Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Toxicol In Vitro ; 99: 105873, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851601

RESUMO

Açaí (Euterpe oleracea MART) is a fruit of great importance for the Amazon region in nutritional, cultural and socioeconomic terms. In recent years, açaí has been the subject of several studies due to its beneficial properties for health, including effects against tumor cells. Therefore, the present work aimed to evaluate in vitro the genotoxic and cytotoxic effects of the clarified extract of açaí juice in a human metastatic gastric cancer cell line (AGP01 cells). For comparison purposes, a non-transformed cell line of African green monkey renal epithelial cells (VERO cells) was used. The viability assay by resazurin reduction, the comet assay, the determination of cell death by differential fluorescent dyes and the wound healing migration assay were performed. A reduction in viability was observed only in the AGP01 line within 72 h. There was no genotoxic damage or cell death (through apoptosis or necrosis) in any of the cell lines. However, açaí extract induced motility reduction in both cell lines. The reduction in cell viability and the induction of the anti-migratory effect in the AGP01 cell line opens perspectives for exploring the potential of açaí as an adjuvant in the treatment of gastric cancer.


Assuntos
Sobrevivência Celular , Dano ao DNA , Euterpe , Extratos Vegetais , Neoplasias Gástricas , Euterpe/química , Sobrevivência Celular/efeitos dos fármacos , Animais , Humanos , Neoplasias Gástricas/tratamento farmacológico , Extratos Vegetais/toxicidade , Extratos Vegetais/farmacologia , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Chlorocebus aethiops , Movimento Celular/efeitos dos fármacos , Ensaio Cometa , Células Vero
2.
J Ethnopharmacol ; 330: 118206, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38636572

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Croton argyrophyllus Kunth., commonly known as "marmeleiro" or "cassetinga," is widely distributed in the Brazilian Northeast region. Its leaves and flowers are used in traditional medicine as tranquilizers to treat flu and headaches. AIM OF THE STUDY: This study was conducted to determine the chemical composition and toxicological safety of essential oil from C. argyrophyllus leaves using in vitro and in vivo models. MATERIALS AND METHODS: The chemical composition of the essential oil was determined using a gas chromatograph coupled to a mass spectrometer. Cytotoxicity was tested in the HeLa, HT-29, and MCF-7 cell lines derived from human cells (Homo sapiens) and Vero cell lines derived from monkeys (Cercopithecus aethiops) using the MTT method. Acute toxicity, genotoxicity. Mutagenicity tests were performed in Swiss mice (Mus musculus), which were administered essential oil orally in a single dose of 2000 mg/kg by gavage. RESULTS: The main components of the essential oil were p-mentha-2-en-1-ol, α-terpineol, ß-caryophyllene, and ß-elemene. The essential oil exhibited more than 90% cytotoxicity in all cell lines tested. No deaths or behavioral, hematological, or biochemical changes were observed in mice, revealing no acute toxicity. In genotoxic and mutagenic analyses, there was no increase in micronuclei in polychromatic erythrocytes or in the damage and index in the comet assay. CONCLUSIONS: The essential oil was cytotoxic towards the tested cell lines but did not exert toxic effects or promote DNA damage when administered orally at a single dose of 2000 mg/kg in mice.


Assuntos
Croton , Óleos Voláteis , Folhas de Planta , Animais , Croton/química , Óleos Voláteis/toxicidade , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Humanos , Chlorocebus aethiops , Camundongos , Células Vero , Testes de Mutagenicidade , Administração Oral , Células HeLa , Células HT29 , Células MCF-7 , Masculino , Feminino , Sobrevivência Celular/efeitos dos fármacos , Testes de Toxicidade Aguda , Dano ao DNA/efeitos dos fármacos
3.
Prep Biochem Biotechnol ; 54(6): 764-778, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38165781

RESUMO

In this study, we tried to explore the influence of various tricarboxylic acid (TCA) cycle intermediates on carotenoid production and with a focus on enhancing pigment biosynthesis, we conducted two statistical analysis. In case of TCA intermediates influence on pigment production by Paracoccus marcusii RSPO1; fumaric acid, and malic acid were observed as potent enhancers of pigment biosynthesis. Further, to optimize key media components for enhanced carotenoid production, the Plackett-Burman design was employed encompassing carbon, nitrogen sources, TCA cycle intermediates, and metal salts. The selected factors after Plackett Burman were fine-tuned through Response Surface Methodology and the optimal concentrations that have remarkably elevated carotenoid production were starch-2.24 g/l, MgSO4-0.416 g/l, ZnSO4-0.0157 g/l, and fumaric Acid-16 mM. Further, evaluation of pigment cytotoxicity against normal (Vero) and Non-Small Cell Carcinoma (A549) cells was performed. The resultant IC50 values were quantified as 161.3 µg/ml and 7.623 µg/ml for Vero and A549 cells, respectively. Moreover, a reactive oxygen species (ROS) determination study in A549 cells was done which have shown a noteworthy threefold ROS production in A549 cells through fluorescence spectroscopic observation. This implies that the bacterial carotenoids can act as potent pro-oxidants against cancerous cells while being nontoxic toward normal cells.


Assuntos
Carotenoides , Paracoccus , Chlorocebus aethiops , Animais , Humanos , Células A549 , Células Vero , Carotenoides/farmacologia , Carotenoides/metabolismo , Paracoccus/metabolismo , Meios de Cultura/química , Espécies Reativas de Oxigênio/metabolismo
4.
Sci Rep ; 13(1): 13206, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580353

RESUMO

The COVID-19 pandemic illustrated the important role of diagnostic tests, including lateral flow tests (LFTs), in identifying patients and their contacts to slow the spread of infections. INSTAND performed external quality assessments (EQA) for SARS-CoV-2 antigen detection with lyophilized and chemically inactivated cell culture supernatant of SARS-CoV-2 infected Vero cells. A pre-study demonstrated the suitability of the material. Participants reported qualitative and/or quantitative antigen results using either LFTs or automated immunoassays for five EQA samples per survey. 711 data sets were reported for LFT detection in three surveys in 2021. This evaluation focused on the analytical sensitivity of different LFTs and automated immunoassays. The inter-laboratory results showed at least 94% correct results for non-variant of concern (VOC) SARS-CoV-2 antigen detection for viral loads of ≥ 4.75 × 106 copies/mL and SARS-CoV-2 negative samples. Up to 85% had success for a non-VOC viral load of ~ 1.60 × 106 copies/mL. A viral load of ~ 1.42 × 107 copies/mL of the Delta VOC was reported positive in > 96% of results. A high specificity was found with almost 100% negative SARS-CoV-2 antigen results for HCoV 229E and HCoV NL63 positive samples. Quantitative results correlated with increasing SARS-CoV-2 viral load but showed a broad scatter. This study shows promising SARS-CoV-2 antigen test performance of the participating laboratories, but further investigations with the now predominant Omicron VOC are needed.


Assuntos
COVID-19 , SARS-CoV-2 , Chlorocebus aethiops , Animais , Humanos , Pandemias , Células Vero , COVID-19/diagnóstico , COVID-19/epidemiologia , Testes Imunológicos , Sensibilidade e Especificidade
5.
Invest New Drugs ; 41(5): 629-637, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37452982

RESUMO

The discovery and development of effective novel compounds is paramount in oncology for improving cancer therapy. In this study, we developed a new derivative of spiroindolone (7',8'-Dimethoxy-1',3'-dimethyl-1,2,3',4'-tetrahydrospiro[indole-3,5'- pyrazolo[3,4-c]isoquinolin]-2-one) and evaluated its anticancer- and immunomodulatory potential in a vitro model of chronic leukemia. We utilized the chronic leukemia cell line K562, as well as non-cancerous peripheral blood mononuclear cells (PBMC) and Vero cells (kidney epithelium of Cercopithecus aethiops). We assessed the cytotoxicity of the compound using the MTT assay, and performed cell cycle assays to determine its impact on different stages of the cell cycle. To evaluate its antineoplastic activity, we conducted a colony formation test to measure the effect of the compound on the clonal growth of cancer cells. Furthermore, we evaluated the immunomodulatory activity of the compound by measuring the levels of pro and anti-inflammatory cytokines. The study findings demonstrate that the spiroindolone-derived compound exerted noteworthy cytotoxic effects against K562 cells, with an IC50 value of 25.27 µg/mL. Additionally, it was observed that the compound inhibited the clonal proliferation of K562 cells while displaying minimal toxicity to normal cells. The compound exhibited its antiproliferative activity by inducing G2/M cell cycle arrest, preventing the entry of K562 cells into mitosis. Notably, the compound demonstrated an immunomodulatory effect by upregulating the production of cytokines IL-6 and IL-12/23p40. In conclusion, the spiroindolone-derived compound evaluated in this study has demonstrated significant potential as a therapeutic agent for the treatment of chronic myeloid leukemia. Further investigations are warranted to explore its clinical applications.


Assuntos
Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Animais , Chlorocebus aethiops , Leucócitos Mononucleares , Células Vero , Proliferação de Células , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Células K562 , Citocinas/farmacologia , Indóis/farmacologia
6.
Molecules ; 28(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37375384

RESUMO

The large quantity of olive roots resulting from a large number of old and unfruitful trees encouraged us to look for ways of adding value to these roots. For this reason, the current research work is devoted to the valorization of olive roots by identifying active phytochemicals and assessing their biological activities, including the cytotoxicity and antiviral potential of different extracts from the Olea europaea Chemlali cultivar. The extract, obtained by ultrasonic extraction, was analyzed using the liquid chromatography-mass spectrometry technique (LC-MS). The cytotoxicity was evaluated through the use of the microculture tetrazolium assay (MTT) against VERO cells. Subsequently, the antiviral activity was determined for HHV-1 (Human Herpesvirus type 1) and CVB3 (Coxsackievirus B3) replication in the infected VERO cells. LC-MS analysis allowed the identification of 40 compounds, classified as secoiridoids (53%), organic acids (13%), iridoids (10%), lignans (8%), caffeoylphenylethanoid (5%), phenylethanoids (5%),sugars and derivatives (2%), phenolic acids (2%), and flavonoids (2%). It was found that extracts were not toxic to the VERO cells. Moreover, the extracts did not influence the appearance of HHV-1 or CVB3 cytopathic effects in the infected VERO cells and failed to decrease the viral infectious titer.


Assuntos
Olea , Chlorocebus aethiops , Animais , Humanos , Olea/química , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Células Vero , Cromatografia Líquida de Alta Pressão/métodos , Fenóis/química , Folhas de Planta/química , Cromatografia Líquida , Iridoides/química , Extratos Vegetais/química , Flavonoides/química
7.
Emerg Microbes Infect ; 12(1): 2208682, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37128898

RESUMO

Since May 2022, human mpox cases have increased unexpectedly in non-endemic countries. The first imported case of human mpox in Hong Kong was reported in September 2022. Here we report the isolation and identification of MPXV from the vesicle swabs of this patient. In this research, the vesicle swabs were inoculated in Vero and Vero E6 cells. In addition to observing cytopathic effects (CPEs) in Vero or Vero E6 cells, the isolated virus was identified as mpox virus (MPXV) using quantitative Real-Time PCR (RT-PCR), transmission electron microscopy, and high-throughput sequencing. The experiment also assessed the cross-protective efficacy of sera from the smallpox vaccinated population and preliminarily assessed the inhibitory effect of anti-smallpox virus drugs against MPXV. CPEs can be observed on Vero E6 cells at 24 h and Vero cells at 48 h. The virus particles could be observed by transmission electron microscope, showing typical orthopoxvirus morphology. In addition, F3L and ATI genes which from MPXV A39R, B2R, HA genes which from orthopoxvirus were confirmed by conventional PCR and Sanger sequencing. The next generation sequencing (NGS) suggests that the MPXV strain belongs to B.1 branch of the West African linage, and has a high identity with the sequence of the 2022 ongoing outbreak. PRNT50 results showed that 26.7% of sera from individuals born before 1981 who had been immunized with smallpox were positive, but no MPXV-neutralizing antibodies were found in sera from individuals born later. All four anti-smallpox virus drugs evaluated demonstrated inhibition of mpox virus.


Assuntos
Monkeypox virus , Mpox , Animais , Chlorocebus aethiops , Humanos , Monkeypox virus/genética , Antivirais/farmacologia , Células Vero , Reação em Cadeia da Polimerase/métodos
8.
BMC Complement Med Ther ; 23(1): 12, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653791

RESUMO

BACKGROUND: Drug resistance exists in almost all antimalarial drugs currently in use, leading to an urgent need to identify new antimalarial drugs. Medicinal plant use is an alternative approach to antimalarial chemotherapy. This study aimed to explore potent medicinal plants from Prabchompoothaweep remedy for antimalarial drug development. METHODS: Forty-eight crude extracts from Prabchompoothaweep remedy and its 23 plants ingredients were investigated in vitro for antimalarial properties using Plasmodium lactate dehydrogenase (pLDH) enzyme against Plasmodium falciparum K1 strain and toxicity effects were evaluated in Vero cells. The plant with promising antimalarial activity was further investigated using gas chromatography-mass spectrometry (GC-MS) to identify phytochemicals. Antimalarial activity in mice was evaluated using a four-day suppressive test against Plasmodium berghei ANKA at dose of 200, 400, and 600 mg/kg body weight, and acute toxicity was analyzed. RESULTS: Of the 48 crude extracts, 13 (27.08%) showed high antimalarial activity against the K1 strain of P. falciparum (IC50 <  10 µg/ml) and 9 extracts (18.75%) were moderately active (IC50 = 11-50 µg/ml). Additionally, the ethanolic extract of Prabchompoothaweep remedy showed moderate antimalarial activity against the K1 strain of P. falciparum (IC50 = 14.13 µg/ml). Based on in vitro antimalarial and toxicity results, antimalarial activity of the aqueous fruit extract of Terminalia arjuna (IC50 = 4.05 µg/ml and CC50 = 219.6 µg/ml) was further studied in mice. GC-MS analysis of T. arjuna extract identified 22 compounds. The most abundant compounds were pyrogallol, gallic acid, shikimic acid, oleamide, 5-hydroxymethylfurfural, 1,1-diethoxy-ethane, quinic acid, and furfural. Analysis of the four-day suppressive test indicated that T. arjuna extract at dose of 200, 400, and 600 mg/kg body weight significantly suppressed the Plasmodium parasites by 28.33, 45.77, and 67.95%, respectively. In the acute toxicity study, T. arjuna extract was non-toxic at 2000 mg/kg body weight. CONCLUSIONS: The aqueous fruit extract of T. arjuna exerts antimalarial activity against Plasmodium parasites found in humans (P. falciparum K1) and mice (P. berghei ANKA). Acute toxicity studies showed that T. arjuna extract did not show any lethality or adverse effects up to a dose of 2000 mg/kg.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Plantas Medicinais , Humanos , Chlorocebus aethiops , Animais , Camundongos , Antimaláricos/toxicidade , Antimaláricos/química , Plantas Medicinais/química , Malária/tratamento farmacológico , Malária/parasitologia , Extratos Vegetais/toxicidade , Extratos Vegetais/química , Células Vero , Malária Falciparum/tratamento farmacológico , Peso Corporal
9.
J Trace Elem Med Biol ; 77: 127129, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36630761

RESUMO

BACKGROUND: Thimerosal (Merthiolate) is a well-known preservative used in pharmaceutical products, the safety of which was a matter of controversy for decades. Thimerosal is a mercury compound, and there is a debate as to whether Thimerosal exposure from vaccination can contribute to the incidence of mercury-driven disorders. To date, there is no consensus on Thimerosal safety in Vaccines. In 1977, a maximum safe dose of 200 µg/ml (0.5 mM) was recommended for Thimerosal by the WHO experts committee on biological standardization. Up-to-date guidelines, however, urge national control authorities to establish their own standards for the concentration of vaccine preservatives. We believe such safety limits must be studied at the cellular level first. The present study seeks a safe yet efficient dose of Thimerosal exposure for human and animal cells and control microorganism strains. METHODS: The safety of Thimerosal exposure on cells was analyzed through an MTT cell toxicity assay. The viability of four cell types, including HepG2, C2C12, Vero Cells, and Peripheral blood mononuclear cells (PBMCs), was examined in the presence of different Thimerosal concentrations and the maximum tolerable dose (MTD) and the half maximal inhibitory concentration (IC50) values for each cell line were determined. The antimicrobial effectiveness of Thimerosal was evaluated on four control strains, including Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans, and Aspergillus brasiliensis, to obtain the minimum inhibitory concentration (MIC) of Thimerosal. The MIC test was performed in culture media and under optimal growth conditions of microorganisms in the presence of different Thimerosal concentrations. RESULTS: The viability of all examined cell lines was suppressed entirely in the presence of 4.6 µg/ml (12.5 µM) of Thimerosal. The MTD for HepG2, C2C12, PBMC, and Vero cells was 2, 1.6, 1, and 0.29 µg/ml (5.5, 4.3, 2.7 and 0.8 µM), respectively. The IC50 of Thimerosal exposure for HepG2, C2C12, PBMC, and Vero cells was 2.62, 3.17, 1.27, and 0.86 µg/ml (7.1, 8.5, 3.5 and 2.4 µM), respectively. As for antimicrobial effectiveness, the growth capability of Candida albicans and Staphylococcus aureus was suppressed entirely in the presence of 6.25 µg/ml (17 µM) Thimerosal. The complete growth inhibition of Pseudomonas aeruginosa in culture media was achieved in 100 µg/ml (250 µM) Thimerosal concentration. This value was 12.5 µg/ml (30 µM) for Aspergillus brasiliensis. CONCLUSION: According to our results Thimerosal should be present in culture media at 100 µg/ml (250 µM) concentration to achieve an effective antimicrobial activity. We showed that this amount of Thimerosal is toxic for human and animal cells in vitro since the viability of all examined cell lines was suppressed in the presence of less than 5 µg/ml (12.5 µM) of Thimerosal. Overall, our study revealed Thimerosal was 333-fold more cytotoxic to human and animal cells as compared to bacterial and fungal cells. Our results promote more study on Thimerosal toxicity and its antimicrobial effectiveness to obtain more safe concentrations in biopharmaceuticals.


Assuntos
Anti-Infecciosos , Mercúrio , Timerosal , Vacinas , Animais , Humanos , Anti-Infecciosos/toxicidade , Chlorocebus aethiops , Leucócitos Mononucleares , Mercúrio/toxicidade , Conservantes Farmacêuticos/toxicidade , Timerosal/toxicidade , Células Vero
10.
Vaccine ; 40(35): 5263-5274, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35715351

RESUMO

Inactivated viral vaccines have long been used in humans for diseases of global health threat (e.g., poliomyelitis and pandemic and seasonal influenza) and the technology of inactivation has more recently been used for emerging diseases such as West Nile, Chikungunya, Ross River, SARS and especially for COVID-19. The Brighton Collaboration Benefit-Risk Assessment of VAccines by TechnolOgy (BRAVATO) Working Group has prepared standardized templates to describe the key considerations for the benefit and risk of several vaccine platform technologies, including inactivated viral vaccines. This paper uses the BRAVATO inactivated virus vaccine template to review the features of an inactivated whole chikungunya virus (CHIKV) vaccine that has been evaluated in several preclinical studies and clinical trials. The inactivated whole CHIKV vaccine was cultured on Vero cells and inactivated by ß-propiolactone. This provides an effective, flexible system for high-yield manufacturing. The inactivated whole CHIKV vaccine has favorable thermostability profiles, compatible with vaccine supply chains. Safety data are compiled in the current inactivated whole CHIKV vaccine safety database with unblinded data from the ongoing studies: 850 participants from phase II study (parts A and B) outside of India, and 600 participants from ongoing phase II study in India, and completed phase I clinical studies for 60 subjects. Overall, the inactivated whole CHIKV vaccine has been well tolerated, with no significant safety issues identified. Evaluation of the inactivated whole CHIKV vaccine is continuing, with 1410 participants vaccinated as of 20 April 2022. Extensive evaluation of immunogenicity in humans shows strong, durable humoral immune responses.


Assuntos
COVID-19 , Febre de Chikungunya , Vírus Chikungunya , Vacinas Virais , Animais , Anticorpos Antivirais , COVID-19/prevenção & controle , Febre de Chikungunya/prevenção & controle , Chlorocebus aethiops , Humanos , Medição de Risco , Vacinas de Produtos Inativados , Células Vero
11.
PLoS One ; 17(2): e0262149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35139078

RESUMO

There is an urgent need for better diagnostic and analytical methods for vaccine research and infection control in virology. This has been highlighted by recently emerging viral epidemics and pandemics (Zika, SARS-CoV-2), and recurring viral outbreaks like the yellow fever outbreaks in Angola and the Democratic Republic of Congo (2016) and in Brazil (2016-2018). Current assays to determine neutralising activity against viral infections in sera are costly in time and equipment and suffer from high variability. Therefore, both basic infection research and diagnostic population screenings would benefit from improved methods to determine virus-neutralising activity in patient samples. Here we describe a robust, objective, and scalable Fluorescence Reduction Neutralisation Test (FluoRNT) for yellow fever virus, relying on flow cytometric detection of cells infected with a fluorescent Venus reporter containing variant of the yellow fever vaccine strain 17D (YF-17D-Venus). It accurately measures neutralising antibody titres in human serum samples within as little as 24 h. Samples from 32 vaccinees immunised with YF-17D were tested for neutralising activity by both a conventional focus reduction neutralisation test (FRNT) and FluoRNT. Both types of tests proved to be equally reliable for the detection of neutralising activity, however, FluoRNT is significantly more precise and reproducible with a greater dynamic range than conventional FRNT. The FluoRNT assay protocol is substantially faster, easier to control, and cheaper in per-assay costs. FluoRNT additionally reduces handling time minimising exposure of personnel to patient samples. FluoRNT thus brings a range of desirable features that can accelerate and standardise the measurement of neutralising anti-yellow fever virus antibodies. It could be used in applications ranging from vaccine testing to large cohort studies in systems virology and vaccinology. We also anticipate the potential to translate the methodology and analysis of FluoRNT to other flaviviruses such as West Nile, Dengue and Zika or to RNA viruses more generally.


Assuntos
Anticorpos Neutralizantes/imunologia , Febre Amarela/imunologia , Vírus da Febre Amarela/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Fluorescência , Humanos , Testes de Neutralização/economia , Testes de Neutralização/métodos , Células Vero , Febre Amarela/sangue , Febre Amarela/virologia
12.
J Ethnopharmacol ; 282: 114596, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34492319

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The African Continent harbours approximately 26 Croton species. Many Croton species are used in traditional medicine in southern Africa to treat a variety of ailments including malaria, tuberculosis, microbial infection and inflammation. Considering the high diversity of the genus Croton, the ethnopharmacological information available on southern African species is rather limited. Furthermore, the potential for novel anti-inflammatory drug scaffolds has not previously been investigated. AIM OF THE STUDY: The aim of the study was to evaluate the potential of four South African Croton species extracts (Croton gratissimus, Croton pseudopulchellus, Croton sylvaticus, and Croton steenkampianus) for anti-inflammatory activity targeting the TLR4 signalling pathway and to assess the potential risk for hepatotoxicity and genotoxicity using an in vitro cellomics approach. MATERIAL AND METHODS: Leaf extracts of C. gratissimus, C. pseudopulchellus, C. sylvaticus and C. steenkampianus were prepared using methanol and chloroform (1:1, v/v). The anti-inflammatory activity was determined using LPS induced nitric oxide production in RAW 264.7 macrophages, while the hepatotoxicity and genotoxicity was evaluated using multi-parameter end point analysis in C3A and Vero cells, respectively. Mitochondrial membrane potential, mitochondrial mass, oxidative stress, lysosomal content and lipid accumulation were used as markers to assess the risk for hepatotoxicity. RESULTS: All four species attenuated nitric oxide production with negligible cytotoxicity. However, C. gratissimus yielded the most favorable profile. Cell density was significantly reduced in both C3A and Vero cells with the C. gratissimus extract providing a suitable toxicity profile amenable to further high content analysis. While there was no meaningful effect on mitochondrial dynamics, a strong dose dependent increase in lipid content, paralleled by an expansion of the lysosomal compartment, identifies a potential risk for steatosis. Risk for genotoxicity was investigated using the micronucleus assay which revealed a dose dependent increase in micronuclei formation. Changes in nuclear morphology and cell ploidy further strengthens the associated risk for genotoxicity and suggests the extract from C. gratissimus may function as an aneugen. Collectively, the data demonstrates that although the selected species possess anti-inflammatory components, the risk for possible hepatotoxic and genotoxic side effects may negate their prospect towards further drug development.


Assuntos
Anti-Inflamatórios , Doença Hepática Induzida por Substâncias e Drogas , Croton , Testes de Mutagenicidade/métodos , Extratos Vegetais , Animais , Anti-Inflamatórios/efeitos adversos , Anti-Inflamatórios/farmacologia , Antioxidantes/efeitos adversos , Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Chlorocebus aethiops , Etnofarmacologia/métodos , Técnicas In Vitro/métodos , Medicinas Tradicionais Africanas , Camundongos , Óxido Nítrico/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Folhas de Planta , Células RAW 264.7 , Medição de Risco/métodos , Células Vero
13.
Pak J Pharm Sci ; 34(5(Supplementary)): 1939-1944, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34836863

RESUMO

Type 2 Diabetes Mellitus (T2DM) patients are at high risk of Coronary Heart Disease (CHD) and need a global therapeutic intervention. A fixed-dose combination prescription medication containing anti-diabetic drug (Sitagliptin) and lipid lowering (Simvastatin) has recently been approved. Present study was designed to explore the potential synergistic toxic effects of sitagliptin and simvastatin at cellular level. MTT assay revealed the potential synergistic cytotoxic effect whereas Comet assay spotlighted the genotoxicity. MTT assay conducted on Vero cell lines revealed no significant change in proliferative activity upon treatment with simvastatin but cell survival percentage (CSP) decreased upon treatment with sitagliptin (51% at 1000µg/mL). However, combination of both drugs exhibited a better survival percentage except highest dose combination (1000:500µg/mL) which augmented antiproliferative effects rendering CSP 71.6%. The genotoxic assay spotted that Simvastatin produced less damage to DNA with the threshold of 500µg/ml whereas Sitagliptin significantly damage above the 250µg/mL, However, combination of drugs produced lesser damage than Sitagliptin alone. The findings concluded a non-genotoxic combination of sitagliptin and simvastatin which possess a least cytotoxic potential suggesting the safe use of the combination both in T2DM and CHD.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/toxicidade , Hipoglicemiantes/toxicidade , Mutagênicos/toxicidade , Sinvastatina/toxicidade , Fosfato de Sitagliptina/toxicidade , Animais , Proliferação de Células/efeitos dos fármacos , Chlorocebus aethiops , Ensaio Cometa , Dano ao DNA , Diabetes Mellitus Tipo 2/tratamento farmacológico , Combinação de Medicamentos , Interações Medicamentosas , Sinergismo Farmacológico , Células Vero
14.
Sci Rep ; 11(1): 19970, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620951

RESUMO

Particulate respirators such as N95s are an essential component of personal protective equipment (PPE) for front-line workers. This study describes a rapid and effective UVC irradiation system that would facilitate the safe re-use of N95 respirators and provides supporting information for deploying UVC for decontamination of SARS-CoV-2 during the COVID-19 pandemic. To assess the inactivation potential of the proposed UVC germicidal device as a function of time by using 3 M 8211-N95 particulate respirators inoculated with SARS-CoV-2. A germicidal UVC device to deliver tailored UVC dose was developed and test coupons (2.5 cm2) of the 3 M-N95 respirator were inoculated with 106 plaque-forming units (PFU) of SARS-CoV-2 and were UV irradiated. Different exposure times were tested (0-164 s) by fixing the distance between the lamp and the test coupon to 15.2 cm while providing an exposure of at least 5.43 mWcm-2. Primary measure of outcome was titration of infectious virus recovered from virus-inoculated respirator test coupons after UVC exposure. Other measures included the method validation of the irradiation protocol, using lentiviruses (biosafety level-2 agent) and establishment of the germicidal UVC exposure protocol. An average of 4.38 × 103 PFU ml-1 (SD 772.68) was recovered from untreated test coupons while 4.44 × 102 PFU ml-1 (SD 203.67), 4.00 × 102 PFU ml-1 (SD 115.47), 1.56 × 102 PFU ml-1 (SD 76.98) and 4.44 × 101 PFU ml-1 (SD 76.98) was recovered in exposures 2, 6, 18 and 54 s per side respectively. The germicidal device output and positioning was monitored and a minimum output of 5.43 mW cm-2 was maintained. Infectious SARS-CoV-2 was not detected by plaque assays (minimal level of detection is 67 PFU ml-1) on N95 respirator test coupons when irradiated for 120 s per side or longer suggesting 3.5 log reduction in 240 s of irradiation, 1.3 J cm-2. A scalable germicidal UVC device to deliver tailored UVC dose for rapid decontamination of SARS-CoV-2 was developed. UVC germicidal irradiation of N95 test coupons inoculated with SARS-CoV-2 for 120 s per side resulted in 3.5 log reduction of virus. These data support the reuse of N95 particle-filtrate apparatus upon irradiation with UVC and supports use of UVC-based decontamination of SARS-CoV-2 during the COVID-19 pandemic.


Assuntos
COVID-19/prevenção & controle , Descontaminação/instrumentação , Respiradores N95/virologia , SARS-CoV-2/efeitos da radiação , Raios Ultravioleta , Animais , COVID-19/virologia , Chlorocebus aethiops , Descontaminação/economia , Desenho de Equipamento , Reutilização de Equipamento , Células HEK293 , Humanos , SARS-CoV-2/isolamento & purificação , Fatores de Tempo , Células Vero
15.
Viruses ; 13(6)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200316

RESUMO

Owing to the richness of bioactive compounds, Olea europea leaf extracts exhibit a range of health effects. The present research evaluated the antibacterial and antiviral effect of leaf extracts obtained from Olea europea L. var. sativa (OESA) and Olea europea var. sylvestris (OESY) from Tunisia. LC-DAD-ESI-MS analysis allowed the identification of different compounds that contributed to the observed biological properties. Both OESA and OESY were active against Gram-positive bacteria (MIC values between 7.81 and 15.61 µg/mL and between 15.61 and 31.25 µg/mL against Staphylococcus aureus ATCC 6538 for OESY and OESA, respectively). The antiviral activity against the herpes simplex type 1 (HSV-1) was assessed on Vero cells. The results of cell viability indicated that Olea europea leaf extracts were not toxic to cultured Vero cells. The half maximal cytotoxic concentration (CC50) values for OESA and OESY were 0.2 mg/mL and 0.82 mg/mL, respectively. Furthermore, both a plaque reduction assay and viral entry assay were used to demonstrate the antiviral activity. In conclusion, Olea europea leaf extracts demonstrated a bacteriostatic effect, as well as remarkable antiviral activity, which could provide an alternative treatment against resistant strains.


Assuntos
Antibacterianos/farmacologia , Antivirais/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Olea/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Animais , Sobrevivência Celular , Chlorocebus aethiops , Bactérias Gram-Positivas/classificação , Bactérias Gram-Positivas/efeitos dos fármacos , Herpes Simples/tratamento farmacológico , Compostos Fitoquímicos , Extratos Vegetais/química , Células Vero
16.
Viruses ; 13(6)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200386

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19, is a readily transmissible and potentially deadly pathogen which is currently re-defining human susceptibility to pandemic viruses in the modern world. The recent emergence of several genetically distinct descendants known as variants of concern (VOCs) is further challenging public health disease management, due to increased rates of virus transmission and potential constraints on vaccine effectiveness. We report the isolation of SARS-CoV-2 VOCs imported into Australia belonging to the B.1.351 lineage, first described in the Republic of South Africa (RSA), and the B.1.1.7 lineage originally reported in the United Kingdom, and directly compare the replication kinetics of these two VOCs in Vero E6 cells. In this analysis, we also investigated a B.1.1.7 VOC (QLD1516/2021) carrying a 7-nucleotide deletion in the open reading frame 7a (ORF7a) gene, likely truncating and rendering the ORF7a protein of this virus defective. We demonstrate that the replication of the B.1.351 VOC (QLD1520/2020) in Vero E6 cells can be detected earlier than the B.1.1.7 VOCs (QLD1516/2021 and QLD1517/2021), before peaking at 48 h post infection (p.i.), with significantly higher levels of virus progeny. Whilst replication of the ORF7a defective isolate QLD1516/2021 was delayed longer than the other viruses, slightly more viral progeny was produced by the mutant compared to the unmutated isolate QLD1517/2021 at 72 h p.i. Collectively, these findings contribute to our understanding of SARS-CoV-2 replication and evolutionary dynamics, which have important implications in the development of future vaccination, antiviral therapies, and epidemiological control strategies for COVID-19.


Assuntos
Fases de Leitura Aberta/genética , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Proteínas Virais/genética , Replicação Viral , Adulto , Animais , Austrália , COVID-19/prevenção & controle , COVID-19/transmissão , COVID-19/virologia , Chlorocebus aethiops , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cinética , Pessoa de Meia-Idade , Mutação , Nasofaringe/virologia , Filogenia , SARS-CoV-2/classificação , África do Sul , Reino Unido , Células Vero
17.
Viruses ; 13(5)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065987

RESUMO

As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic expanded, it was clear that effective testing for the presence of neutralizing antibodies in the blood of convalescent patients would be critical for development of plasma-based therapeutic approaches. To address the need for a high-quality neutralization assay against SARS-CoV-2, a previously established fluorescence reduction neutralization assay (FRNA) against Middle East respiratory syndrome coronavirus (MERS-CoV) was modified and optimized. The SARS-CoV-2 FRNA provides a quantitative assessment of a large number of infected cells through use of a high-content imaging system. Because of this approach, and the fact that it does not involve subjective interpretation, this assay is more efficient and more accurate than other neutralization assays. In addition, the ability to set robust acceptance criteria for individual plates and specific test wells provided further rigor to this assay. Such agile adaptability avails use with multiple virus variants. By February 2021, the SARS-CoV-2 FRNA had been used to screen over 5000 samples, including acute and convalescent plasma or serum samples and therapeutic antibody treatments, for SARS-CoV-2 neutralizing titers.


Assuntos
Anticorpos Neutralizantes/análise , COVID-19/imunologia , Testes de Neutralização/métodos , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , COVID-19/metabolismo , COVID-19/terapia , Chlorocebus aethiops , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Imunização Passiva , Imunoglobulina G/sangue , Pandemias , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero , Soroterapia para COVID-19
18.
J Toxicol Environ Health A ; 84(18): 761-768, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34180377

RESUMO

Dipyrone or metamizole is one of the most frequently used analgesic worldwide. Despite its widespread use, this drug may exert genotoxic and cytotoxic effects on lymphocytes. Therefore, studies with therapeutic agents that may provide protection against these effects are important. The homeopathic compound Canova® (CA) appears to be a beneficial candidate for preventing DNA damage and cellular lethality, since this compound acts as an immunomodulator associated with cytoprotective actions. Hence, the aim of the present investigation was to determine the potential cytoprotective effects of CA using cell line VERO as a model. VERO cells were incubated with sodium dipyrone and subsequently subject to the comet, apoptosis and immunocytochemistry assays. Data demonstrated that sodium dipyrone induced an increase in DNA damage index (DI) employing the comet assay. However, when VERO cells were co-treated with CA at the three concentrations studied, a significant reduction in DI was observed, indicating an antigenotoxic effect attributed to CA. Further dipyrone induced an elevation in %apoptosis at 24 and 48 hr. However, when dipyrone was co-incubated with CA, a significant reduction in %apoptosis was noted at the three concentrations of CA employed. Results from immunocytochemical analysis showed a rise in the expression of caspase 8 and cytochrome C when cells were exposed to dipyrone. In contrast, co-treatment of dipyrone and CA significantly reduced the effect of dipyrone. Therefore, evidence indicated that CA acted as an anticytotoxic and antigenotoxic agent counteracting damage induced by dipyrone.


Assuntos
Venenos de Crotalídeos/farmacologia , Crioprotetores/farmacologia , Dipirona/efeitos adversos , Materia Medica/farmacologia , Extratos Vegetais/farmacologia , Animais , Apoptose , Chlorocebus aethiops , Ensaio Cometa , Imuno-Histoquímica , Células Vero
19.
J Infect Dis ; 224(6): 976-982, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34191025

RESUMO

BACKGROUND: Serial screening is critical for restricting spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by facilitating timely identification of infected individuals to interrupt transmission. Variation in sensitivity of different diagnostic tests at different stages of infection has not been well documented. METHODS: In a longitudinal study of 43 adults newly infected with SARS-CoV-2, all provided daily saliva and nasal swabs for quantitative reverse transcription polymerase chain reaction (RT-qPCR), Quidel SARS Sofia antigen fluorescent immunoassay (FIA), and live virus culture. RESULTS: Both RT-qPCR and Quidel SARS Sofia antigen FIA peaked in sensitivity during the period in which live virus was detected in nasal swabs, but sensitivity of RT-qPCR tests rose more rapidly prior to this period. We also found that serial testing multiple times per week increases the sensitivity of antigen tests. CONCLUSIONS: RT-qPCR tests are more effective than antigen tests at identifying infected individuals prior to or early during the infectious period and thus for minimizing forward transmission (given timely results reporting). All tests showed >98% sensitivity for identifying infected individuals if used at least every 3 days. Daily screening using antigen tests can achieve approximately 90% sensitivity for identifying infected individuals while they are viral culture positive.


Assuntos
Teste para COVID-19 , COVID-19/diagnóstico , Testes Diagnósticos de Rotina , SARS-CoV-2/isolamento & purificação , Adulto , Idoso , Animais , Antígenos Virais/análise , Chlorocebus aethiops , Feminino , Humanos , Estudos Longitudinais , Masculino , Programas de Rastreamento , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Saliva , Sensibilidade e Especificidade , Células Vero , Adulto Jovem
20.
Angew Chem Int Ed Engl ; 60(31): 17102-17107, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34043272

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in an unprecedented need for diagnostic testing that is critical in controlling the spread of COVID-19. We propose a portable infrared spectrometer with purpose-built transflection accessory for rapid point-of-care detection of COVID-19 markers in saliva. Initially, purified virion particles were characterized with Raman spectroscopy, synchrotron infrared (IR) and AFM-IR. A data set comprising 171 transflection infrared spectra from 29 subjects testing positive for SARS-CoV-2 by RT-qPCR and 28 testing negative, was modeled using Monte Carlo Double Cross Validation with 50 randomized test and model sets. The testing sensitivity was 93 % (27/29) with a specificity of 82 % (23/28) that included positive samples on the limit of detection for RT-qPCR. Herein, we demonstrate a proof-of-concept high throughput infrared COVID-19 test that is rapid, inexpensive, portable and utilizes sample self-collection thus minimizing the risk to healthcare workers and ideally suited to mass screening.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Saliva/química , Animais , Chlorocebus aethiops , Estudos de Coortes , Análise Discriminante , Humanos , Análise dos Mínimos Quadrados , Método de Monte Carlo , Testes Imediatos , Estudo de Prova de Conceito , SARS-CoV-2 , Sensibilidade e Especificidade , Manejo de Espécimes , Espectrofotometria Infravermelho , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA