindle-shaped neurons that were previously described in humans, great apes, elephants, and some large-brained cetaceans. Here we report the presence of Von Economo neurons in the anterior cingulate (ACC), anterior insular (AI), and frontopolar (FP) cortices of small odontocetes, including the bottlenose dolphin (Tursiops truncatus), the Risso's dolphin (Grampus griseus), and the beluga whale (Delphinapterus leucas). The total number and volume of VENs and the volume of neighboring layer V pyramidal neurons and layer VI fusiform neurons were obtained by using a design-based stereologic approach. Two humpback whale (Megaptera novaeangliae) brains were investigated for comparative purposes as representatives of the suborder Mysticeti. Our results show that the distribution of VENs in these cetacean species is comparable to that reported in humans, great apes, and elephants. The number of VENs in these cetaceans is also comparable to data available from great apes, and stereologic estimates indicate that VEN volume follows in these cetacean species a pattern similar to that in hominids, the VENs being larger than neighboring layer V pyramidal cells and conspicuously larger than fusiform neurons of layer VI. The fact that VENs are found in species representative of both cetacean suborders in addition to hominids and elephants suggests that these particular neurons have appeared convergently in phylogenetically unrelated groups of mammals possibly under the influence of comparable selective pressures that influenced specifically the evolution of cortical domains involved in complex cognitive and social/emotional processes.


Assuntos
Córtex Cerebral/fisiologia , Golfinhos/fisiologia , Neurônios/fisiologia , Baleias/fisiologia , Animais , Peso Corporal/fisiologia , Mapeamento Encefálico , Contagem de Células , Córtex Cerebral/citologia , Tamanho do Órgão/fisiologia , Células Piramidais/fisiologia , Especificidade da Espécie
16.
Science ; 319(5871): 1845-9, 2008 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-18369150

RESUMO

The synaptic response waveform, which determines signal integration properties in the brain, depends on the spatiotemporal profile of neurotransmitter in the synaptic cleft. Here, we show that electrophoretic interactions between AMPA receptor-mediated excitatory currents and negatively charged glutamate molecules accelerate the clearance of glutamate from the synaptic cleft, speeding up synaptic responses. This phenomenon is reversed upon depolarization and diminished when intracleft electric fields are weakened through a decrease in the AMPA receptor density. In contrast, the kinetics of receptor-mediated currents evoked by direct application of glutamate are voltage-independent, as are synaptic currents mediated by the electrically neutral neurotransmitter GABA. Voltage-dependent temporal tuning of excitatory synaptic responses may thus contribute to signal integration in neural circuits.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Ácido Glutâmico/metabolismo , Células Piramidais/fisiologia , Receptores de AMPA/metabolismo , Sinapses/fisiologia , Animais , Células Cultivadas , Dendritos/fisiologia , Difusão , Dipeptídeos/farmacologia , Magnésio/farmacologia , Masculino , Método de Monte Carlo , Técnicas de Patch-Clamp , Quinoxalinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/antagonistas & inibidores , Receptores de GABA/metabolismo , Ácido gama-Aminobutírico/metabolismo
17.
J Neurosci Methods ; 169(2): 417-24, 2008 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-18160135

RESUMO

Several methods and algorithms have recently been proposed that allow for the systematic evaluation of simple neuron models from intracellular or extracellular recordings. Models built in this way generate good quantitative predictions of the future activity of neurons under temporally structured current injection. It is, however, difficult to compare the advantages of various models and algorithms since each model is designed for a different set of data. Here, we report about one of the first attempts to establish a benchmark test that permits a systematic comparison of methods and performances in predicting the activity of rat cortical pyramidal neurons. We present early submissions to the benchmark test and discuss implications for the design of future tests and simple neurons models.


Assuntos
Neurônios/fisiologia , Algoritmos , Animais , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Interpretação Estatística de Dados , Eletrofisiologia , Feminino , Masculino , Modelos Neurológicos , Células Piramidais/fisiologia , Ratos , Ratos Wistar , Análise de Regressão
18.
J Neurosci Methods ; 153(2): 203-7, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16364450

RESUMO

Licking behavior in rodents is widely used to determine fluid consumption in various behavioral contexts and is a typical example of rhythmic movement controlled by internal pattern-generating mechanisms. The measurement of licking behavior by commercially available instruments is based on either tongue protrusion interrupting a light beam or on an electrical signal generated by the tongue touching a metal spout. We report here that licking behavior can be measured with high temporal precision by simply connecting a metal sipper tube to the input of a standard analog/digital (A/D) converter and connecting the animal to ground (via a metal cage floor). The signal produced by a single lick consists of a 100-800 mV dc voltage step, which reflects the metal-to-water junction potential and persists for the duration of the tongue-spout contact. This method does not produce any significant electrical artifacts and can be combined with electrophysiological measurements of single unit activity from neurons involved in the control of the licking behavior.


Assuntos
Potenciais de Ação/fisiologia , Conversão Análogo-Digital , Comportamento de Ingestão de Líquido/fisiologia , Animais , Comportamento Animal/fisiologia , Cerebelo/citologia , Custos e Análise de Custo , Feminino , Masculino , Camundongos , Células Piramidais/fisiologia , Projetos de Pesquisa
19.
Hippocampus ; 15(2): 166-83, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15390156

RESUMO

Dendritic structure is traditionally characterized by distributions and interrelations of morphometric parameters, such as Sholl-like plots of the number of branches versus dendritic path distance. However, how much of a given morphology is effectively captured by any statistical description is generally unknown. In this work, we assemble a small number of standard geometrical parameters measured from experimental data in a simple stochastic algorithm to describe the dendrograms of hippocampal pyramidal cells. The model, consistent with the hidden Markov framework, is feedforward, local, and causal. It relies on two "hidden" local variables: the expected number of terminal tips in a given subtree, and the current path distance from the soma. The algorithm generates dendrograms that statistically reproduce all morphological essentials of dendrites observed in real neurons, including the distributions of branching and termination points, branch lengths, membrane area, topological asymmetry, and (assuming passive membrane parameters within physiological range) electrotonic characteristics. Thus, this algorithm and the small number of its morphometric parameters constitute a remarkably complete description of the dendrograms of hippocampal pyramidal cells. Specifically, it is found that CA3 and CA1 basal dendrites and CA3 apical dendrites can each be described as homogeneous morphological classes. In contrast, the accurate generation of CA1 apical dendrites necessitates the separate sampling of two types of branches, main and oblique, suggesting their derivations from different developmental mechanisms (terminal and interstitial growth, respectively). We further offer a plausible biophysical interpretation of the model hidden variables, relating them to microtubules and other intracellular resources.


Assuntos
Dendritos/fisiologia , Hipocampo/fisiologia , Cadeias de Markov , Modelos Neurológicos , Células Piramidais/fisiologia , Algoritmos , Animais , Fenômenos Biofísicos , Biofísica , Forma Celular/fisiologia , Simulação por Computador , Hipocampo/citologia , Células Piramidais/ultraestrutura , Ratos
20.
J Physiol ; 556(Pt 2): 337-45, 2004 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-14754998

RESUMO

The time course of Mg(2+) block and unblock of NMDA receptors (NMDARs) determines the extent they are activated by depolarization. Here, we directly measure the rate of NMDAR channel opening in response to depolarizations at different times after brief (1 ms) and sustained (4.6 s) applications of glutamate to nucleated patches from neocortical pyramidal neurons. The kinetics of Mg(2+) unblock were found to be non-instantaneous and complex, consisting of a prominent fast component (time constant approximately 100 micros) and slower components (time constants 4 and approximately 300 ms), the relative amplitudes of which depended on the timing of the depolarizing pulse. Fitting a kinetic model to these data indicated that Mg(2+) not only blocks the NMDAR channel, but reduces both the open probability and affinity for glutamate, while enhancing desensitization. These effects slow the rate of NMDAR channel opening in response to depolarization in a time-dependent manner such that the slower components of Mg(2+) unblock are enhanced during depolarizations at later times after glutamate application. One physiological consequence of this is that brief depolarizations occurring earlier in time after glutamate application are better able to open NMDAR channels. This finding has important implications for spike-timing-dependent synaptic plasticity (STDP), where the precise (millisecond) timing of action potentials relative to synaptic inputs determines the magnitude and sign of changes in synaptic strength. Indeed, we find that STDP timing curves of NMDAR channel activation elicited by realistic dendritic action potential waveforms are narrower than expected assuming instantaneous Mg(2+) unblock, indicating that slow Mg(2+) unblock of NMDAR channels makes the STDP timing window more precise.


Assuntos
Potenciais de Ação/fisiologia , Ativação do Canal Iônico/fisiologia , Magnésio/farmacologia , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Córtex Cerebral/citologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Cinética , Cadeias de Markov , Modelos Neurológicos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA