Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 313
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 280: 116577, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38870736

RESUMO

Tetrabromobisphenol A (TBBPA), a widely-used brominated flame retardant, has been revealed to exert endocrine disrupting effects and induce adipogenesis. Given the high structural similarities of TBBPA analogues and their increasing exposure risks, their effects on lipid metabolism are necessary to be explored. Herein, 9 representative TBBPA analogues were screened for their interference on 3T3-L1 preadipocyte adipogenesis, differentiation of C3H10T1/2 mesenchymal stem cells (MSCs) to brown adipocytes, and lipid accumulation of HepG2 cells. TBBPA bis(2-hydroxyethyl ether) (TBBPA-BHEE), TBBPA mono(2-hydroxyethyl ether) (TBBPA-MHEE), TBBPA bis(glycidyl ether) (TBBPA-BGE), and TBBPA mono(glycidyl ether) (TBBPA-MGE) were found to induce adipogenesis in 3T3-L1 preadipocytes to different extends, as evidenced by the upregulated intracellular lipid generation and expressions of adipogenesis-related biomarkers. TBBPA-BHEE exhibited a stronger obesogenic effect than did TBBPA. In contrast, the test chemicals had a weak impact on the differentiation process of C3H10T1/2 MSCs to brown adipocytes. As for hepatic lipid formation test, only TBBPA mono(allyl ether) (TBBPA-MAE) was found to significantly promote triglyceride (TG) accumulation in HepG2 cells, and the effective exposure concentration of the chemical under oleic acid (OA) co-exposure was lower than that without OA co-exposure. Collectively, TBBPA analogues may perturb lipid metabolism in multiple tissues, which varies with the test tissues. The findings highlight the potential health risks of this kind of emerging chemicals in inducing obesity, non-alcoholic fatty liver disease (NAFLD) and other lipid metabolism disorders, especially under the conditions in conjunction with high-fat diets.


Assuntos
Células 3T3-L1 , Adipogenia , Retardadores de Chama , Metabolismo dos Lipídeos , Bifenil Polibromatos , Bifenil Polibromatos/toxicidade , Metabolismo dos Lipídeos/efeitos dos fármacos , Animais , Camundongos , Adipogenia/efeitos dos fármacos , Humanos , Retardadores de Chama/toxicidade , Células Hep G2 , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo
2.
BMC Oral Health ; 24(1): 573, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760715

RESUMO

BACKGROUND: The aim of this study is to examine the cytotoxic effects of dental gels with different contents, which are frequently used during teething, on gingival mesenchymal stem cells (G-MSCs). METHOD: The teething gels used in this study were Dentinox, Gengigel, Osanite, and Jack and Jill. The human gingival mesenchimal stem cells (hG-MSCs) were incubated with these teething gel solutions (0.1%, 50% and 80% concentrations). Reproductive behavior of G-MSCs was monitored in real time for 72 h using the xCELLigence real-time cell analyzer (RTCA) system. Two-way repeated Anova test and post hoc Bonferroni test were used to evaluate the effect of concentration and dental gel on 0-hour and 72-hour viability. Significance was evaluated at p < 0.05 level. RESULTS: Teething gels prepared at 50% concentration are added to the G-MSC culture, the "cell index" value of G-MSCs to which Dentinox brand gel is added is significantly lower than all other groups (p = 0.05). There is a statistically significant difference between the concentrations in terms of cell index values at the 72nd hour compared to the 0th hour (p = 0.001). CONCLUSIONS: The local anesthetic dental gels used in children have a more negative effect on cell viability as concentration increases.


Assuntos
Sobrevivência Celular , Géis , Gengiva , Células-Tronco Mesenquimais , Humanos , Gengiva/citologia , Gengiva/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Técnicas In Vitro
3.
J Transl Med ; 22(1): 487, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773585

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) causes significant cancer mortality worldwide. Cancer organoids can serve as useful disease models by high costs, complexity, and contamination risks from animal-derived products and extracellular matrix (ECM) that limit its applications. On the other hand, synthetic ECM alternatives also have limitations in mimicking native biocomplexity. This study explores the development of a physiologically relevant HCC organoid model using plasma-derived extracellular matrix as a scaffold and nutritive biomatrix with different cellularity components to better mimic the heterogenous HCC microenvironment. Plasma-rich platelet is recognized for its elevated levels of growth factors, which can promote cell proliferation. By employing it as a biomatrix for organoid culture there is a potential to enhance the quality and functionality of organoid models for diverse applications in biomedical research and regenerative medicine and to better replicate the heterogeneous microenvironment of HCC. METHOD: To generate the liver cancer organoids, HUH-7 hepatoma cells were cultured alone (homogenous model) or with human bone marrow-derived mesenchymal stromal cells and human umbilical vein endothelial cells (heterogeneous model) in plasma-rich platelet extracellular matrix (ECM). The organoids were grown for 14 days and analyzed for cancer properties including cell viability, invasion, stemness, and drug resistance. RESULTS: HCC organoids were developed comprising HUH-7 hepatoma cells with or without human mesenchymal stromal and endothelial cells in plasma ECM scaffolds. Both homogeneous (HUH-7 only) and heterogeneous (mixed cellularity) organoids displayed viability, cancer hallmarks, and chemoresistance. The heterogeneous organoids showed enhanced invasion potential, cancer stem cell populations, and late-stage HCC genetic signatures versus homogeneous counterparts. CONCLUSION: The engineered HCC organoids system offers a clinically relevant and cost-effective model to study liver cancer pathogenesis, stromal interactions, and drug resistance. The plasma ECM-based culture technique could enable standardized and reproducible HCC modeling. It could also provide a promising option for organoid culture and scaling up.


Assuntos
Carcinoma Hepatocelular , Análise Custo-Benefício , Matriz Extracelular , Neoplasias Hepáticas , Modelos Biológicos , Organoides , Humanos , Organoides/patologia , Matriz Extracelular/metabolismo , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Células Endoteliais da Veia Umbilical Humana , Animais , Células-Tronco Mesenquimais/citologia
4.
Sci Rep ; 14(1): 8380, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600175

RESUMO

Mesenchymal stem cells (MSCs) have demonstrated potential in treating livestock diseases that are unresponsive to conventional therapies. MSCs derived from goats, a valuable model for studying orthopaedic disorders in humans, offer insights into bone formation and regeneration. Adipose tissue-derived MSCs (ADSCs) are easily accessible and have a high capacity for expansion. Although the choice of culture media significantly influences the biological properties of MSCs, the optimal media for goat ADSCs (gADSCs) remains unclear. This study aimed to assess the effects of four commonly used culture media on gADSCs' culture characteristics, stem cell-specific immunophenotype, and differentiation. Results showed that MEM, DMEM/F12, and DMEM-LG were superior in maintaining cell morphology and culture parameters of gADSCs, such as cell adherence, metabolic activity, colony-forming potential, and population doubling. Conversely, DMEM-HG exhibited poor performance across all evaluated parameters. The gADSCs cultured in DMEM/F12 showed enhanced early proliferation and lower apoptosis. The cell surface marker distribution exhibited superior characteristics in gADSCs cultured in MEM and DMEM/F12. In contrast, the distribution was inferior in gADSCs cultured in DMEM-LG. DMEM/F12 and DMEM-LG culture media demonstrated a significantly higher potential for chondrogenic differentiation and DMEM-LG for osteogenic differentiation. In conclusion, DMEM/F12 is a suitable culture medium for propagating gADSCs as it effectively maintains cell morphology, growth parameters, proliferation and lower apoptosis while exhibiting desirable expression patterns of MSC-specific markers. These findings contribute to optimising culture conditions for gADSCs, enhancing their potential applications in disease treatment and regenerative medicine.


Assuntos
Cabras , Células-Tronco Mesenquimais , Humanos , Animais , Osteogênese , Diferenciação Celular , Meios de Cultura/metabolismo , Proliferação de Células , Células Cultivadas
5.
Biomater Adv ; 160: 213866, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642518

RESUMO

Research on biomaterials typically starts with cytocompatibility evaluation, using the ISO 10993-5 standard as a reference that relies on extract tests to determine whether the material is safe (cell metabolic activity should exceed 70 %). However, the generalized approach within the standard may not accurately reflect the material's behavior in direct contact with cells, raising concerns about its effectiveness. Calcium phosphates (CaPs) are a group of materials that, despite being highly biocompatible and promoting bone formation, still exhibit inconsistencies in basic cytotoxicity evaluations. Hence, in order to test the cytocompatibility dependence on different experimental setups and material-cell interactions, we used amorphous calcium phosphate, α-tricalcium phosphate, hydroxyapatite, and octacalcium phosphate (0.1 mg/mL to 5 mg/mL) with core cell lines of bone microenvironment: mesenchymal stem cells, osteoblast-like and endothelial cells. All materials have been characterized for their physicochemical properties before and after cellular contact and once in vitro assays were finalized, groups identified as 'cytotoxic' were further analyzed using a modified Annexin V apoptosis assay to accurately determine cell death. The obtained results showed that indirect contact following ISO standards had no sensitivity of tested cells to the materials, but direct contact tests at physiological concentrations revealed decreased metabolic activity and viability. In summary, our findings offer valuable guidelines for handling biomaterials, especially in powder form, to better evaluate their biological properties and avoid false negatives commonly associated with the traditional standard approach.


Assuntos
Materiais Biocompatíveis , Fosfatos de Cálcio , Durapatita , Teste de Materiais , Células-Tronco Mesenquimais , Osteoblastos , Fosfatos de Cálcio/química , Materiais Biocompatíveis/toxicidade , Materiais Biocompatíveis/farmacologia , Humanos , Teste de Materiais/métodos , Teste de Materiais/normas , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Animais
6.
J Biomed Mater Res A ; 112(7): 1041-1056, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38380793

RESUMO

Extracellular matrix-based bio-scaffolds are useful for tissue engineering as they retain the unique structural, mechanical, and physiological microenvironment of the tissue thus facilitating cellular attachment and matrix activities. However, considering its potential, a comprehensive understanding of the protein profile remains elusive. Herein, we evaluate the impact of decellularization on the human amniotic membrane (hAM) based on its proteome profile, physicochemical features, as well as the attachment, viability, and proliferation of umbilical cord-derived mesenchymal stem cells (hUC-MSC). Proteome profiles of decellularized hAM (D-hAM) were compared with hAM, and gene ontology (GO) enrichment analysis was performed. Proteomic data revealed that D-hAM retained a total of 249 proteins, predominantly comprised of extracellular matrix proteins including collagens (collagen I, collagen IV, collagen VI, collagen VII, and collagen XII), proteoglycans (biglycan, decorin, lumican, mimecan, and versican), glycoproteins (dermatopontin, fibrinogen, fibrillin, laminin, and vitronectin), and growth factors including transforming growth factor beta (TGF-ß) and fibroblast growth factor (FGF) while eliminated most of the intracellular proteins. Scanning electron microscopy was used to analyze the epithelial and basal surfaces of D-hAM. The D-hAM displayed variability in fibril morphology and porosity as compared with hAM, showing loosely packed collagen fibers and prominent large pore areas on the basal side of D-hAM. Both sides of D-hAM supported the growth and proliferation of hUC-MSC. Comparative investigations, however, demonstrated that the basal side of D-hAM displayed higher hUC-MSC proliferation than the epithelial side. These findings highlight the importance of understanding the micro-environmental differences between the two sides of D-hAM while optimizing cell-based therapeutic applications.


Assuntos
Âmnio , Células-Tronco Mesenquimais , Proteoma , Cordão Umbilical , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Âmnio/citologia , Âmnio/química , Âmnio/metabolismo , Cordão Umbilical/citologia , Proteoma/análise , Proliferação de Células , Matriz Extracelular Descelularizada/química , Materiais Biocompatíveis/química
7.
Mol Ther ; 32(4): 1144-1157, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310354

RESUMO

The potent immunomodulatory function of mesenchymal stem/stromal cells (MSCs) elicited by proinflammatory cytokines IFN-γ and TNF-α (IT) is critical to resolve inflammation and promote tissue repair. However, little is known about how the immunomodulatory capability of MSCs is related to their differentiation competency in the inflammatory microenvironment. In this study, we demonstrate that the adipocyte differentiation and immunomodulatory function of human adipose tissue-derived MSCs (MSC(AD)s) are mutually exclusive. Mitochondrial reactive oxygen species (mtROS), which promote adipocyte differentiation, were decreased in MSC(AD)s due to IT-induced upregulation of superoxide dismutase 2 (SOD2). Furthermore, knockdown of SOD2 led to enhanced adipogenic differentiation but reduced immunosuppression capability of MSC(AD)s. Interestingly, the adipogenic differentiation was associated with increased mitochondrial biogenesis and upregulation of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PPARGC1A/PGC-1α) expression. IT inhibited PGC-1α expression and decreased mitochondrial mass but promoted glycolysis in an SOD2-dependent manner. MSC(AD)s lacking SOD2 were compromised in their therapeutic efficacy in DSS-induced colitis in mice. Taken together, these findings indicate that the adipogenic differentiation and immunomodulation of MSC(AD)s may compete for resources in fulfilling the respective biosynthetic needs. Blocking of adipogenic differentiation by mitochondrial antioxidant may represent a novel strategy to enhance the immunosuppressive activity of MSCs in the inflammatory microenvironment.


Assuntos
Células-Tronco Mesenquimais , Superóxido Dismutase , Camundongos , Humanos , Animais , Diferenciação Celular , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Adipócitos , Células-Tronco Mesenquimais/metabolismo
8.
Cytotherapy ; 26(4): 372-382, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38363250

RESUMO

BACKGROUND AIMS: Human mesenchymal stromal cells (hMSCs) and their secreted products show great promise for treatment of musculoskeletal injury and inflammatory or immune diseases. However, the path to clinical utilization is hampered by donor-tissue variation and the inability to manufacture clinically relevant yields of cells or their products in a cost-effective manner. Previously we described a method to produce chemically and mechanically customizable gelatin methacryloyl (GelMA) microcarriers for culture of hMSCs. Herein, we demonstrate scalable GelMA microcarrier-mediated expansion of induced pluripotent stem cell (iPSC)-derived hMSCs (ihMSCs) in 500 mL and 3L vertical wheel bioreactors, offering several advantages over conventional microcarrier and monolayer-based expansion strategies. METHODS: Human mesenchymal stromal cells derived from induced pluripotent cells were cultured on custom-made spherical gelatin methacryloyl microcarriers in single-use vertical wheel bioreactors (PBS Biotech). Cell-laden microcarriers were visualized using confocal microscopy and elastic light scattering methodologies. Cells were assayed for viability and differentiation potential in vitro by standard methods. Osteogenic cell matrix derived from cells was tested in vitro for osteogenic healing using a rodent calvarial defect assay. Immune modulation was assayed with an in vivo peritonitis model using Zymozan A. RESULTS: The optical properties of GelMA microcarriers permit noninvasive visualization of cells with elastic light scattering modalities, and harvest of product is streamlined by microcarrier digestion. At volumes above 500 mL, the process is significantly more cost-effective than monolayer culture. Osteogenic cell matrix derived from ihMSCs expanded on GelMA microcarriers exhibited enhanced in vivo bone regenerative capacity when compared to bone morphogenic protein 2, and the ihMSCs exhibited superior immunosuppressive properties in vivo when compared to monolayer-generated ihMSCs. CONCLUSIONS: These results indicate that the cell expansion strategy described here represents a superior approach for efficient generation, monitoring and harvest of therapeutic MSCs and their products.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Mesenquimais , Humanos , Técnicas de Cultura de Células/métodos , Reatores Biológicos , Osteogênese , Regeneração Óssea , Proliferação de Células , Diferenciação Celular , Células Cultivadas
9.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255941

RESUMO

Many studies have been exploring the use of bone graft materials (BGMs) and mesenchymal stem cells in bone defect reconstruction. However, the regeneration potential of Algipore (highly purified hydroxyapatite) and Biphasic (hydroxyapatite/beta-tricalcium phosphate) BGMs combined with bone marrow-derived mesenchymal stem cells (BMSCs) remains unclear. Therefore, we evaluated their osseointegration capacities in reconstructing peri-implant bone defects. The cellular characteristics of BMSCs and the material properties of Algipore and Biphasic were assessed in vitro. Four experimental groups-Algipore, Biphasic, Algipore+BMSCs, and Biphasic+BMSCs-were designed in a rabbit tibia peri-implant defect model. Implant stability parameters were measured. After 4 and 8 weeks of healing, all samples were evaluated using micro-CT, histological, and histomorphometric analysis. In the energy-dispersive X-ray spectroscopy experiment, the Ca/P ratio was higher for Algipore (1.67) than for Biphasic (1.44). The ISQ values continuously increased, and the PTV values gradually decreased for all groups during the healing period. Both Algipore and Biphasic BGM promoted new bone regeneration. Higher implant stability and bone volume density were observed when Algipore and Biphasic BGMs were combined with BMSCs. Biphasic BGM exhibited a faster degradation rate than Algipore BGM. Notably, after eight weeks of healing, Algipore with BSMCs showed more bone-implant contact than Biphasic alone (p < 0.05). Both Algipore and Biphasic are efficient in reconstructing peri-implant bone defects. In addition, Algipore BGM incorporation with BSMCs displayed the best performance in enhancing implant stability and osseointegration potential.


Assuntos
Células-Tronco Mesenquimais , Procedimentos de Cirurgia Plástica , Animais , Coelhos , Osseointegração , Regeneração Óssea , Durapatita
10.
Brain Res Bull ; 204: 110795, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37863438

RESUMO

The role of bone marrow mesenchymal stem cells (BMSCs) in treating radiation-induced brain injury (RIBI) is not completely understood, and assessment methods to directly characterize neurological function are lacking. In this study, we aimed to evaluate the effects of BMSCs treatment on changes in hippocampal neural function in Sprague-Dawley(SD) rats with RIBI, and to evaluate the therapeutic effect of BMSCs by manganese-enhanced magnetic resonance imaging (MEMRI). First, we assessed cognitive function after RIBI treatment with BMSCs using the Morris water maze. Next, we used MEMRI at two time points to observe the treatment effect and explore the correlation between MEMRI and cognitive function. Finally, we evaluated the expression of specific hippocampal neurofunctional proteins, the ultrastructure of hippocampal nerves, and the histological changes in the hippocampus. After BMSCs treatment of RIBI, cognitive dysfunction improved significantly, the expression of hippocampal neurofunctional proteins was increased, the integrity of the hippocampal neural structure was protected, and nerve cell survival was enhanced. The improvement in neurological function was successfully detected by MEMRI, and MEMRI was highly correlated with cognitive function and histological changes. These results suggest that BMSCs treatment of RIBI is an optional modality, and MEMRI can be used for treatment evaluation.


Assuntos
Lesões Encefálicas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Ratos , Animais , Manganês , Ratos Sprague-Dawley , Imageamento por Ressonância Magnética/métodos , Lesões Encefálicas/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Espectroscopia de Ressonância Magnética
11.
Int J Mol Sci ; 24(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37686026

RESUMO

Mesenchymal Stem Cells (MSC) represent a captivating field of research attempting to address the vast variety of disease burdens, which at present lack efficient treatment [...].


Assuntos
Células-Tronco Mesenquimais , Efeitos Psicossociais da Doença
12.
Stem Cell Res Ther ; 14(1): 174, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37408043

RESUMO

BACKGROUND: Critical limb ischemia (CLI) is associated with increased risk of tissue loss, leading to significant morbidity and mortality. Therapeutic angiogenesis using cell-based treatments, notably mesenchymal stem cells (MSCs), is essential for enhancing blood flow to ischemic areas in subjects suffering from CLI. The objective of this study was to evaluate the feasibility of using placenta-derived mesenchymal stem cells (P-MSCs) in patients with CLI. METHODS: This phase I dose-escalation study investigated P-MSCs in nine CLI patients who were enrolled into each of the two dosage groups (20 × 106 and 60 × 106 cells), delivered intramuscularly twice, two months apart. The incidence of treatment-related adverse events was the primary endpoint. The decrease in inflammatory cytokines, improvement in the ankle-brachial pressure index (ABI), maximum walking distance, vascular collateralization, alleviation of rest pain, healing of ulceration, and avoidance of major amputation in the target leg were the efficacy outcomes. RESULTS: All dosages of P-MSCs, including the highest tested dose of 60 × 106 cells, were well tolerated. During the 6-month follow-up period, there was a statistically significant decrease in IL-1 and IFN-γ serum levels following P-MSC treatment. The blood lymphocyte profile of participants with CLI did not significantly differ, suggesting that the injection of allogeneic cells did not cause T-cell proliferation in vivo. We found clinically substantial improvement in rest pain, ulcer healing, and maximum walking distance after P-MSC implantation. In patients with CLI, we performed minor amputations rather than major amputations. Angiography was unable to demonstrate new small vessels formation significantly. CONCLUSION: The observations from this phase I clinical study indicate that intramuscular administration of P-MSCs is considered safe and well tolerated and may dramatically improve physical performance and minimize inflammatory conditions in patients with CLI. TRIAL REGISTRATION: IRCT, IRCT20210221050446N1. Registered May 09, 2021.


Assuntos
Isquemia Crônica Crítica de Membro , Células-Tronco Mesenquimais , Gravidez , Humanos , Feminino , Placenta , Isquemia/terapia , Dor , Resultado do Tratamento
13.
J Biomech ; 154: 111590, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37163962

RESUMO

Mechanical stimulation can modulate the chondrogenic differentiation of stem/progenitor cells and potentially benefit tissue engineering (TE) of functional articular cartilage (AC). Mechanical cues like hydrostatic pressure (HP) are often applied to cell-laden scaffolds, with little optimization of other key parameters (e.g. cell density, biomaterial properties) known to effect lineage commitment. In this study, we first sought to establish cell seeding densities and fibrin concentrations supportive of robust chondrogenesis of human mesenchymal stem cells (hMSCs). High cell densities (15*106 cells/ml) were more supportive of sGAG deposition on a per cell basis, while collagen deposition was higher at lower seeding densities (5*106 cells/ml). Employment of lower fibrin (2.5 %) concentration hydrogels supported more robust chondrogenesis of hMSCs, with higher collagen type II and lower collagen type X deposition compared to 5 % hydrogels. The application of HP to hMSCs maintained in identified chondro-inductive culture conditions had little effect on overall levels of cartilage-specific matrix production. However, if hMSCs were first temporally primed with TGF-ß3 before its withdrawal, they responded to HP by increased sGAG production. The response to HP in higher cell density cultures was also associated with a metabolic shift towards glycolysis, which has been linked with a mature chondrocyte-like phenotype. These results suggest that mechanical stimulation may not be necessary to engineer functional AC grafts using hMSCs if other culture conditions have been optimised. However, such bioreactor systems can potentially be employed to better understand how engineered tissues respond to mechanical loading in vivo once removed from in vitro culture environments.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Humanos , Condrogênese/fisiologia , Pressão Hidrostática , Engenharia Tecidual/métodos , Diferenciação Celular , Hidrogéis , Fibrina , Células Cultivadas
14.
Cells ; 12(6)2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36980191

RESUMO

Mesenchymal stromal cells (MSCs) have the potential to suppress pathological activation of immune cells and have therefore been considered for the treatment of Graft-versus-Host-Disease. The clinical application of MSCs requires a process validation to ensure consistent quality. A flow cytometry-based mixed lymphocyte reaction (MLR) was developed to analyse the inhibitory effect of MSCs on T cell proliferation. Monoclonal antibodies were used to stimulate T cell expansion and determine the effect of MSCs after four days of co-culture based on proliferation tracking with the violet proliferation dye VPD450. Following the guidelines of the International Council for Harmonisation (ICH) Q2 (R1), the performance of n = 30 peripheral blood mononuclear cell (PBMC) donor pairs was assessed. The specific inhibition of T cells by viable MSCs was determined and precision values of <10% variation for repeatability and <15% for intermediate precision were found. Compared to a non-compendial reference method, a linear correlation of r = 0.9021 was shown. Serial dilution experiments demonstrated a linear range for PBMC:MSC ratios from 1:1 to 1:0.01. The assay was unaffected by PBMC inter-donor variability. In conclusion, the presented MLR can be used as part of quality control tests for the validation of MSCs as a clinical product.


Assuntos
Citometria de Fluxo , Doença Enxerto-Hospedeiro , Teste de Cultura Mista de Linfócitos , Células-Tronco Mesenquimais , Teste de Cultura Mista de Linfócitos/métodos , Humanos , Células-Tronco Mesenquimais/citologia , Leucócitos Mononucleares/citologia , Controle de Qualidade , Citometria de Fluxo/métodos , Citometria de Fluxo/normas , Linfócitos T/citologia , Proliferação de Células , Doença Enxerto-Hospedeiro/terapia
15.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36675188

RESUMO

Human bone marrow mesenchymal stem cell derived-extracellular vesicles (HBMSC-EV) are known for their regenerative and anti-inflammatory effects in animal models of myocardial ischemia. However, it is not known whether the efficacy of the EVs can be modulated by pre-conditioning of HBMSC by exposing them to either starvation or hypoxia prior to EV collection. HBMSC-EVs were isolated following normoxia starvation (NS), normoxia non-starvation (NNS), hypoxia starvation (HS), or hypoxia non-starvation (HNS) pre-conditioning. The HBMSC-EVs were characterized by nanoparticle tracking analysis, electron microscopy, Western blot, and proteomic analysis. Comparative proteomic profiling revealed that starvation pre-conditioning led to a smaller variety of proteins expressed, with the associated lesser effect of normoxia versus hypoxia pre-conditioning. In the absence of starvation, normoxia and hypoxia pre-conditioning led to disparate HBMSC-EV proteomic profiles. HNS HBMSC-EV was found to have the greatest variety of proteins overall, with 74 unique proteins, the greatest number of redox proteins, and pathway analysis suggestive of improved angiogenic properties. Future HBMSC-EV studies in the treatment of cardiovascular disease may achieve the most therapeutic benefits from hypoxia non-starved pre-conditioned HBMSC. This study was limited by the lack of functional and animal models of cardiovascular disease and transcriptomic studies.


Assuntos
Doenças Cardiovasculares , Vesículas Extracelulares , Células-Tronco Mesenquimais , Animais , Humanos , Doenças Cardiovasculares/metabolismo , Proteômica , Vesículas Extracelulares/metabolismo , Hipóxia/metabolismo , Células-Tronco Mesenquimais/metabolismo
16.
Sci Rep ; 13(1): 1698, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717650

RESUMO

Insights regarding the biodistribution and homing of mesenchymal stromal cells (MSCs), as well as their interaction with alloreactive T-cells are critical for understanding how MSCs can regulate graft-versus-host disease (GVHD) following allogeneic (allo) bone marrow transplantation (BMT). We developed novel assays based on 3D, microscopic, cryo-imaging of whole-mouse-sized volumes to assess the therapeutic potential of human MSCs using an established mouse GVHD model. Following infusion, we quantitatively tracked fluorescently labeled, donor-derived, T-cells and third party MSCs in BMT recipients using multispectral cryo-imaging. Specific MSC homing sites were identified in the marginal zones in the spleen and the lymph nodes, where we believe MSC immunomodulation takes place. The number of MSCs found in spleen of the allo BMT recipients was about 200% more than that observed in the syngeneic group. To more carefully define the effects MSCs had on T cell activation and expansion, we developed novel T-cell proliferation assays including secondary lymphoid organ (SLO) enlargement and Carboxyfluoescein succinimidyl ester (CFSE) dilution. As anticipated, significant SLO volume enlargement and CFSE dilution was observed in allo but not syn BMT recipients due to rapid proliferation and expansion of labeled T-cells. MSC treatment markedly attenuated CFSE dilution and volume enlargement of SLO. These assays confirm evidence of potent, in vivo, immunomodulatory properties of MSC following allo BMT. Our innovative platform includes novel methods for tracking cells of interest as well as assessing therapeutic function of MSCs during GVHD induction. Our results support the use of MSCs treatment or prevention of GVHD and illuminate the wider adoption of MSCs as a standard medicinal cell therapy.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Camundongos , Humanos , Animais , Distribuição Tecidual , Transplante de Medula Óssea , Doença Enxerto-Hospedeiro/patologia , Modelos Animais de Doenças
17.
Cell Tissue Bank ; 24(2): 285-306, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36222966

RESUMO

Rise in the incidences of chronic degenerative diseases with aging makes wound care a socio-economic burden and unceasingly necessitates a novel, economical, and efficient wound healing treatment. Platelets have a crucial role in hemostasis and thrombosis by modulating distinct mechanistic phases of wound healing, such as promoting and stabilizing the clot. Platelet-rich plasma (PRP) contains a high concentration of platelets than naïve plasma and has an autologous origin with no immunogenic adverse reactions. As a consequence, PRP has gained significant attention as a therapeutic to augment the healing process. Since the past few decades, a robust volume of research and clinical trials have been performed to exploit extensive role of PRP in wound healing/tissue regeneration. Despite these rigorous studies and their application in diversified medical fields, efficacy of PRP-based therapies is continuously questioned owing to the paucity of large samplesizes, controlled clinical trials, and standard protocols. This review systematically delineates the process of wound healing and involvement of platelets in tissue repair mechanisms. Additionally, emphasis is laid on PRP, its preparation methods, handling, classification,application in wound healing, and PRP as regenerative therapeutics combined with biomaterials and mesenchymal stem cells (MSCs).


Assuntos
Células-Tronco Mesenquimais , Plasma Rico em Plaquetas , Humanos , Cicatrização , Plaquetas , Materiais Biocompatíveis
18.
Appl Health Econ Health Policy ; 21(1): 141-152, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36136263

RESUMO

OBJECTIVES: The aim of this study was to assess the cost effectiveness of allogeneic umbilical cord blood-derived mesenchymal stem cells with sodium hyaluronate (hUCB-MSC) compared with microfracture in patients with knee cartilage defects caused by osteoarthritis (OA) in South Korea. METHODS: A partitioned survival model approach was taken consisting of five mutually exclusive health states: excellent, good, fair, poor, and death over a 20-year time horizon. Utility values were obtained from a randomized clinical trial. Cost data were extracted from a database provided by the Health Insurance Review & Assessment Service, and the utilization of healthcare services was estimated from an expert panel of orthopedic surgeons using a structured questionnaire. The incremental cost-effectiveness ratio (ICER) in terms of quality-adjusted life-years (QALY) was calculated. Deterministic and probabilistic sensitivity analyses were performed. RESULTS: In the base case, the incremental costs of US$14,410 for hUCB-MSC therapy along with its associated QALY gain of 0.857 resulted in an ICER of US$16,812 (₩18,790,773) per QALY (95% confidence interval [CI] US$13,408-US$20,828) when compared with microfracture treatment from a healthcare payer perspective. From a societal perspective, the ICER was US$268 (₩299,255) per QALY (95% CI -US$2915 to US$3784). When using a willingness-to-pay threshold of US$22,367/QALY, the probability of hUCB being cost effectiveness compared with microfracture was 99% from the healthcare payer perspective and 100% from the societal perspective. CONCLUSIONS: The study demonstrated that hUCB-MSC therapy was cost effective compared with microfracture when treating patients with knee OA. These findings should inform health policy decision makers about considerations for cost-effective therapy for treating knee OA to ultimately enhance population health.


Assuntos
Fraturas de Estresse , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais , Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/terapia , Análise de Custo-Efetividade , Sangue Fetal , Análise Custo-Benefício , Anos de Vida Ajustados por Qualidade de Vida
19.
J Nanobiotechnology ; 20(1): 540, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575530

RESUMO

BACKGROUND: In vivo-mimicking conditions are critical in in vitro cell analysis to obtain clinically relevant results. The required conditions, comparable to those prevalent in nature, can be provided by microfluidic dynamic cell cultures. Microfluidics can be used to fabricate and test the functionality and biocompatibility of newly developed nanosystems or to apply micro- and nanoelectromechanical systems embedded in a microfluidic system. However, the use of microfluidic systems is often hampered by their accessibility, acquisition cost, or customization, especially for scientists whose primary research focus is not microfluidics. RESULTS: Here we present a method for 3D printing that can be applied without special prior knowledge and sophisticated equipment to produce various ready-to-use microfluidic components with a size of 100 µm. Compared to other available methods, 3D printing using fused deposition modeling (FDM) offers several advantages, such as time-reduction and avoidance of sophisticated equipment (e.g., photolithography), as well as excellent biocompatibility and avoidance of toxic, leaching chemicals or post-processing (e.g., stereolithography). We further demonstrate the ease of use of the method for two relevant applications: a cytotoxicity screening system and an osteoblastic differentiation assay. To our knowledge, this is the first time an application including treatment, long-term cell culture and analysis on one chip has been demonstrated in a directly 3D-printed microfluidic chip. CONCLUSION: The direct 3D printing method is tested and validated for various microfluidic components that can be combined on a chip depending on the specific requirements of the experiment. The ease of use and production opens up the potential of microfluidics to a wide range of users, especially in biomedical research. Our demonstration of its use as a cytotoxicity screening system and as an assay for osteoblastic differentiation shows the methods potential in the development of novel biomedical applications. With the presented method, we aim to disseminate microfluidics as a standard method in biomedical research, thus improving the reproducibility and transferability of results to clinical applications.


Assuntos
Células-Tronco Mesenquimais , Microfluídica , Impressão Tridimensional , Humanos , Diferenciação Celular , Avaliação Pré-Clínica de Medicamentos , Dispositivos Lab-On-A-Chip , Microfluídica/métodos , Reprodutibilidade dos Testes
20.
Biofabrication ; 15(1)2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36327453

RESUMO

Therapies to deep burn injuries remain a global challenge. Human amniotic membrane (hAM) is a biomaterial that has been increasingly explored by the field of regenerative medicine. A decellularized hAM (DhAM) can be used as scaffold for mesenchymal stromal cells (MSCs) to grow without the loss of their stemness potential, allowing its application as cell therapy for wound healing. In this work, we associated DhAM with adipose-derived MSCs (DhAM + AD-MSCs), as a therapy strategy for second-degree burns in a preclinical model. Animals with induced second-degree burns were divided into four groups: control, which consists of a non-adherent gauze; a synthetic commercial dressing as the positive control (Control+); DhAM; and DhAM plus rat AD-MSCs (DhAM + AD-MSCs), followed by detailed and long term analysis (5 weeks). The macroscopical analysis showed the healing improvement in the wound area after the DhAM + AD-MSC treatment. Histological analysis also showed no alteration in the animal organs and a regular epithelial progression in comparison to the control. This observation was also confirmed by the analysis of suprabasal layers in the neoepidermis with CK10, showing a stratified and differentiated epithelium, when compared to Control and Control+. A strong CD73 (ecto-5'-nucleotidase) labeling was observed in the first 2 weeks postburn in dermis and epidermis. The expression in dermis was stronger in the second week in the middle of the wound, when comparing the Control+ with DhAM + AD-MSCs (p= 0.0238). In the epidermis the expression of CD73 was increased in all regions when compared to the control. This data suggests the involvement of this protein on wound healing. A low CD11b labeling was observed in DhAM + AD-MSCs treatment group mainly in the last treatment week, in comparison to Control and Control+ (p< 0.0001), which indicates a reduction in the inflammatory process. MSCs through CD73 can release high concentrations of adenosine, an immunosuppressive molecule, suggesting that this could be the mechanism by which the inflammation was better modulated in the DhAM + AD-MSCs group. The results obtained with this preclinical model confirm the effectiveness and safety of this low-cost and highly available dressing for future clinical application as a therapy for burn treatments.


Assuntos
Queimaduras , Células-Tronco Mesenquimais , Humanos , Ratos , Animais , Âmnio/patologia , Células-Tronco Mesenquimais/metabolismo , Queimaduras/terapia , Queimaduras/metabolismo , Cicatrização , Diferenciação Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA