Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Stem Cell Res Ther ; 15(1): 99, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581069

RESUMO

BACKGROUND: Human induced pluripotent stem cell (iPSC)-derived peripheral sensory neurons present a valuable tool to model human diseases and are a source for applications in drug discovery and regenerative medicine. Clinically, peripheral sensory neuropathies can result in maladies ranging from a complete loss of pain to severe painful neuropathic disorders. Sensory neurons are located in the dorsal root ganglion and are comprised of functionally diverse neuronal types. Low efficiency, reproducibility concerns, variations arising due to genetic factors and time needed to generate functionally mature neuronal populations from iPSCs remain key challenges to study human nociception in vitro. Here, we report a detailed functional characterization of iPSC-derived sensory neurons with an accelerated differentiation protocol ("Anatomic" protocol) compared to the most commonly used small molecule approach ("Chambers" protocol). Anatomic's commercially available RealDRG™ were further characterized for both functional and expression phenotyping of key nociceptor markers. METHODS: Multiple iPSC clones derived from different reprogramming methods, genetics, age, and somatic cell sources were used to generate sensory neurons. Manual patch clamp was used to functionally characterize both control and patient-derived neurons. High throughput techniques were further used to demonstrate that RealDRGs™ derived from the Anatomic protocol are amenable to high throughput technologies for disease modelling. RESULTS: The Anatomic protocol rendered a purer culture without the use of mitomycin C to suppress non-neuronal outgrowth, while Chambers differentiations yielded a mix of cell types. Chambers protocol results in predominantly tonic firing when compared to Anatomic protocol. Patient-derived nociceptors displayed higher frequency firing compared to control subject with both, Chambers and Anatomic differentiation approaches, underlining their potential use for clinical phenotyping as a disease-in-a-dish model. RealDRG™ sensory neurons show heterogeneity of nociceptive markers indicating that the cells may be useful as a humanized model system for translational studies. CONCLUSIONS: We validated the efficiency of two differentiation protocols and their potential application for functional assessment and thus understanding the disease mechanisms from patients suffering from pain disorders. We propose that both differentiation methods can be further exploited for understanding mechanisms and development of novel treatments in pain disorders.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Reprodutibilidade dos Testes , Células Receptoras Sensoriais/metabolismo , Dor/metabolismo , Diferenciação Celular/fisiologia
2.
Sci Rep ; 14(1): 6011, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472288

RESUMO

Sensory neurons are afferent neurons in sensory systems that convert stimuli and transmit information to the central nervous system as electrical signals. Primary afferent neurons that are affected by non-noxious and noxious stimuli are present in the dorsal root ganglia (DRG), and the DRG sensory neurons are used as an in vitro model of the nociceptive response. However, DRG derived from mouse or rat give a low yield of neurons, and they are difficult to culture. To help alleviate this problem, we characterized human induced pluripotent stem cell (hiPSC) derived sensory neurons. They can solve the problems of interspecies differences and supply stability. We investigated expressions of sensory neuron related proteins and genes, and drug responses by Multi-Electrode Array (MEA) to analyze the properties and functions of sensory neurons. They expressed nociceptor, mechanoreceptor and proprioceptor related genes and proteins. They constitute a heterogeneous population of their subclasses. We confirmed that they could respond to both noxious and non-noxious stimuli. We showed that histamine inhibitors reduced histamine-induced neuronal excitability. Furthermore, incubation with a ProTx-II and Nav1.7 inhibitor reduced the spontaneous neural activity in hiPSC-derived sensory neurons. Their responsiveness was different from each drug. We have demonstrated that hiPSC-derived sensory neurons combined with MEA are good candidates for drug discovery studies where DRG in vitro modeling is necessary.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Ratos , Camundongos , Animais , Células-Tronco Pluripotentes Induzidas/fisiologia , Histamina/metabolismo , Células Receptoras Sensoriais/metabolismo , Gânglios Espinais/metabolismo
3.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955608

RESUMO

BACKGROUND: Neurogenic detrusor overactivity (NDO) is a severe pathological condition characterized by involuntary detrusor contractions leading to urine leakage. This condition is frequent after spinal cord injury (SCI). Gene therapy for NDO requires the development of vectors that express therapeutic transgenes driven by sensory neuron-specific promoters. The aim of this study was to develop and assess tools for the characterization of sensory neuron-specific promoters in dorsal root ganglia (DRG) neurons after transduction with herpes simplex virus type 1 (HSV-1)-based amplicon defective vectors. METHODS: The HSV-1 vector genome encoded two independent transcription cassettes: one expressed firefly luciferase (FLuc) driven by different promoters' candidates (rTRPV1, rASIC3, rCGRP, or hCGRP), and the other expressed a reporter gene driven by an invariable promoter. The strength and selectivity of promoters was assessed in organotypic cultures of explanted adult DRG, or sympathetic and parasympathetic ganglia from control and SCI rats. RESULTS: The rCGRP promoter induced selective expression in the DRG of normal rats. The rTRPV-1 promoter, which did not display selective activity in control rats, induced selective expression in DRG explanted from SCI rats. CONCLUSIONS: This study provides a methodology to assess sensory neuron-specific promoters, opening new perspectives for future gene therapy for NDO.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Traumatismos da Medula Espinal , Bexiga Urinária Hiperativa , Animais , Gânglios Espinais/metabolismo , Terapia Genética/métodos , Vetores Genéticos/genética , Herpesvirus Humano 1/genética , Ratos , Células Receptoras Sensoriais/metabolismo , Traumatismos da Medula Espinal/metabolismo , Bexiga Urinária Hiperativa/terapia
4.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418928

RESUMO

Free nerve endings are key structures in sensory transduction of noxious stimuli. In spite of this, little is known about their functional organization. Transient receptor potential (TRP) channels have emerged as key molecular identities in the sensory transduction of pain-producing stimuli, yet the vast majority of our knowledge about sensory TRP channel function is limited to data obtained from in vitro models which do not necessarily reflect physiological conditions. In recent years, the development of novel optical methods such as genetically encoded calcium indicators and photo-modulation of ion channel activity by pharmacological tools has provided an invaluable opportunity to directly assess nociceptive TRP channel function at the nerve terminal.


Assuntos
Dor Nociceptiva/patologia , Nervos Periféricos/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Axônios/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Capsaicina/farmacologia , Dor Nociceptiva/metabolismo , Medicina de Precisão , Células Receptoras Sensoriais/metabolismo , Canais de Potencial de Receptor Transitório/antagonistas & inibidores
5.
Pharmacol Res ; 113(Pt A): 209-215, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27491560

RESUMO

The cytokine thymic stromal lymphopoietin (TSLP) is involved in the development and the progression of allergic diseases. It is mainly released by epithelial cells at barriers such as skin and gut in response to danger signals. Overexpression of TSLP in keratinocytes (KC) can provoke the development of a type 2 inflammatory response. Additionally, TSLP directly acts on sensory neurons and thereby triggers itch. Since histamine is also increased in lesions of inflammatory skin diseases, the aim of this study was to investigate possible effects of histamine as well as different histamine receptor subtype agonists and antagonists on TSLP production in KC. We therefore stimulated human KC with histamine in the presence or absence of the known TSLP-inductor poly I:C and measured TSLP production at protein as well as mRNA level. Histamine alone did not induce TSLP production in human KC, but pre-incubation with histamine prior to challenge with poly I:C resulted in a significant increase of TSLP production compared to stimulation with poly I:C alone. Experiments with different histamine receptor agonists (H1R: 2-pyridylethylamine; H2R: amthamine; H2R/H4R: 4-methylhistamine (4MH)) revealed a dominant role for the H4R receptor, as 4-MH in combination with poly I:C displayed a significant increase of TSLP secretion, while the other agonists did not show any effect. The increase in TSLP production by 4MH was blocked with the H4R antagonist JNJ7777120. This effect was reproducible also in the murine KC cell line MSC. Taken together, our study indicates a new role for the H4 receptor in the regulation of TSLP in keratinocytes. Therefore, blocking of the H4R receptor in allergic diseases might be promising to alleviate inflammation and pruritus via TSLP.


Assuntos
Citocinas/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Receptores Histamínicos/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Linhagem Celular , Citocinas/metabolismo , Células HEK293 , Histamina/metabolismo , Humanos , Queratinócitos/metabolismo , Metilistaminas/farmacologia , Camundongos , Poli I-C/farmacologia , Piridinas/farmacologia , RNA Mensageiro/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Linfopoietina do Estroma do Timo
6.
Elife ; 42015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26076474

RESUMO

Peripheral neural sensory mechanisms play a crucial role in metabolic regulation but less is known about the mechanisms underlying vagal sensing itself. Recently, we identified an enrichment of liver X receptor alpha and beta (LXRα/ß) in the nodose ganglia of the vagus nerve. In this study, we show mice lacking LXRα/ß in peripheral sensory neurons have increased energy expenditure and weight loss when fed a Western diet (WD). Our findings suggest that the ability to metabolize and sense cholesterol and/or fatty acids in peripheral neurons is an important requirement for physiological adaptations to WDs.


Assuntos
Adaptação Fisiológica/fisiologia , Dieta Ocidental , Metabolismo Energético/fisiologia , Gânglio Nodoso/fisiologia , Receptores Nucleares Órfãos/deficiência , Células Receptoras Sensoriais/metabolismo , Análise de Variância , Animais , Calorimetria Indireta , Receptores X do Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Redução de Peso/fisiologia
7.
Drug Saf ; 13(4): 257-70, 1995 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8573298

RESUMO

Insomnia, the experience of poor quality or quantity of sleep, is a very common complaint. Approximately 65 million adults (36% of the American population) complain of poor sleep, and of this group, 25% have insomnia on a chronic basis. These chronic insomniacs not only report higher rates of difficulty with concentration, memory and the ability to cope with minor irritations but also have 2.5 times more fatigue-related automobile accidents than do good sleepers. Despite its ubiquity, insomnia is often either untreated or inadequately treated. Short-acting hypnotics are advocated for transient insomnia, which lasts less than 3 weeks, and in patients with chronic insomnia as an adjunctive treatment where nonpharmacological treatment is not sufficient to alleviate insomnia and the related daytime detrimental effects. The putative adverse effects of hypnotics must be weighted against the severe health effects caused by continued sleep impairment. If hypnotic agents are used, they should be taken nightly only for brief use, or intermittently in longer term use. Benzodiazepines, zolpidem and zopiclone (in countries where the latter is available) remain the recommended hypnotic agents, although in the past few years there has been much criticism in lay magazines and on television about the use of benzodiazepines. However, this review of the efficacy and tolerability data of the short-acting hypnotics suggests that triazolam is comparable with other short-acting hypnotics at equipotent doses while taking into consideration that for every hypnotic, different study populations display different degrees of efficacy. In addition, contrary to previous suggestions that such adverse effects are rebound insomnia and anterograde amnesia are unique to triazolam, hypnotically equivalent doses of tirazolam have not been shown to produce these effects more frequently than other short-acting hypnotics. The newer nonbenzodiazepine hypnotics seem to be equally efficacious as the short-acting benzodiazepines; whether they will truly have a better adverse effect profile will be determined as more clinical experience accumulates. Despite the availability, relative safety and efficacy of these newer hypnotic agents, they should not be perceived as the sole treatment for insomnia and should be used in conjunction with nonpharmacological techniques (such as adherence to good sleep hygiene, sleep restriction, stimulus control and biofeedback therapy).


Assuntos
Hipnóticos e Sedativos/uso terapêutico , Células Receptoras Sensoriais/efeitos dos fármacos , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Adulto , Sítios de Ligação , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase III como Assunto , Análise Custo-Benefício , Overdose de Drogas , Humanos , Hipnóticos e Sedativos/efeitos adversos , Hipnóticos e Sedativos/metabolismo , Hipnóticos e Sedativos/farmacocinética , Células Receptoras Sensoriais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA