Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 13(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38667312

RESUMO

The assessment of nanoparticle cytotoxicity is challenging due to the lack of customized and standardized guidelines for nanoparticle testing. Nanoparticles, with their unique properties, can interfere with biochemical test methods, so multiple tests are required to fully assess their cellular effects. For a more reliable and comprehensive assessment, it is therefore imperative to include methods in nanoparticle testing routines that are not affected by particles and allow for the efficient integration of additional molecular techniques into the workflow. Digital holographic microscopy (DHM), an interferometric variant of quantitative phase imaging (QPI), has been demonstrated as a promising method for the label-free assessment of the cytotoxic potential of nanoparticles. Due to minimal interactions with the sample, DHM allows for further downstream analyses. In this study, we investigated the capabilities of DHM in a multimodal approach to assess cytotoxicity by directly comparing DHM-detected effects on the same cell population with two downstream biochemical assays. Therefore, the dry mass increase in RAW 264.7 macrophages and NIH-3T3 fibroblast populations measured by quantitative DHM phase contrast after incubation with poly(alkyl cyanoacrylate) nanoparticles for 24 h was compared to the cytotoxic control digitonin, and cell culture medium control. Viability was then determined using a metabolic activity assay (WST-8). Moreover, to determine cell death, supernatants were analyzed for the release of the enzyme lactate dehydrogenase (LDH assay). In a comparative analysis, in which the average half-maximal effective concentration (EC50) of the nanocarriers on the cells was determined, DHM was more sensitive to the effect of the nanoparticles on the used cell lines compared to the biochemical assays.


Assuntos
Nanopartículas , Animais , Camundongos , Células NIH 3T3 , Nanopartículas/toxicidade , Nanopartículas/química , Células RAW 264.7 , Sobrevivência Celular/efeitos dos fármacos , Holografia/métodos , Imageamento Quantitativo de Fase
2.
Anal Chem ; 96(18): 6968-6977, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38662948

RESUMO

The assessment of atherosclerosis (AS) progression has emerged as a prominent area of research. Monitoring various pathological features of foam cell (FC) formation is imperative to comprehensively assess AS progression. Herein, a simple benzospiropyran-julolidine-based probe, BSJD, with switchable dual-color imaging ability was developed. This probe can dynamically and reversibly adjust its molecular structure and fluorescent properties in different polar and pH environments. Such a polarity and pH dual-responsive characteristic makes it superior to single-responsive probes in dual-color imaging of lipid droplets (LDs) and lysosomes as well as monitoring their interaction. By simultaneously tracking various pathological features, including LD accumulation and size changes, lysosome dysfunction, and dynamically regulated lipophagy, more comprehensive information can be obtained for multiparameter assessment of FC formation progression. Using BSJD, not only the activation of lipophagy in the early stages and inhibition in the later phases during FC formation are clearly observed but also the important roles of lipophagy in regulating lipid metabolism and alleviating FC formation are demonstrated. Furthermore, BSJD is demonstrated to be capable of rapidly imaging FC plaque sites in AS mice with fast pharmacokinetics. Altogether, BSJD holds great promise as a dual-color organelle-imaging tool for investigating disease-related LD and lysosome changes and their interactions.


Assuntos
Corantes Fluorescentes , Células Espumosas , Gotículas Lipídicas , Corantes Fluorescentes/química , Células Espumosas/metabolismo , Células Espumosas/patologia , Animais , Camundongos , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/química , Lisossomos/metabolismo , Aterosclerose/metabolismo , Aterosclerose/diagnóstico por imagem , Aterosclerose/patologia , Imagem Óptica , Humanos , Células RAW 264.7 , Concentração de Íons de Hidrogênio , Cor
3.
Fitoterapia ; 175: 105861, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38354824

RESUMO

Humulus lupulus extracts have in their composition different molecules, such as polyphenols, α-acids, ß-acids, and hydrocarbons, which contribute to the plant's medicinal properties. These molecules are associated with antimicrobial, antioxidant and anti-inflammatory activities. OBJECTIVE: This work focuses on the evaluation of H. lupulus biological activities, with the aim of evaluating its potential for inclusion in cosmetic formulations. METHODS: Two distinct aqueous extracts and two hydrolates obtained via hydrodistillation were evaluated. These include the flower parts (FE, FH) and the mix of aboveground parts (ME, MH). The chemical profiles for both aqueous extracts and hydrolates were identified by high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). Antimicrobial, antioxidant, cytotoxicity, and anti-inflammatory activity were tested in vitro using standard methods. RESULTS: Rutin was the major compound found in FE (40.041 µg mg-1 of extract) and ME (2.909 µg mg-1 of extract), while humulenol II was the most abundant compound in hydrolates (FH: 20.83%; MH: 46.80%). Furthermore, FE was able to inhibit the growth of Staphylococcus aureus and Staphylococcus epidermis with MIC values of 50% and 25% (v/v), respectively. FH showed the same effect in Staphylococcus aureus (50% v/v). FH evidenced poor antioxidant potential in DPPH scavenging test and demonstrated significant antioxidant and anti-inflammatory effects by reducing (***p < 0.001) intracellular reactive oxygen species (ROS), NO (nitric oxide) levels (***p < 0.001) and cyclooxygenase-2 (COX-2) protein expression (***p < 0.001) in lipopolysaccharide (LPS)-stimulated macrophages. Nevertheless, it is important to note that FH exhibited cytotoxicity at high concentrations in 3T3 fibroblasts and RAW 264.7 macrophages. CONCLUSION: The studied H. lupulus aqueous extracts and hydrolates revealed that FH stands out as the most promising bioactive source for cosmetic formulations. However, future research addressing antimicrobial activity is necessary to confirm its potential incorporation into dermatological and cosmetic formulations.


Assuntos
Anti-Inflamatórios , Antioxidantes , Cosméticos , Humulus , Extratos Vegetais , Humulus/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes/farmacologia , Anti-Inflamatórios/farmacologia , Camundongos , Animais , Células RAW 264.7 , Flores/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Macrófagos/efeitos dos fármacos , Testes de Sensibilidade Microbiana
4.
Molecules ; 27(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35164229

RESUMO

Convolvulus arvensis is used in Pakistani traditional medicine to treat inflammation-related disorders. Its anti-inflammatory potential was evaluated on hexane, dichloromethane, ethyl acetate, methanol, and aqueous extracts of whole plant on pro-inflammatory mediators in LPS-activated murine macrophage J774 cells at the non-cytotoxic concentration of 50 µg/mL. Ethyl acetate (ARE) and methanol (ARM) extracts significantly decreased mRNA levels of IL-6, TNF-α, MCP-1, COX-2, and iNOS. Furthermore, both extracts dose dependently decreased IL-6, TNF-α, and MCP-1 secretion. Forty-five compounds were putatively identified in ARE and ARM by dereplication (using HPLC-UV-HRMSn analysis and molecular networking), most of them are reported for the first time in C. arvensis, as for example, nineteen phenolic derivatives. Rutin, kaempferol-3-O-rutinoside, chlorogenic acid, 3,5-di-O-caffeoylquinic acid, N-trans-p-coumaroyl-tyramine, and N-trans-feruloyl-tyramine were main constituents identified and quantified by HPLC-PDA in ARE and ARM. Furthermore, chlorogenic acid, tyramine derivatives, and the mixture of the six identified major compounds significantly decreased IL-6 secretion by LPS-activated J774 cells. The activity of N-trans-p-coumaroyl-tyramine is shown here for the first time. Our results indicate that ARE, ARM and major constituents significantly inhibited the expression of pro-inflammatory mediators, which supports the use of this plant to treat inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Convolvulus/química , Inflamação/tratamento farmacológico , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Animais , Inflamação/induzido quimicamente , Macrófagos/imunologia , Camundongos , Compostos Fitoquímicos/análise , Extratos Vegetais/análise , Folhas de Planta/química , Células RAW 264.7
5.
Bioorg Med Chem Lett ; 58: 128523, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973341

RESUMO

For the discovery of new pentacyclic triterpenes as a potential anti-inflammatory agent, microbial transformation of uvaol by Penicilium griseofulvum CICC 40293 and Streptomyces griseus ATCC 13273 was investigated. Stereoselective hydroxylation and epoxidation reactions were observed in the biotransformation. Moreover, six new metabolites were isolated and structurally elucidated by HR-ESI-MS and NMR spectrum. All the compounds were evaluated upon the inhibitory effects of nitric oxide (NO) release in RAW 264.7 cells induced by lipopolysaccharide (LPS) and high-mobility group box 1 (HMGB1). Among them, compound 3 (13, 28-epoxy-3ß, 7ß, 21ß-trihydroxy-urs-11-ene) with the unique epoxy structure and compound 5 (3ß, 21ß, 24, 28-tetrahydroxy-urs-12-en-30-oic acid), exhibited a considerable inhibitory effect on both models while compound 2 (urs-12-ene-3ß, 7ß, 21ß, 28-tetraol) showed a significant bias in the LPS-induced inflammatory response with IC50 value of 2.22 µM. Therefore, this study could provide some insights on the discovery of the pentacyclic triterpene leads for the treatment of either DAMPs or PAMPs triggered inflammation.


Assuntos
Proteína HMGB1/antagonistas & inibidores , Lipopolissacarídeos/antagonistas & inibidores , Óxido Nítrico/antagonistas & inibidores , Triterpenos/farmacologia , Animais , Relação Dose-Resposta a Droga , Proteína HMGB1/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Estrutura Molecular , Óxido Nítrico/biossíntese , Células RAW 264.7 , Relação Estrutura-Atividade , Triterpenos/síntese química , Triterpenos/química
6.
Mol Med Rep ; 25(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34859262

RESUMO

Methyl p­hydroxycinnamate (MH), an esterified derivative of p­Coumaric acid exerts anti­inflammatory effects on lipopolysaccharide (LPS)­stimulated RAW264.7 macrophages. Based on these effects, the present study investigated the protective role of MH in a mouse model of LPS­induced acute respiratory distress syndrome (ARDS). The results demonstrated that administration of LPS (5 mg/kg intranasally) markedly increased the neutrophil/macrophage numbers and levels of inflammatory molecules (TNF­α, IL­6, IL­1ß and reactive oxygen species) in the bronchoalveolar lavage fluid (BALF) of mice. On histological examination, the presence of inflammatory cells was observed in the lungs of mice administered LPS. LPS also notably upregulated the secretion of monocyte chemoattractant protein­1 and protein content in BALF as well as expression of inducible nitric oxide synthase in the lungs of mice; it also caused activation of p38 mitogen­activated protein kinase (MAPK) and NF­κB signaling. However, MH treatment significantly suppressed LPS­induced upregulation of inflammatory cell recruitment, inflammatory molecule levels and p38MAPK/NF­κB activation, and also led to upregulation of heme oxygenase­1 (HO­1) expression in the lungs of mice. In addition, the ability of MH to induce HO­1 expression was confirmed in RAW264.7 macrophages. Taken together, the findings of the present study indicated that MH may exert protective effects against airway inflammation in ARDS mice by inhibiting inflammatory cell recruitment and the production of inflammatory molecules.


Assuntos
Anti-Inflamatórios/farmacologia , Cinamatos/farmacologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/prevenção & controle , Lipopolissacarídeos/toxicidade , Síndrome do Desconforto Respiratório/tratamento farmacológico , Animais , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Transdução de Sinais
7.
Comb Chem High Throughput Screen ; 25(1): 204-210, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33745430

RESUMO

BACKGROUND: Pentacyclic triterpenoids are a biologically active class of phytoconstituents with diverse pharmacological activities, including anti-inflammatory action. OBJECTIVE: In the current study, we isolated 3-Acetylmyricadiol, a pentacyclic triterpenoid, from the ethyl acetate bark extract of Myrica esculenta and evaluated it for anti-inflammatory potential. METHODS: The ethyl acetate bark extract of the M. esculenta was subjected to column chromatography to isolate 3-Acetylmyricadiol. MTT assay was performed to check cell viability. The production of proinflammatory mediators like nitric oxide, IL-6, TNF-α were observed after the administration of 5, 10, 20 µM of 3-Acetylmyricadiol in LPS-activated raw 246.7 macrophages by the reported methods. RESULTS: MTT assay indicated more than 90% cell viability up to 20 µM of 3-Acetylmyricadiol. The administration of 3-Acetylmyricadiol inhibited the production of nitric oxide, IL-6, TNF-α in a dose-dependent manner significantly in comparison to LPS treated cells. The maximum effect was observed at 20 µM of 3-Acetylmyricadiol which resulted in 52.37, 63.10, and 55.37 % inhibition of nitric oxide, IL-6, and TNF-α, respectively. CONCLUSION: Our study demonstrated the anti-inflammatory action of 3-Acetylmyricadiol and can serve as a potential candidate in the development of the clinically efficient anti-inflammatory molecule.


Assuntos
Anti-Inflamatórios , Macrófagos/efeitos dos fármacos , Extratos Vegetais , Triterpenos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Citocinas , Camundongos , Myrica/química , Óxido Nítrico , Casca de Planta/química , Extratos Vegetais/farmacologia , Células RAW 264.7 , Fator de Necrose Tumoral alfa
8.
J Ethnopharmacol ; 282: 114596, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34492319

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The African Continent harbours approximately 26 Croton species. Many Croton species are used in traditional medicine in southern Africa to treat a variety of ailments including malaria, tuberculosis, microbial infection and inflammation. Considering the high diversity of the genus Croton, the ethnopharmacological information available on southern African species is rather limited. Furthermore, the potential for novel anti-inflammatory drug scaffolds has not previously been investigated. AIM OF THE STUDY: The aim of the study was to evaluate the potential of four South African Croton species extracts (Croton gratissimus, Croton pseudopulchellus, Croton sylvaticus, and Croton steenkampianus) for anti-inflammatory activity targeting the TLR4 signalling pathway and to assess the potential risk for hepatotoxicity and genotoxicity using an in vitro cellomics approach. MATERIAL AND METHODS: Leaf extracts of C. gratissimus, C. pseudopulchellus, C. sylvaticus and C. steenkampianus were prepared using methanol and chloroform (1:1, v/v). The anti-inflammatory activity was determined using LPS induced nitric oxide production in RAW 264.7 macrophages, while the hepatotoxicity and genotoxicity was evaluated using multi-parameter end point analysis in C3A and Vero cells, respectively. Mitochondrial membrane potential, mitochondrial mass, oxidative stress, lysosomal content and lipid accumulation were used as markers to assess the risk for hepatotoxicity. RESULTS: All four species attenuated nitric oxide production with negligible cytotoxicity. However, C. gratissimus yielded the most favorable profile. Cell density was significantly reduced in both C3A and Vero cells with the C. gratissimus extract providing a suitable toxicity profile amenable to further high content analysis. While there was no meaningful effect on mitochondrial dynamics, a strong dose dependent increase in lipid content, paralleled by an expansion of the lysosomal compartment, identifies a potential risk for steatosis. Risk for genotoxicity was investigated using the micronucleus assay which revealed a dose dependent increase in micronuclei formation. Changes in nuclear morphology and cell ploidy further strengthens the associated risk for genotoxicity and suggests the extract from C. gratissimus may function as an aneugen. Collectively, the data demonstrates that although the selected species possess anti-inflammatory components, the risk for possible hepatotoxic and genotoxic side effects may negate their prospect towards further drug development.


Assuntos
Anti-Inflamatórios , Doença Hepática Induzida por Substâncias e Drogas , Croton , Testes de Mutagenicidade/métodos , Extratos Vegetais , Animais , Anti-Inflamatórios/efeitos adversos , Anti-Inflamatórios/farmacologia , Antioxidantes/efeitos adversos , Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Chlorocebus aethiops , Etnofarmacologia/métodos , Técnicas In Vitro/métodos , Medicinas Tradicionais Africanas , Camundongos , Óxido Nítrico/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Folhas de Planta , Células RAW 264.7 , Medição de Risco/métodos , Células Vero
9.
Nan Fang Yi Ke Da Xue Xue Bao ; 41(10): 1540-1546, 2021 Oct 20.
Artigo em Chinês | MEDLINE | ID: mdl-34755670

RESUMO

OBJECTIVE: To evaluate the antioxidant, anti-tumor and immunomodulatory activities of exopolysaccharides with different molecular masses isolated from Rhizopus nigricans. METHODS: Three polysaccharides with different molecular masses, namely RPS-1, RPS-2 and RPS-3, were separated from the fermentation broth of Rhizopus nigricans by fractional ethanol precipitation, and their capacity for scavenging DPPH, ABTS, and hydroxyl radicals was assessed. Cell counting kit-8 was used to analyze the changes in the viability of MFC, A549 and RAW 264.7 cells following treatments with the 3 polysaccharides; The level of nitric oxide in the supernatant of RAW 264.7 cells was detected using a nitric oxide detection kit, and the apoptosis rate of A549 cells was analyzed with flow cytometry. RESULTS: All the 3 polysaccharides had good antioxidant activities, and among them RPS-1 with a medium molecular mass exhibited the strongest scavenging capacity for DPPH and ABTS radicals (P < 0.05) while RPS-3 with the lowest molecular mass had the best scavenging activity for hydroxyl radicals (P < 0.01). All the 3 polysaccharides were capable of inhibiting the proliferation of MFC cells and A549 cells, activating the macrophages RAW 264.7 cells, and inducing apoptosis of A549 cells. RPS-2 with the highest molecular mass showed the strongest inhibitory effects against MFC and A549 cells (P > 0.05), and RPS-2 had the strongest activity for inducing apoptosis in A549 cells (P < 0.05). Compared with the other two polysaccharides, RPS-2 more strongly promoted the proliferation of RAW 264.7 cells and enhanced NO release from the cells (P < 0.05). CONCLUSION: The 3 polysaccharides all have antioxidant, anti-tumor and immunomodulatory activities, and among them RPS-1 and RPS-3 have better antioxidant activities, and RPS-2 has stronger anti-tumor and immunomodulatory activities.


Assuntos
Polissacarídeos , Rhizopus , Animais , Antioxidantes/farmacologia , Macrófagos , Camundongos , Polissacarídeos/farmacologia , Células RAW 264.7
10.
Food Funct ; 12(19): 9197-9210, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34606534

RESUMO

Cinnamomum camphora seeds have multiple bioactivities. There were few studies on the effect of C. camphora seeds on intestinal inflammation in vitro and in vivo. The study aimed to investigate the effects of ethanol extracts from C. camphora seed kernel on intestinal inflammation using simulated gastrointestinal digestion and a Caco-2/RAW264.7 co-culture system. Results showed that the digested ethanol extracts (dEE) were rich in polyphenols, and a total of 17 compounds were tentatively identified using UPLC-LTQ-Orbitrap-MS/MS. dEE increased cell viability, while decreasing the production of reactive oxygen species, and the secretion and gene expression of inflammatory markers (NO, PGE2, TNF-α, IL-1ß and IL-6). dEE also down-regulated NF-κB/MAPK pathway activities by suppressing the phosphorylation of relevant signaling molecules (p65, IκBα, ERK and p38), as well as the expression of TLR4 receptor protein. Furthermore, dEE may improve intestinal barrier function by increasing the TEER value, and the expression of tight junction proteins (ZO-1, claudin-1 and occludin). The results suggest the ethanol extracts from C. camphora seed kernel may have strong anti-inflammatory activities, and a potential application in the prevention or treatment of intestinal inflammation and enhancement of intestinal barrier function in organisms.


Assuntos
Anti-Inflamatórios/farmacologia , Cinnamomum camphora , Inflamação/tratamento farmacológico , Intestinos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Sementes , Animais , Anti-Inflamatórios/química , Células CACO-2 , Sobrevivência Celular , Técnicas de Cocultura , Citocinas/genética , Citocinas/metabolismo , Digestão , Etanol , Humanos , Inflamação/prevenção & controle , Mucosa Intestinal/fisiologia , Intestinos/metabolismo , Intestinos/fisiologia , Camundongos , Óxido Nítrico/metabolismo , Fitoterapia , Extratos Vegetais/química , Polifenóis/análise , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo
11.
Toxicology ; 462: 152949, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34534559

RESUMO

Bacterial magnetosomes (BMs) are iron oxide nanoparticles synthesized naturally by magnetotactic bacteria, made up of nano-sized inorganic crystals enclosed by a lipid bilayer membrane. Due to several superior characteristics, such as the narrow size distribution, uniform morphology, high purity and crystallinity, single magnetic domain as well as easy surface modification, increasing biomedical and biotechnological applications of BMs have been developed. The attracted wide attentions raise the urge for the evaluation of safety and toxicity. In this work, we performed a rather comprehensive and systematic assessment of in vitro and in vivo toxicity of BMs from MSR-1, including the cytotoxicity, mice bodyweights, blood test, organ coefficients, inflammation, and hemocompatibility study. We found that BMs have good biocompatibility except for influences on the immune response as demonstrated by enhanced activation of the complement system and inhibition of lymphocyte proliferation when used with an excessive concentration. BMs induced the production of reactive oxygen species (ROS) in macrophages at a dose-dependent manner but did not cause cell membrane damage and cell cycle arrest until the concentration is approximately 40 times the clinical dosage. We anticipate our work will guide modifications of BMs and expand their future applications.


Assuntos
Magnetossomos/química , Magnetospirillum/química , Espécies Reativas de Oxigênio/metabolismo , Animais , Pontos de Checagem do Ciclo Celular , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Cristalização , Humanos , Linfócitos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Células RAW 264.7
12.
Neurotox Res ; 39(5): 1418-1429, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34196954

RESUMO

The antioxidant enzyme catalase represents an important therapeutic target due to its role in mitigating cellular reactive oxygen species that contribute to the pathogenesis of many disease states. Catalase-SKL (CAT-SKL), a genetically engineered, peroxisome-targeted, catalase derivative, was developed in order to increase the therapeutic potential of the enzyme, and has previously been shown to be effective in combating oxidative stress in a variety of in vitro and in vivo models, thereby mitigating cellular degeneration and death. In the present study we addressed important considerations for the development of an extracellular vesicle-packaged version of CAT-SKL (evCAT-SKL) as a therapeutic for neurodegenerative diseases by investigating its delivery potential to the brain when administered intranasally, and safety by assessing off-target toxicity in a mouse model. Mice received weekly intranasal administrations of evCAT-SKL or empty extracellular vesicles for 4 weeks. Fluorescent labeling for CAT-SKL was observed throughout all sections of the brain in evCAT-SKL-treated mice, but not in empty extracellular vesicle-treated mice. Furthermore, we found no evidence of gross or histological abnormalities following evCAT-SKL or empty extracellular vesicle treatment in a full-body toxicological analysis. Combined, the successful brain targeting and the lack of off-target toxicity demonstrates that intranasal delivery of extracellular vesicle-packaged CAT-SKL holds promise as a therapeutic for addressing neurological disorders.


Assuntos
Administração Intranasal , Antioxidantes/metabolismo , Encéfalo/metabolismo , Catalase/metabolismo , Vesículas Extracelulares/metabolismo , Animais , Antioxidantes/administração & dosagem , Encéfalo/efeitos dos fármacos , Catalase/administração & dosagem , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7
13.
Molecules ; 26(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206838

RESUMO

Polyphenols, widely distributed in the genus Melastoma plants, possess extensive cellular protective effects such as anti-inflammatory, anti-tyrosinase, and anti-obesity, which makes it a potential anti-inflammatory drug or enzyme inhibitor. Therefore, the aim of this study is to screen for the anti-inflammatory and enzyme inhibitory activities of compounds from title plant. Using silica gel, MCI, ODS C18, and Sephadex LH-20 column chromatography, as well as semipreparative HPLC, the extract of Melastoma normale roots was separated. Four new ellagitannins, Whiskey tannin C (1), 1-O-(4-methoxygalloyl)-6-O-galloyl-2,3-O-(S)-hexahydroxydiphenoyl-ß-d-glucose (2), 1-O-galloyl-6-O-(3-methoxygalloyl)-2,3-O-(S)-hexahydroxydiphenoyl-ß-d-glucose (3), and 1-O-galloyl-6-O-vanilloyl-2,3-O-(S)-hexahydroxydiphenoyl-ß-d-glucose (4), along with eight known polyphenols were firstly obtained from this plant. The structures of all isolates were elucidated by HRMS, NMR, and CD analyses. Using lipopolysaccharide (LPS)-stimulated RAW2 64.7 cells, we investigated the anti-inflammatory activities of compounds 1-4, unfortunately, none of them exhibit inhibit nitric oxide (NO) production, their IC50 values are all > 50 µM. Anti-tyrosinase activity assays was done by tyrosinase inhibition activity screening model. Compound 1 showed weak tyrosinase inhibitory activity with IC50 values of 426.02 ± 11.31 µM. Compounds 2-4 displayed moderate tyrosinase inhibitory activities with IC50 values in the range of 124.74 ± 3.12-241.41 ± 6.23 µM. The structure-activity relationships indicate that hydroxylation at C-3', C-4', and C-3 in the flavones were key to their anti-tyrosinase activities. The successful isolation and structure identification of ellagitannin provide materials for the screening of anti-inflammatory drugs and enzyme inhibitors, and also contribute to the development and utilization of M. normale.


Assuntos
Anti-Inflamatórios/análise , Inibidores Enzimáticos/farmacologia , Taninos Hidrolisáveis/análise , Melastomataceae/química , Monofenol Mono-Oxigenase/antagonistas & inibidores , Extratos Vegetais/química , Polifenóis/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Concentração Inibidora 50 , Camundongos , Estrutura Molecular , Óxido Nítrico/metabolismo , Extratos Vegetais/análise , Polifenóis/química , Células RAW 264.7
14.
J Ethnopharmacol ; 273: 114027, 2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-33741438

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rhubarb (Rhei Radix et Rhizoma) is a traditional Chinese medicine, has been used as a strong astringent in China to treat inflammation-related diseases, such as acute pancreatitis, acute cholecystitis, appendicitis and so on. Rhein, emodin and aloe-emodin are the important active anthraquinone in rhubarb, and are considered to be the main ingredients contributing to anti-inflammatory. AIM OF THE STUDY: Rhein, emodin and aloe-emodin, anthraquinones with the same parent structure that are found in rhubarb, have beneficial anti-inflammatory effects in vitro and in vivo. Anthraquinone derivatives also have important clinical roles. However, their pharmacodynamic differences and the structure-activity relationships associated with their anti-inflammatory properties have not been systematically explored. The present study was designed to quantify the effects of three rhubarb anthraquinones on inflammation and to explore the structure-activity relationships of these compounds. MATERIALS AND METHODS: In this study, we detected NF-κB phosphorylation, iNOS protein expression, and IL-6 and NO production in LPS-stimulated RAW264.7 cells and then calculated median effect equations and built a dynamic pharmacodynamic model to quantitatively evaluate the efficacy of these three anthraquinones. Additionally, to determine the structure-activity relationships, we investigated the physicochemical properties and molecular electrostatic potentials of the drug molecules. RESULTS: We found that rhein, emodin, and aloe-emodin exerted at least dual-target (NF-κB, iNOS) inhibition of LPS-induced inflammatory responses. Compared with rhein and emodin, aloe-emodin had a stronger anti-inflammatory effect, and its inhibition of iNOS protein expression was approximately twice that of NF-κB phosphorylation. In addition, aloe-emodin had the strongest hydrophobic effect among the three anthraquinones. CONCLUSIONS: Overall, we concluded that the receptor binding the rhubarb anthraquinones had a hydrophobic pocket. Anthraquinone molecules with stronger hydrophobic effects had higher affinity for the receptor, resulting in greater anti-inflammatory activity. These results suggest that the addition of a hydrophobic group is a potential method for structural modification to design anti-inflammatory anthraquinone derivatives with enhanced potency.


Assuntos
Antraquinonas/farmacologia , Emodina/farmacologia , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Rheum/química , Animais , Antraquinonas/química , Emodina/química , Camundongos , Estrutura Molecular , Células RAW 264.7 , Relação Estrutura-Atividade
15.
Bioorg Chem ; 107: 104613, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33485103

RESUMO

Phytochemical investigation of Citrus unshiu peels led to the isolation of eight new flavonols (7-9, 11-15) and sixteen known compounds (1-6, 10, 16-24). Their structures were elucidated using spectroscopic analysis (1D, 2D NMR, and HR-MS). Besides, all isolated compounds (1-24) were evaluated for their inhibitory effects on receptor activator of RANKL-induced osteoclastogenesis in BMMs. Among them, dimethylmikanin (1), quercetogetin (2), 3,3',4',5,7,8-hexamethoxyflavone (3), 3-methoxynobiletin (4) showed a significant inhibitory effect on RANKL-induced osteoclast differentiation at a concentration of 10 µM. Moreover, 3-methoxynobiletin (4) suppressed RANKL-induced osteoclastogenesis by decreasing the number of osteoclasts and osteoclast actin-ring formation in a dose-dependent manner without causing any cytotoxic effects on BMMs. At the molecular level, 3-methoxynobiletin (4) inhibited RANKL-induced c-Fos expression and subsequently NFATc1 activation, as well as the expression of osteoclastogenesis-related marker genes c-Src and CtsK. These findings suggested that 3-methoxynobiletin (4) attenuated osteoclast differentiation by inhibiting RANKL-mediated c-Fos signaling and that it may have therapeutic potential for treating or preventing bone resorption-related diseases, such as osteoporosis.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Citrus/química , Flavonoides/química , Osteogênese/efeitos dos fármacos , Ligante RANK/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Citrus/metabolismo , Regulação para Baixo/efeitos dos fármacos , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Frutas/química , Frutas/metabolismo , Camundongos , Conformação Molecular , Osteoclastos/citologia , Osteoclastos/metabolismo , Extratos Vegetais/química , Proteínas Proto-Oncogênicas c-fos/metabolismo , Células RAW 264.7 , Relação Estrutura-Atividade
16.
Carbohydr Polym ; 256: 117559, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33483061

RESUMO

Water-extracted polysaccharides from Russula vinosa Lindblad (WRP) were separated into three fractions (WRP-1, WRP-2 and WRP-3) by gradient ethanol precipitation and gel chromatography. Structural characterization indicated that WRP-1 was a branched ß-(1→3)-glucan and exhibited rigid helical conformation in aqueous solution with Mw of 2,180 kDa and radius of gyration (Rg) of 123.4 nm. The galactoglucan of WRP-2 and WRP-3 were mainly composed of →6)-Galp-(1→ and →4)-Glcp-(1→ terminated by glucose and mannose, presenting much lower Mw (392 and 93.6 kDa) and Rg (57.6 and 42.6 nm), and more incompact flexible conformation than WRP-1. All fractions showed potential immunostimulatory activity by promoting macrophage proliferation, phagocytosis, as well as the release of nitric oxide and cytokines (TNF-α and IL-1ß). WRP-1 with unique structure and conformation showed the best immunostimulatory effects among them. This study suggests that WRP could be explored as natural immunostimulator used in the food and pharmaceutical industry.


Assuntos
Basidiomycota/química , Galactanos/química , Glucanos/química , Polissacarídeos Bacterianos/química , beta-Glucanas/química , Animais , Técnicas de Cultura de Células , Proliferação de Células , Sobrevivência Celular , Fracionamento Químico , Cromatografia em Gel , Vermelho Congo/química , Citocinas/metabolismo , Indústria Farmacêutica , Etanol , Indústria Alimentícia , Glucose/química , Macrófagos/metabolismo , Espectroscopia de Ressonância Magnética , Manose/química , Camundongos , Fagocitose , Polissacarídeos/química , Células RAW 264.7 , Espectroscopia de Infravermelho com Transformada de Fourier
17.
J Toxicol Environ Health A ; 84(7): 298-312, 2021 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-33375906

RESUMO

The worldwide demand for a natural dye by the cosmetic and food industry has recently gained interest. To provide scientific data supporting the usage of Thai henna leaf as a natural colorant, the phytochemical constituents, safety, and bioactivity of aqueous extract of the henna leaf by autoclave (HAE) and hot water (HHE) were determined. HAE contained a higher amount of total phenolic and flavonoid contents than HHE. The major constituents in both extracts were ferulic acid, gallic acid, and luteolin. The extracts displayed no marked mutagenic activity both in vitro and in vivo mammalian-like biotransformation. HAE and HHE also exhibited non-cytotoxicity to human immortalized keratinocyte cells (HaCaT), peripheral blood mononuclear cells (PBMCs), and murine macrophage RAW 264.7 cell line with IC20 and IC50 > 200 µg/ml. The extracts exhibited antioxidant and anti-inflammatory activity as evidenced by significant scavenging of ABTS and DPPH radicals and decreasing NO levels in LPS-induced RAW 264.7 cells. The antioxidant and anti-inflammatory properties of the extracts might be attributed to their phenolic and flavonoid contents. In conclusion, the traditional use of henna as a natural dye appears not to exert toxic effects and seems biosecure. Regarding safety, antioxidant, and anti-inflammatory properties, the aqueous extract of Thai henna leaf might thus serve as a readily available source for utilization in commercial health industries.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Lawsonia (Planta)/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/efeitos adversos , Antioxidantes/efeitos adversos , Humanos , Queratinócitos/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Camundongos , Compostos Fitoquímicos/efeitos adversos , Extratos Vegetais/efeitos adversos , Extratos Vegetais/química , Folhas de Planta/química , Células RAW 264.7
18.
Med Chem ; 17(9): 983-993, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32885758

RESUMO

BACKGROUND: Inflammation involves a dynamic network that is highly regulated by signals that initiate the inflammation process as well as signals that downregulate it. However, an imbalance between the two leads to tissue damage. Throughout the world, inflammatory disease becomes common in the aging society. The drugs which are used clinically have serious side effects. Natural products or compounds derived from natural products show diversity in structure and play an important role in drug discovery and development. OBJECTIVE: Oreganum Vulgare is used in traditional medicine for various ailments including respiratory and rheumatic disorders, severe cold, suppression of tumors. The current study aims to evaluate the anti-inflammatory potential by evaluating various in vitro parameters. METHODS: Inflammation-induced in macrophages via LPS is the most accepted model for evaluating the antiinflammatory activity of various plant extracts and lead compounds. RESULTS: The extracts (OVEE, OVEAF) as well as the isolated compound(OVRA)of Oreganum Vulgare inhibit the pro-inflammatory cytokines (IL-6 and TNF-α) and NO without affecting cell viability. CONCLUSION: Our study established that the leaf extracts of Oreganum vulgare L. exhibit anti-inflammatory activity and thus confirm its importance in traditional medicine.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Origanum/química , Animais , Anti-Inflamatórios/química , Antioxidantes/química , Sobrevivência Celular/efeitos dos fármacos , Cinamatos/química , Cinamatos/metabolismo , Citocinas/metabolismo , Depsídeos/química , Depsídeos/metabolismo , Dexametasona/química , Dexametasona/metabolismo , Avaliação Pré-Clínica de Medicamentos , Interleucina-1beta/química , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Óxido Nítrico/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Células RAW 264.7 , Fator de Necrose Tumoral alfa/química , Fator de Necrose Tumoral alfa/metabolismo , Ácido Rosmarínico
19.
Artigo em Inglês | MEDLINE | ID: mdl-33292158

RESUMO

BACKGROUND: Microsomal prostaglandin E synthase-1 (mPGES-1) catalyzes the terminal step of prostaglandin E2 (PGE2) production, which plays an important role in the regulation of febrile response. In our previous work, ligand-based pharmacophore models, built with mPGES-1 inhibitors, were employed to identify a novel series of compounds that reduce the febrile response in rats. OBJECTIVES: The study aimed to evaluate the mechanism of action of the most active compound (1). METHODS: For in vivo assays, rats were pretreated with the antipyretic compounds 1-8, 30 min before LPS injection. For in vitro assays, RAW 264.7 macrophage cells were incubated with the antipyretic compounds 1-8 for 1 hour before LPS stimulus. After 16 h, quantitative real-time PCR was carried out. Additionally, the PGE2 concentration in the hypothalamus was quantified by ELISA and the inhibitory effect of N-cyclopentyl-N'-[3-(3-cyclopropyl-1H-1,2,4-triazol- 5-yl)phenyl]ethanediamide (1) over human COX-2 enzymatic activity was determined with a COX Colorimetric Inhibitor Screening Assay Kit. RESULTS: Compound 1 and CAY10526 showed comparable efficacy to reduce the febrile response when injected i.v. (compound 1: 63.10%, CAY10526: 70.20%). Moreover, compound 1 significantly reduced the mPGES-1 mRNA levels, in RAW264.7 cells, under inflammatory conditions. A chemically-similar compound (8-) also significantly reduced the mRNA levels of the gene target. On the other hand, compounds 6 and 7, which are also somewhat similar to compound 1, did not significantly impact mPGES-1 mRNA levels. CONCLUSIONS: PGE2 concentration reduction in the hypothalamus, due to compound 1 central injection, is related to decreased mPGES-1 mRNA levels but not to COX-2 inhibition (IC50> 50 µM). Therefore, compound 1 is a promising lead for innovative antipyretic drug development.


Assuntos
Antipiréticos , Macrófagos , Prostaglandina-E Sintases , RNA Mensageiro , Animais , Antipiréticos/farmacologia , Ciclo-Oxigenase 2/genética , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Camundongos , Prostaglandina-E Sintases/antagonistas & inibidores , Prostaglandina-E Sintases/genética , Células RAW 264.7 , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/economia , Ratos
20.
ACS Appl Mater Interfaces ; 12(44): 49362-49370, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33050704

RESUMO

Natural killer (NK) cells, which are cytotoxic lymphocytes of the innate immune system and recognize cancer cells via various immune receptors, are promising agents in cell immunotherapy. To utilize NK cells as a therapeutic agent, their biodistribution and pharmacokinetics need to be evaluated following systemic administration. Therefore, in vivo imaging and tracking with efficient labeling and quantitative analysis of NK cells are required. However, the lack of the phagocytic capacity of NK cells makes it difficult to establish breakthroughs in cell labeling and subsequent in vivo studies. Herein, an effective labeling of upconverting nanoparticles (UCNPs) in NK cells is proposed using electroporation with high sensitivity and stability. The labeling performance of UCNPs functionalized with carboxy-polyethylene glycol (PEG) is better than with methoxy-PEG or with amine-PEG. The labeling efficiency becomes higher, but cell damage is greater as electric field increases; thus, there is an optimum electroporation condition for internalization of UCNPs into NK cells. The tracking and biodistribution imaging analyses of intravenously injected NK cells show that the labeled NK cells are initially distributed primarily in lungs and then spread to the liver and spleen. These advances will accelerate the application of NK cells as key components of immunotherapy against cancer.


Assuntos
Células Matadoras Naturais/química , Nanopartículas/química , Polietilenoglicóis/química , Animais , Células Cultivadas , Citocinas/metabolismo , Eletroporação , Humanos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Camundongos , Imagem Óptica , Tamanho da Partícula , Polietilenoglicóis/síntese química , Células RAW 264.7 , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA