Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2829: 21-48, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951325

RESUMO

The baculovirus expression vector system (BEVS) is recognized as a powerful platform for producing challenging proteins and multiprotein complexes both in academia and industry. Since a baculovirus was first used to produce heterologous human IFN-ß protein in insect cells, the BEVS has continuously been developed and its applications expanded. We have recently established a multigene expression toolbox (HR-bac) composed of a set of engineered bacmids expressing a fluorescent marker to monitor virus propagation and a library of transfer vectors. Unlike platforms that rely on Tn7-medidated transposition for the construction of baculoviruses, HR-bac relies on homologous recombination, which allows to evaluate expression constructs in 2 weeks and is thus perfectly adapted to parallel expression screening. In this chapter, we detail our standard operating procedures for the preparation of the reagents, the construction and evaluation of baculoviruses, and the optimization of protein production for both intracellularly expressed and secreted proteins.


Assuntos
Baculoviridae , Vetores Genéticos , Proteínas Recombinantes , Baculoviridae/genética , Animais , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vetores Genéticos/genética , Células Sf9 , Expressão Gênica , Humanos , Insetos/genética , Spodoptera , Linhagem Celular , Recombinação Homóloga , Análise Custo-Benefício
2.
Biotechnol Bioeng ; 118(10): 4129-4137, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34264519

RESUMO

Serology testing for COVID-19 is important in evaluating active immune response against SARS-CoV-2, studying the antibody kinetics, and monitoring reinfections with genetic variants and new virus strains, in particular, the duration of antibodies in virus-exposed individuals and vaccine-mediated immunity. In this study, recombinant S protein of SARS-CoV-2 was expressed in Rachiplusia nu, an important agronomic plague. One gram of insect larvae produces an amount of S protein sufficient for 150 determinations in the ELISA method herein developed. We established a rapid production process for SARS-CoV-2 S protein that showed immunoreactivity for anti-SARS-CoV-2 antibodies and was used as a single antigen for developing the ELISA method with high sensitivity (96.2%) and specificity (98.8%). Our findings provide an efficient and cost-effective platform for large-scale S protein production, and the scale-up is linear, thus avoiding the use of complex equipment like bioreactors.


Assuntos
Teste Sorológico para COVID-19 , COVID-19/diagnóstico , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/biossíntese , Animais , Larva/metabolismo , Larva/virologia , Nucleopoliedrovírus , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , SARS-CoV-2/metabolismo , Células Sf9 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Spodoptera
3.
J Pharmacol Exp Ther ; 376(1): 29-39, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33127749

RESUMO

Expression and functional changes in the organic anion transporting polypeptide (OATP)-multidrug resistance-associated protein (MRP) axis of transporters are well reported in patients with nonalcoholic steatohepatitis (NASH). These changes can impact plasma and tissue disposition of endo- and exogenous compounds. The transporter alterations are often assessed by administration of a xenobiotic or by transporter proteomic analysis from liver biopsies. Using gene expression, proteomics, and endogenous biomarkers, we show that the gene expression and activity of OATP and MRP transporters are associated with disease progression and recovery in humans and in preclinical animal models of NASH. Decreased OATP and increased MRP3/4 gene expression in two cohorts of patients with steatosis and NASH, as well as gene and protein expression in multiple NASH rodent models, have been established. Coproporphyrin I and III (CP I and III) were established as substrates of MRP4. CP I plasma concentration increased significantly in four animal models of NASH, indicating the transporter changes. Up to a 60-fold increase in CP I plasma concentration was observed in the mouse bile duct-ligated model compared with sham controls. In the choline-deficient amino acid-defined high-fat diet (CDAHFD) model, CP I plasma concentrations increased by >3-fold compared with chow diet-fed mice. In contrast, CP III plasma concentrations remain unaltered in the CDAHFD model, although they increased in the other three NASH models. These results suggest that tracking CP I plasma concentrations can provide transporter modulation information at a functional level in NASH animal models and in patients. SIGNIFICANCE STATEMENT: Our analysis demonstrates that multidrug resistance-associated protein 4 (MRP4) transporter gene expression tracks with nonalcoholic steatohepatitis (NASH) progression and intervention in patients. Additionally, we show that coproporphyrin I and III (CP I and III) are substrates of MRP4. CP I plasma and liver concentrations increase in different diet- and surgery-induced rodent NASH models, likely explained by both gene- and protein-level changes in transporters. CP I and III are therefore potential plasma-based biomarkers that can track NASH progression in preclinical models and in humans.


Assuntos
Coproporfirinas/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Angiogênicas/genética , Proteínas Angiogênicas/metabolismo , Animais , Coproporfirinas/sangue , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Células Sf9 , Spodoptera
4.
Ecotoxicol Environ Saf ; 197: 110591, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32283411

RESUMO

Benzoylphenylureas as an important type of insect growth regulators, acting on the moulting stage in immature insects, are highly effective and low toxic. The new benzoylphenylurea TXH09 [N-((2,6-dimethyl-4-(heptafluoropropyl-2-yl)phenyl)carbamoyl)-2,6-difluorobenzamide] has high efficacy against chewing insect pests harming vegetables and rice. In this paper, the efficacy of TXH09 against two intractable borers Ostrinia furnacalis and Grapholitha molesta were evaluated in field, and safety assessment by exploring the characteristics of photodegradation, cytotoxicity, micronucleus generation and chromosome aberration was performed. The results showed that TXH09 had good capability in preventing infested corn and reducing the population of O. furnacalis larvae, and maintained high efficacy on shoot protection and peach conservation against G. molesta larvae. There were no significant differences between the control effects of TXH09 and that of hexaflumuron or diflubenzuron at the same active dose. TXH09 photolysis in solvents N,N-dimethylformamide, toluene and methanol yielded two major products, and the photodegradation of TXH09 was more prone to occur in N,N-dimethylformamide. TXH09 and the mixture of its photoproducts showed higher cytotoxicity on insect Sf-9 cells than on human Hek293 cells. Moreover, TXH09 didn't show significant effects in inducing micronucleated cells in both male and female mice and chromosomal aberrations in mouse spermatocytes by its own. In conclusion, TXH09, as an effective insecticide, has good environmental safety performance against O. furnacalis and G. molesta in field.


Assuntos
Inseticidas/farmacologia , Mariposas/fisiologia , Compostos de Fenilureia/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Inseticidas/química , Larva/fisiologia , Masculino , Camundongos , Testes de Mutagenicidade , Compostos de Fenilureia/química , Fotólise , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Células Sf9
5.
Biotechnol Bioeng ; 117(5): 1483-1501, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32017023

RESUMO

Packaging during the passaging of viruses in cell cultures yields various phenotypes and is regulated by viral protein expression in infected cells. Although such a packaging mechanism has a profound effect in controlling the virus yield, little is known about the underlying statistical models followed by virus packaging and protein expression among cells infected with the virus. A predictive framework combining identification of the probability density function (PDF) based on log-likelihood and using the PDF for Monte-Carlo simulations is developed. The Birnbaum-Saunders distribution was found to be consistent with all three-virus packaging levels, including nucleocapsids/occlusion-derived virus (ODV), ODVs/polyhedra, and polyhedra/cell for both wild-type and genetically modified AcMNPV. Next, it was demonstrated that PDF fitting could be used to compare two viruses having distinctly different genetic configurations. Finally, the identified PDF can be incorporated in RNA synthesis parameters for baculovirus infection to predict the cell-to-cell variability in protein expression using Monte-Carlo simulations. The proposed tool can be used for the estimation of uncertainty in the kinetic parameter and prediction of cell-to-cell variability for other biological systems.


Assuntos
Técnicas de Cultura de Células/métodos , Simulação por Computador , Método de Monte Carlo , Cultura de Vírus/métodos , Animais , Cinética , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Modelos Estatísticos , Nucleopoliedrovírus/genética , Nucleopoliedrovírus/metabolismo , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Proteínas Virais/análise , Proteínas Virais/genética , Proteínas Virais/metabolismo
6.
Viruses ; 12(2)2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32079288

RESUMO

Virus-like particles (VLPs) have emerged as a powerful scaffold for antigen presentation and delivery strategies. Compared to single protein-based therapeutics, quality assessment requires a higher degree of refinement due to the structure of VLPs and their similar properties to extracellular vesicles (EVs). Advances in the field of nanotechnology with single particle and high-resolution analysis techniques provide appealing approaches to VLP characterization. In this study, six different biophysical methods have been assessed for the characterization of HIV-1-based VLPs produced in mammalian and insect cell platforms. Sample preparation and equipment set-up were optimized for the six strategies evaluated. Electron Microscopy (EM) disclosed the presence of several types of EVs within VLP preparations and cryogenic transmission electron microscopy (cryo-TEM) resulted in the best technique to resolve the VLP ultrastructure. The use of super-resolution fluorescence microscopy (SRFM), nanoparticle tracking analysis (NTA) and flow virometry enabled the high throughput quantification of VLPs. Interestingly, differences in the determination of nanoparticle concentration were observed between techniques. Moreover, NTA and flow virometry allowed the quantification of both EVs and VLPs within the same experiment while analyzing particle size distribution (PSD), simultaneously. These results provide new insights into the use of different analytical tools to monitor the production of nanoparticle-based biologicals and their associated contaminants.


Assuntos
HIV/ultraestrutura , Microscopia/métodos , Animais , Microscopia Crioeletrônica , Vesículas Extracelulares/ultraestrutura , Vesículas Extracelulares/virologia , Células HEK293 , Humanos , Microscopia Eletrônica de Transmissão , Pesquisa Qualitativa , Células Sf9 , Imagem Individual de Molécula/métodos , Spodoptera , Vacinas de Partículas Semelhantes a Vírus/ultraestrutura , Vírion/ultraestrutura
7.
Virol Sin ; 34(4): 423-433, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31037643

RESUMO

As specific pathogens of noctuid pests, including Spodoptera exigua, S. litura, Helicoverpa armigera, and Mythimna separata, ascoviruses are suitable for the development of bioinsecticides. In this study, the infectivity of Heliothis virescens ascovirus 3j (HvAV-3j) on insect and mammalian cells was evaluated. HvAV-3j infection induced drastic morphological changes in Sf9, HzAM1, SeFB, and HaFB cells, including swelling and detachment. Notably, the latter phenomena did not occur in HvAV-3j-inoculated mammalian cells (HEK293, 7402, HePG2, PK15, ST, and TM3). MTT assays indicated that HvAV-3j inhibited the growth of host insect cells from the 6th hpi, but no effects were detected in the HvAV-3j-inoculated mammalian cells. Furthermore, viral DNA replication, gene transcription, and protein expression were investigated, and the results consistently suggested that HvAV-3j viruses were not able to replicate their genomic DNA, transcribe, or express their proteins in the non-target vertebrate cells. The HvAV-3j genes were only transcribed and expressed in the four insect cell lines. These results indicated that HvAV-3j was infectious to cells derived from S. frugiperda, S. exigua, H. armigera, and H. zea but not to cells derived from human, pig, and mouse, suggesting that ascoviruses are safe to non-target vertebrate cells.


Assuntos
Ascoviridae/genética , Ascoviridae/fisiologia , Interações entre Hospedeiro e Microrganismos , Replicação Viral , Animais , Replicação do DNA , DNA Viral/genética , Células HEK293 , Humanos , Larva/virologia , Camundongos , Mariposas/virologia , Fases de Leitura Aberta , Filogenia , Medição de Risco , Células Sf9 , Spodoptera/virologia , Suínos
8.
J Biotechnol ; 231: 201-211, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27015979

RESUMO

Newcastle disease (ND) is a lethal avian infectious disease caused by Newcastle disease virus (NDV) which poses a substantial threat to China's poultry industry. Conventional live vaccines against NDV are available, but they can revert to virulent strains and do not protect against mutant strains of the virus. Therefore, there is a critical unmet need for a novel vaccine that is safe, efficacious, and cost effective. Here, we designed novel recombinant baculovirus vaccines expressing the NDV F or HN genes. To optimize antigen expression, we tested the incorporation of multiple regulatory elements including: (1) truncated vesicular stomatitis virus G protein (VSV-GED), (2) woodchuck hepatitis virus post-transcriptional regulatory element (WPRE), (3) inverted terminal repeats (ITRs) of adeno-associated virus (AAV Serotype II), and (4) the cytomegalovirus (CMV) promoter. To test the in vivo efficacy of the viruses, we vaccinated chickens with each construct and characterized the cellular and humoral immune response to challenge with virulent NDV (F48E9). All of the vaccine constructs provided some level of protection (62.5-100% protection). The F-series of vaccines provided a greater degree of protection (87.5-100%) than the HN-series (62.5-87.5%). While all of the vaccines elicited a robust cellular and humoral response subtle differences in efficacy were observed. The combination of the WPRE and VSV-GED regulatory elements enhanced the immune response and increased antigen expression. The ITRs effectively increased the length of time IFN-γ, IL-2, and IL-4 were expressed in the plasma. The F-series elicited higher titers of neutralizing antibody and NDV-specific IgG. The baculovirus system is a promising platform for NDV vaccine development that combines the immunostimulatory benefits of a recombinant virus vector with the non-replicating benefits of a DNA vaccine.


Assuntos
Baculoviridae/genética , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/imunologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Galinhas , Clonagem Molecular , Proteína HN/química , Proteína HN/genética , Proteína HN/metabolismo , Vírus da Doença de Newcastle/metabolismo , Células Sf9 , Vacinas Sintéticas/química , Vacinas Sintéticas/metabolismo , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo
9.
J Biomol NMR ; 62(3): 373-85, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26070442

RESUMO

Heterologous expression of proteins in insect cells is frequently used for crystallographic structural studies due to the high yields even for challenging proteins requiring the eukaryotic protein processing capabilities of the host. However for NMR studies, the need for isotope labeling poses extreme challenges in eukaryotic hosts. Here, we describe a robust method to achieve uniform protein (15)N and (13)C labeling of up to 90 % in baculovirus-infected insect cells. The approach is based on the production of labeled yeast extract, which is subsequently supplemented to insect cell growth media. The method also allows deuteration at levels of >60 % without decrease in expression yield. The economic implementation of the labeling procedures into a standard structural biology laboratory environment is described in a step-by-step protocol. Applications are demonstrated for a variety of NMR experiments using the Abelson kinase domain, GFP, and the beta-1 adrenergic receptor as examples. Deuterated expression of the latter provides spectra of very high quality of a eukaryotic G-protein coupled receptor.


Assuntos
Meios de Cultura , Marcação por Isótopo/economia , Marcação por Isótopo/métodos , Isótopos/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Pichia/metabolismo , Animais , Meios de Cultura/química , Meios de Cultura/economia , Meios de Cultura/metabolismo , Isótopos/análise , Isótopos/química , Células Sf9
10.
BMC Biotechnol ; 15: 31, 2015 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-25981500

RESUMO

BACKGROUND: Each year, influenza is responsible for hundreds of thousand cases of illness and deaths worldwide. Due to the virus' fast mutation rate, the World Health Organization (WHO) is constantly on alert to rapidly respond to emerging pandemic strains. Although anti-viral therapies exist, the most proficient way to stop the spread of disease is through vaccination. The majority of influenza vaccines on the market are produced in embryonic hen's eggs and are composed of purified viral antigens from inactivated whole virus. This manufacturing system, however, is limited in its production capacity. Cell culture produced vaccines have been proposed for their potential to overcome the problems associated with egg-based production. Virus-like particles (VLPs) of influenza virus are promising candidate vaccines under consideration by both academic and industry researchers. METHODS: In this study, VLPs were produced in HEK293 suspension cells using the Bacmam transduction system and Sf9 cells using the baculovirus infection system. The proposed systems were assessed for their ability to produce influenza VLPs composed of Hemagglutinin (HA), Neuraminidase (NA) and Matrix Protein (M1) and compared through the lens of bioprocessing by highlighting baseline production yields and bioactivity. VLPs from both systems were characterized using available influenza quantification techniques, such as single radial immunodiffusion assay (SRID), HA assay, western blot and negative staining transmission electron microscopy (NSTEM) to quantify total particles. RESULTS: For the HEK293 production system, VLPs were found to be associated with the cell pellet in addition to those released in the supernatant. Sf9 cells produced 35 times more VLPs than HEK293 cells. Sf9-VLPs had higher total HA activity and were generally more homogeneous in morphology and size. However, Sf9 VLP samples contained 20 times more baculovirus than VLPs, whereas 293 VLPs were produced along with vesicles. CONCLUSIONS: This study highlights key production hurdles that must be overcome in both expression platforms, namely the presence of contaminants and the ensuing quantification challenges, and brings up the question of what truly constitutes an influenza VLP candidate vaccine.


Assuntos
Antígenos Virais/química , Antígenos Virais/metabolismo , Vacinas contra Influenza/química , Vacinas contra Influenza/metabolismo , Vírion/química , Vírion/metabolismo , Animais , Antígenos Virais/genética , Antígenos Virais/isolamento & purificação , Células HEK293 , Humanos , Vacinas contra Influenza/genética , Vacinas contra Influenza/isolamento & purificação , Neuraminidase/química , Neuraminidase/genética , Neuraminidase/isolamento & purificação , Neuraminidase/metabolismo , Células Sf9 , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/isolamento & purificação , Proteínas da Matriz Viral/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/isolamento & purificação , Proteínas Virais/metabolismo , Vírion/genética , Vírion/isolamento & purificação
11.
Elife ; 42015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25706231

RESUMO

Actin filament dynamics govern many key physiological processes from cell motility to tissue morphogenesis. A central feature of actin dynamics is the capacity of filaments to polymerize and depolymerize at their ends in response to cellular conditions. It is currently thought that filament kinetics can be described by a single rate constant for each end. In this study, using direct visualization of single actin filament elongation, we show that actin polymerization kinetics at both filament ends are strongly influenced by the binding of proteins to the lateral filament surface. We also show that the pointed-end has a non-elongating state that dominates the observed filament kinetic asymmetry. Estimates of flexibility as well as effects on fragmentation and growth suggest that the observed kinetic diversity arises from structural alteration. Tuning elongation kinetics by exploiting the malleability of the filament structure may be a ubiquitous mechanism to generate a rich variety of cellular actin dynamics.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas de Transporte/metabolismo , Microscopia de Fluorescência/métodos , Polimerização , Citoesqueleto de Actina/ultraestrutura , Actinina/metabolismo , Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Algoritmos , Animais , Moléculas de Adesão Celular/metabolismo , Galinhas , Filaminas/metabolismo , Cinética , Proteínas dos Microfilamentos/metabolismo , Microscopia Eletrônica , Modelos Biológicos , Método de Monte Carlo , Miosinas/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica , Células Sf9 , Spodoptera
12.
J Struct Biol ; 188(1): 71-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25172991

RESUMO

Nuclear magnetic resonance spectroscopy is a powerful tool to study structural and functional properties of proteins, provided that they can be enriched in stable isotopes such as (15)N, (13)C and (2)H. This is usually easy and inexpensive when the proteins are expressed in Escherichiacoli, but many eukaryotic (human in particular) proteins cannot be produced this way. An alternative is to express them in insect cells. Labeled insect cell growth media are commercially available but at prohibitive prices, limiting the NMR studies to only a subset of biologically important proteins. Non-commercial solutions from academic institutions have been proposed, but none of them is really satisfying. We have developed a (15)N-labeling procedure based on the use of a commercial medium depleted of all amino acids and supplemented with a (15)N-labeled yeast autolysate for a total cost about five times lower than that of the currently available solutions. We have applied our procedure to the production of a non-polymerizable mutant of actin in Sf9 cells and of fragments of eukaryotic and viral membrane fusion proteins in S2 cells, which typically cannot be produced in E. coli, with production yields comparable to those obtained with standard commercial media. Our results support, in particular, the putative limits of a self-folding domain within a viral glycoprotein of unknown structure.


Assuntos
Perfilação da Expressão Gênica/métodos , Imageamento por Ressonância Magnética , Biossíntese de Proteínas , Proteínas da Matriz Viral/química , Aminoácidos/química , Animais , Drosophila/química , Drosophila/genética , Humanos , Radioisótopos de Nitrogênio/química , Células Sf9 , Spodoptera
13.
Insect Mol Biol ; 22(4): 399-410, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23668189

RESUMO

The honey bee, Apis mellifera, displays a rich behavioural repertoire, social organization and caste differentiation, and has an interesting mode of sex determination, but we still know little about its underlying genetic programs. We lack stable transgenic tools in honey bees that would allow genetic control of gene activity in stable transgenic lines. As an initial step towards a transgenic method, we identified promoter sequences in the honey bee that can drive constitutive, tissue-specific and cold shock-induced gene expression. We identified the promoter sequences of Am-actin5c, elp2l, Am-hsp83 and Am-hsp70 and showed that, except for the elp2l sequence, the identified sequences were able to drive reporter gene expression in Sf21 cells. We further demonstrated through electroporation experiments that the putative neuron-specific elp2l promoter sequence can direct gene expression in the honey bee brain. The identification of these promoter sequences is an important initial step in studying the function of genes with transgenic experiments in the honey bee, an organism with a rich set of interesting phenotypes.


Assuntos
Abelhas/genética , Regulação da Expressão Gênica , Genes de Insetos , Regiões Promotoras Genéticas , Animais , Abelhas/metabolismo , Encéfalo/metabolismo , Genes Reporter , Células Sf9 , Temperatura
14.
Sci Signal ; 6(256): ra1, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23281368

RESUMO

The Src and Syk families of kinases are two distinct sets of kinases that play critical roles in initiating membrane-proximal B cell receptor (BCR) signaling. However, unlike in other lymphocytes, such as T cells, the "division of labor" between Src family kinases (SFKs) and Syk in B cells is not well separated because both Syk and SFKs can phosphorylate immunoreceptor tyrosine-based activation motifs (ITAMs) present in proteins comprising the BCR. To understand why B cells require both SFKs and Syk for activation, we investigated the roles of both families of kinases in BCR signaling with computational modeling and in vitro experiments. Our computational model suggested that positive feedback enabled Syk to substantially compensate for the absence of SFKs when spatial clustering of BCRs was induced by multimeric ligands. We confirmed this prediction experimentally. In contrast, when B cells were stimulated by monomeric ligands that failed to produce BCR clustering, both Syk and SFKs were required for complete and rapid BCR activation. Our data suggest that SFKs could play a pivotal role in increasing BCR sensitivity to monomeric antigens of pathogens and in mediating a rapid response to soluble multimeric antigens of pathogens that can induce spatial BCR clustering.


Assuntos
Linfócitos B/imunologia , Retroalimentação Fisiológica/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Imunológicos , Proteínas Tirosina Quinases/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais/imunologia , Quinases da Família src/metabolismo , Animais , Anticorpos Monoclonais , Linfócitos B/metabolismo , Linfócitos B/fisiologia , Proteína Tirosina Quinase CSK , Clonagem Molecular , Simulação por Computador , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Método de Monte Carlo , Fosforilação , Proteínas Tirosina Quinases/genética , Células Sf9 , Spodoptera , Quinase Syk , Ultracentrifugação , Proteína-Tirosina Quinase ZAP-70/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA