Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 112(7): 1041-1056, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38380793

RESUMO

Extracellular matrix-based bio-scaffolds are useful for tissue engineering as they retain the unique structural, mechanical, and physiological microenvironment of the tissue thus facilitating cellular attachment and matrix activities. However, considering its potential, a comprehensive understanding of the protein profile remains elusive. Herein, we evaluate the impact of decellularization on the human amniotic membrane (hAM) based on its proteome profile, physicochemical features, as well as the attachment, viability, and proliferation of umbilical cord-derived mesenchymal stem cells (hUC-MSC). Proteome profiles of decellularized hAM (D-hAM) were compared with hAM, and gene ontology (GO) enrichment analysis was performed. Proteomic data revealed that D-hAM retained a total of 249 proteins, predominantly comprised of extracellular matrix proteins including collagens (collagen I, collagen IV, collagen VI, collagen VII, and collagen XII), proteoglycans (biglycan, decorin, lumican, mimecan, and versican), glycoproteins (dermatopontin, fibrinogen, fibrillin, laminin, and vitronectin), and growth factors including transforming growth factor beta (TGF-ß) and fibroblast growth factor (FGF) while eliminated most of the intracellular proteins. Scanning electron microscopy was used to analyze the epithelial and basal surfaces of D-hAM. The D-hAM displayed variability in fibril morphology and porosity as compared with hAM, showing loosely packed collagen fibers and prominent large pore areas on the basal side of D-hAM. Both sides of D-hAM supported the growth and proliferation of hUC-MSC. Comparative investigations, however, demonstrated that the basal side of D-hAM displayed higher hUC-MSC proliferation than the epithelial side. These findings highlight the importance of understanding the micro-environmental differences between the two sides of D-hAM while optimizing cell-based therapeutic applications.


Assuntos
Âmnio , Células-Tronco Mesenquimais , Proteoma , Cordão Umbilical , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Âmnio/citologia , Âmnio/química , Âmnio/metabolismo , Cordão Umbilical/citologia , Proteoma/análise , Proliferação de Células , Matriz Extracelular Descelularizada/química , Materiais Biocompatíveis/química
2.
Cells ; 12(6)2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36980191

RESUMO

Mesenchymal stromal cells (MSCs) have the potential to suppress pathological activation of immune cells and have therefore been considered for the treatment of Graft-versus-Host-Disease. The clinical application of MSCs requires a process validation to ensure consistent quality. A flow cytometry-based mixed lymphocyte reaction (MLR) was developed to analyse the inhibitory effect of MSCs on T cell proliferation. Monoclonal antibodies were used to stimulate T cell expansion and determine the effect of MSCs after four days of co-culture based on proliferation tracking with the violet proliferation dye VPD450. Following the guidelines of the International Council for Harmonisation (ICH) Q2 (R1), the performance of n = 30 peripheral blood mononuclear cell (PBMC) donor pairs was assessed. The specific inhibition of T cells by viable MSCs was determined and precision values of <10% variation for repeatability and <15% for intermediate precision were found. Compared to a non-compendial reference method, a linear correlation of r = 0.9021 was shown. Serial dilution experiments demonstrated a linear range for PBMC:MSC ratios from 1:1 to 1:0.01. The assay was unaffected by PBMC inter-donor variability. In conclusion, the presented MLR can be used as part of quality control tests for the validation of MSCs as a clinical product.


Assuntos
Citometria de Fluxo , Doença Enxerto-Hospedeiro , Teste de Cultura Mista de Linfócitos , Células-Tronco Mesenquimais , Teste de Cultura Mista de Linfócitos/métodos , Humanos , Células-Tronco Mesenquimais/citologia , Leucócitos Mononucleares/citologia , Controle de Qualidade , Citometria de Fluxo/métodos , Citometria de Fluxo/normas , Linfócitos T/citologia , Proliferação de Células , Doença Enxerto-Hospedeiro/terapia
3.
Carbohydr Polym ; 282: 119126, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35123750

RESUMO

An innovative approach was developed to engineer a multi-layered chitosan scaffold for osteochondral defect repair. A combination of freeze drying and porogen-leaching out methods produced a porous, bioresorbable scaffold with a distinct gradient of pore size (mean = 160-275 µm). Incorporation of 70 wt% nano-hydroxyapatite (nHA) provided additional strength to the bone-like layer. The scaffold showed instantaneous mechanical recovery under compressive loading and did not delaminate under tensile loading. The scaffold supported the attachment and proliferation of human mesenchymal stem cells (MSCs), with typical adherent cell morphology found on the bone layer compared to a rounded cell morphology on the chondrogenic layer. Osteogenic and chondrogenic differentiation of MSCs preferentially occurred in selected layers of the scaffold in vitro, driven by the distinct pore gradient and material composition. This scaffold is a suitable candidate for minimally invasive arthroscopic delivery in the clinic with potential to regenerate damaged cartilage and bone.


Assuntos
Quitosana , Durapatita , Células-Tronco Mesenquimais/citologia , Nanoestruturas , Alicerces Teciduais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Condrogênese , Humanos , Células-Tronco Mesenquimais/metabolismo , Microesferas , Osteogênese , Poliésteres , Resistência à Tração
4.
J Cell Mol Med ; 25(22): 10430-10440, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34651412

RESUMO

Hypoxic-ischaemic encephalopathy (HIE) is a type of brain injury affecting approximately 1 million newborn babies per year worldwide, the only treatment for which is therapeutic hypothermia. Thrombin-preconditioned mesenchymal stem cells (MSCs) exert neuroprotective effects by enriching cargo contents and boosting exosome biogenesis, thus showing promise as a new therapeutic strategy for HIE. This study was conducted to evaluate the tissue distribution and potential toxicity of thrombin-preconditioned human Wharton's jelly-derived mesenchymal stem cells (th-hWJMSCs) in animal models before the initiation of clinical trials. We investigated the biodistribution, tumorigenicity and general toxicity of th-hWJMSCs. MSCs were administered the maximum feasible dose (1 × 105 cells/10 µL/head) once, or at lower doses into the cerebral ventricle. To support the clinical use of th-hWJMSCs for treating brain injury, preclinical safety studies were conducted in newborn Sprague-Dawley rats and BALB/c nude mice. In addition, growth parameters were evaluated to assess the impact of th-hWJMSCs on the growth of newborn babies. Our results suggest that th-hWJMSCs are non-toxic and non-tumorigenic in rodent models, survive for up to 7 days in the brain and hold potential for HIE therapy.


Assuntos
Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Trombina/metabolismo , Geleia de Wharton/citologia , Animais , Animais Recém-Nascidos , Biomarcadores , Transformação Celular Neoplásica , Gerenciamento Clínico , Modelos Animais de Doenças , Humanos , Hipóxia-Isquemia Encefálica/etiologia , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Ratos , Trombina/farmacologia
5.
Inflammopharmacology ; 29(5): 1399-1412, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34510276

RESUMO

BACKGROUND: Mesenchymal stem cells-derived adipose tissue (AT-MSCs) are recognized for the treatment of inflammatory diseases including multiple sclerosis (MS). Hypericum perforatum (HP) is an anti-inflammatory pharmaceutical plant with bioactive compounds. Plant tissue culture is a technique to improve desired pharmacological potential. The aim of this study was to compare the anti-inflammatory and proliferative effects of callus with field-growing plant extracts of HP on AT-MSCs derived from MS patients. MATERIALS AND METHODS: AT-MSCs were isolated and characterized. HP callus was prepared and exposure to light spectrum (blue, red, blue-red, and control). Total phenols, flavonoids, and hypericin of HP callus and plant extracts were measured. The effects of HP extracts concentrations on proliferation were evaluated by MTT assay. Co-culture of AT-MSCs: PBMCs were challenged by HP plant and callus extracts, and Tregs percentage was assessed by flow cytometry. RESULTS: Identification of MSCs was performed. Data showed that blue light could stimulate total phenols, flavonoids, and hypericin. MTT test demonstrated that plant extract in concentrations (0.03, 1.2, 2.5 and 10 µg/ml) and HP callus extract in 10 µg/ml significantly increased. Both HP extracts lead to an increase in Tregs percentage in all concentrations. In particular, a comparison between HP plant and callus extracts revealed that Tregs enhanced 3-fold more than control groups in the concentration of 10 µg/ml callus. CONCLUSIONS: High concentrations of HP extracts showed effectiveness on AT-MSCs proliferation and immunomodulatory properties with a certain consequence in callus extract. HP extracts may be considered as supplementary treatments for the patients who receiving MSCs transplantation.


Assuntos
Hypericum/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Esclerose Múltipla/tratamento farmacológico , Extratos Vegetais/farmacologia , Tecido Adiposo/citologia , Adulto , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Feminino , Humanos , Agentes de Imunomodulação/administração & dosagem , Agentes de Imunomodulação/isolamento & purificação , Agentes de Imunomodulação/farmacologia , Células-Tronco Mesenquimais/citologia , Esclerose Múltipla/imunologia , Extratos Vegetais/administração & dosagem
6.
Biochim Biophys Acta Mol Basis Dis ; 1867(12): 166245, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34391896

RESUMO

This article aims to investigate the mechanism of behaviors of human bone marrow stromal cells (hBMSCs) affected by scaffold structure combining Monte Carlo feature selection (MFCS), incremental feature selection (IFS) and support vector machine (SVM). The specific differentially expressed genes (DEGs) of hBMSCs cultured on nanofiber (NF) scaffolds and freeform fabrication (FFF) scaffolds were obtained. Key genes were screened from common genes between osteogenic DEGs and NF specific DEGs with MFCS, IFS and SVM. The results demonstrated that NF scaffolds induced hBMSCs to express more genes related to osteogenic differentiation. Finally, 16 key genes were identified among the common genes. The common genes were significantly enriched in Rap1 signaling pathway, extracellular matrix and ossification. The results in this study suggested that the gene expression of hBMSCs was sensitive to NF scaffolds and FFF scaffolds, and the osteogenic differentiation of hBMSCs could be enhanced by NF scaffolds.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Nanofibras/administração & dosagem , Osteogênese/genética , Diferenciação Celular/genética , Biologia Computacional , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Método de Monte Carlo , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Máquina de Vetores de Suporte , Alicerces Teciduais/química
7.
Cells ; 10(4)2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804841

RESUMO

To optimise the culture conditions for human Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs) intended for clinical use, we investigated ten different properties of these cells cultured under 21% (atmospheric) and 5% (physiological normoxia) oxygen concentrations. The obtained results indicate that 5% O2 has beneficial effects on the proliferation rate, clonogenicity, and slowdown of senescence of hWJ-MSCs; however, the oxygen level did not have an influence on the cell morphology, immunophenotype, or neuroprotective effect of the hWJ-MSCs. Nonetheless, the potential to differentiate into adipocytes, osteocytes, and chondrocytes was comparable under both oxygen conditions. However, spontaneous differentiation of hWJ-MSCs into neuronal lineages was observed and enhanced under atmospheric oxygen conditions. The cells relied more on mitochondrial respiration than glycolysis, regardless of the oxygen conditions. Based on these results, we can conclude that hWJ-MSCs could be effectively cultured and prepared under both oxygen conditions for cell-based therapy. However, the 5% oxygen level seemed to create a more balanced and appropriate environment for hWJ-MSCs.


Assuntos
Células-Tronco Mesenquimais/citologia , Neuroproteção , Oxigênio/farmacologia , Geleia de Wharton/citologia , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Células Clonais , Humanos , Imunofenotipagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores
8.
Knee ; 29: 418-425, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33721626

RESUMO

BACKGROUND: Cell based therapy in cartilage repair predominantly involves the use of chondrocytes and mesenchymal stromal cells (MSC). Co-culture systems, due to their probable synergistic effect on enhancement of functional chondrogenesis and reduction in terminal differentiation have also been attempted. Chondroprogenitors, derived from articular cartilage and regarded as MSCs, have recently garnered interest for consideration in cartilage regeneration to overcome limitations associated with use of conventional cell types. The aim of this study was to assess whetherco-culturing bone marrow (BM)-MSCs and chondroprogenitors at different ratios would yield superior results in terms of surface marker expression, gene expression and chondrogenic potential. METHODS: Human BM-MSCs and chondroprogenitors obtained from three osteoarthritic knee joints and subjected to monolayer expansion and pellet cultures (10,000 cells/cm2) as five test groups containing either monocultures or co-cultures (MSC: chondroprogenitors) at three different ratios (75:25, 50:50 and 25:75) were utilized. RESULTS: Data analysis revealed that all groups exhibited a high expression of CD166, CD29 and CD49e. With regard to gene expression, high expression of SOX9, Aggrecan and Collagen type I; a moderate expression of Collagen type X and RUNX2; with a low expression of Collagen type II was seen. Analysis of pellet culture revealed that chondroprogenitor monoculture and chondroprogenitor dominant coculture, exhibited a subjectively larger pellet size with higher deposition of Collagen type II and glycosaminoglycan. CONCLUSION: In conclusion, this study is suggestive of chondroprogenitor monoculture superiority over MSCs, either in isolation or in a coculture system and proposes further analysis of chondroprogenitors for cartilage repair.


Assuntos
Cartilagem Articular/citologia , Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/citologia , Osteoartrite do Joelho/patologia , Agrecanas/genética , Agrecanas/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Cartilagem Articular/fisiologia , Diferenciação Celular , Condrogênese/genética , Técnicas de Cocultura , Colágeno Tipo I/metabolismo , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Feminino , Expressão Gênica , Humanos , Articulação do Joelho/citologia , Masculino , Células-Tronco Mesenquimais/fisiologia , Pessoa de Meia-Idade
9.
J Biomed Mater Res B Appl Biomater ; 109(11): 1713-1723, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33749114

RESUMO

Enriching a biomaterial surface with specific chemical groups has previously been considered for producing surfaces that influence cell response. Silane layer deposition has previously been shown to control mesenchymal stem cell adhesion and differentiation. However, it has not been used to investigate neuronal or Schwann cell responses in vitro to date. We report on the deposition of aminosilane groups for peripheral neurons and Schwann cells studying two chain lengths: (a) 3-aminopropyl triethoxysilane (short chain-SC) and (b) 11-aminoundecyltriethoxysilane (long chain-LC) by coating glass substrates. Surfaces were characterised by water contact angle, AFM and XPS. LC-NH2 was produced reproducibly as a homogenous surface with controlled nanotopography. Primary neuron and NG108-15 neuronal cell differentiation and primary Schwann cell responses were investigated in vitro by S100ß, p75, and GFAP antigen expression. Both amine silane surface supported neuronal and Schwann cell growth; however, neuronal differentiation was greater on LC aminosilanes versus SC. Thus, we report that silane surfaces with an optimal chain length may have potential in peripheral nerve repair for the modification and improvement of nerve guidance devices.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Neurônios/metabolismo , Células de Schwann/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Células-Tronco Mesenquimais/citologia , Neurônios/citologia , Ratos , Células de Schwann/citologia , Propriedades de Superfície
10.
Sci Rep ; 11(1): 4385, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623051

RESUMO

Easy, quantitative measures of biomolecular heterogeneity and high-stratified phenotyping are needed to identify and characterise complex disease processes at the single-cell level, as well as to predict cell fate. Here, we demonstrate how Raman spectroscopy can be used in the difficult-to-assess case of clonal, bone-derived mesenchymal stromal cells (MSCs) to identify MSC lines and group these according to biological function (e.g., differentiation capacity). Biomolecular stratification is achieved using high-precision measures obtained from representative statistical sampling that also enable quantified heterogeneity assessment. Application to primary MSCs and human dermal fibroblasts shows use of these measures as a label-free assay to classify cell sub-types within complex heterogeneous cell populations, thus demonstrating the potential for therapeutic translation, and broad application to the phenotypic characterisation of other cells.


Assuntos
Células-Tronco Mesenquimais/citologia , Análise de Célula Única/métodos , Análise Espectral Raman/métodos , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Fenótipo
11.
Methods Mol Biol ; 2235: 27-35, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33576968

RESUMO

Pericytes are mural cells closely associated with endothelial cells in capillaries and microvessels. They are precursors of mesenchymal stem/stromal cells that have historically been retrospectively characterized in culture. We established a protocol, described in this chapter, to characterize and isolate pericytes from multiple human organs by flow cytometry and fluorescence-activated cell sorting. This prospective purification of pericytes brings us a step forward in the development of strategies for their use in the clinic.


Assuntos
Citometria de Fluxo/métodos , Pericitos/citologia , Pericitos/transplante , Capilares/citologia , Técnicas de Cultura de Células/métodos , Separação Celular/métodos , Células Cultivadas , Células Endoteliais/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Microvasos/citologia , Pericitos/metabolismo , Fenótipo
12.
J Transl Med ; 18(1): 451, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33256746

RESUMO

BACKGROUND: During the coronavirus disease-2019 (COVID-19) pandemic, Italian hospitals faced the most daunting challenges of their recent history, and only essential therapeutic interventions were feasible. From March to April 2020, the Laboratory of Advanced Cellular Therapies (Vicenza, Italy) received requests to treat a patient with severe COVID-19 and a patient with acute graft-versus-host disease with umbilical cord-derived mesenchymal stromal cells (UC-MSCs). Access to clinics was restricted due to the risk of contagion. Transport of UC-MSCs in liquid nitrogen was unmanageable, leaving shipment in dry ice as the only option. METHODS: We assessed effects of the transition from liquid nitrogen to dry ice on cell viability; apoptosis; phenotype; proliferation; immunomodulation; and clonogenesis; and validated dry ice-based transport of UC-MSCs to clinics. RESULTS: Our results showed no differences in cell functionality related to the two storage conditions, and demonstrated the preservation of immunomodulatory and clonogenic potentials in dry ice. UC-MSCs were successfully delivered to points-of-care, enabling favourable clinical outcomes. CONCLUSIONS: This experience underscores the flexibility of a public cell factory in its adaptation of the logistics of an advanced therapy medicinal product during a public health crisis. Alternative supply chains should be evaluated for other cell products to guarantee delivery during catastrophes.


Assuntos
COVID-19/terapia , Atenção à Saúde/organização & administração , Gelo-Seco , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Sistemas Automatizados de Assistência Junto ao Leito/organização & administração , Meios de Transporte , Doença Aguda , COVID-19/epidemiologia , COVID-19/patologia , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Transplante de Células-Tronco de Sangue do Cordão Umbilical/efeitos adversos , Atenção à Saúde/normas , Equipamentos e Provisões Hospitalares/normas , Equipamentos e Provisões Hospitalares/provisão & distribuição , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/patologia , Doença Enxerto-Hospedeiro/terapia , Humanos , Itália/epidemiologia , Administração de Materiais no Hospital/organização & administração , Administração de Materiais no Hospital/normas , Transplante de Células-Tronco Mesenquimais/métodos , Transplante de Células-Tronco Mesenquimais/normas , Células-Tronco Mesenquimais/fisiologia , Organização e Administração/normas , Pandemias , Fenótipo , Sistemas Automatizados de Assistência Junto ao Leito/normas , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Meios de Transporte/métodos , Meios de Transporte/normas
13.
Cell Transplant ; 29: 963689720943581, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32713192

RESUMO

Biological repair of cartilage lesions remains a significant clinical challenge. A wide variety of methods involving mesenchymal stem cells (MSCs) have been introduced. Because of the limitation of the results, most of the treatment methods have not yet been approved by the Food and Drug Administration (FDA). However, bone marrow aspirate concentrate (BMAC) and human umbilical cord blood derived mesenchymal stem cells (hUCB-MSCs) implantation were approved by Korea FDA. The aim of this study was to evaluate clinical and magnetic resonance imaging (MRI) outcomes after two different types of MSCs implantation in knee osteoarthritis. Fifty-two patients (52 knees) who underwent cartilage repair surgery using the BMAC (25 knees) and hUCB-MSCs (27 knees) were retrospectively evaluated for 2 years after surgery. Clinical outcomes were evaluated according to the score of visual analogue scale (VAS), the International Knee Documentation Committee (IKDC) subjective, and the Knee Injury and Osteoarthritis Outcome Score (KOOS). Cartilage repair was assessed according to the modified Magnetic Resonance Observation of Cartilage Repair Tissue (M-MOCART) score and the International Cartilage Repair Society (ICRS) cartilage repair scoring system. At 2-year follow-up, clinical outcomes including VAS, IKDC, and KOOS significantly improved (P < 0.05) in both groups; however, there were no differences between two groups. There was no significant difference in M-MOCART [1-year (P = 0.261), 2-year (P = 0.351)] and ICRS repair score (P = 0.655) between two groups. Both groups showed satisfactory clinical and MRI outcomes. Implantation of MSCs from BMAC or hUCB-MSCs is safe and effective for repairing cartilage lesion. However, large cases and a well-controlled prospective design with long-term follow-up studies are needed.


Assuntos
Células da Medula Óssea/citologia , Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Sangue Fetal/citologia , Articulação do Joelho/patologia , Imageamento por Ressonância Magnética/métodos , Células-Tronco Mesenquimais/citologia , Adulto , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Tempo , Resultado do Tratamento
14.
Cytotherapy ; 22(11): 677-689, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32723596

RESUMO

BACKGROUND AIMS: Mesenchymal stem/stromal cell (MSC)-based therapies have gained attention as potential alternatives for multiple musculoskeletal indications based on their trophic and immunomodulatory properties. The infrapatellar fat pad (IFP) serves as a reservoir of MSCs, which play crucial roles modulating inflammatory and fibrotic events at the IFP and its neighboring tissue, the synovium. In an effort to comply with the existing regulatory framework regarding cell-based product manufacturing, we interrogated the in vitro immunomodulatory capacity of human-derived IFP-MSCs processed under different conditions, including a regulatory-compliant protocol, in addition to their response to the inflammatory and fibrotic environments often present in joint disease. METHODS: Immunophenotype, telomere length, transcriptional and secretory immunomodulatory profiles and functional immunopotency assay were assessed in IFP-MSCs expanded in regular fetal bovine serum (FBS)-supplemented medium and side-by-side compared with same-donor cells processed with two media alternatives (i.e., regulatory-compliant pooled human platelet lysate [hPL] and a chemically reinforced/serum-reduced [Ch-R] formulation). Finally, to assess the effects of such formulations on the ability of the cells to respond to pro-inflammatory and pro-fibrotic conditions, all three groups were stimulated ex vivo (i.e., cell priming) with a cocktail containing TNFα, IFNγ and connective tissue growth factor (tumor-initiating cells) and compared with non-induced cohorts assessing the same outcomes. RESULTS: Non-induced and primed IFP-MSCs expanded in either hPL or Ch-R showed distinct morphology in vitro, similar telomere dynamics and distinct phenotypical and molecular profiles when compared with cohorts grown in FBS. Gene expression of IL-8, CD10 and granulocyte colony-stimulating factor was highly enriched in similarly processed IFP-MSCs. Cell surface markers related to the immunomodulatory capacity, including CD146 and CD10, were highly expressed, and secretion of immunomodulatory and pro-angiogenic factors was significantly enhanced with both hPL and Ch-R formulations. Upon priming, the immunomodulatory phenotype was enhanced, resulting in further increase in CD146 and CD10, significant CXCR4 presence and reduction in TLR3. Similarly, transcriptional and secretory profiles were enriched and more pronounced in IFP-MSCs expanded in either hPL or Ch-R, suggesting a synergistic effect between these formulations and inflammatory/fibrotic priming conditions. Collectively, increased indoleamine-2,3-dioxygenase activity and prostaglandin E2 secretion for hPL- and Ch-R-expanded IFP-MSCs were functionally reflected by their robust T-cell proliferation suppression capacity in vitro compared with IFP-MSCs expanded in FBS, even after priming. CONCLUSIONS: Compared with processing using an FBS-supplemented medium, processing IFP-MSCs with either hPL or Ch-R similarly enhances their immunomodulatory properties, which are further increased after exposure to an inflammatory/fibrotic priming environment. This evidence supports the adoption of regulatory-compliant practices during the manufacturing of a cell-based product based on IFP-MSCs and anticipates a further enhanced response once the cells face the pathological environment after intra-articular administration. Mechanistically, the resulting functionally enhanced cell-based product has potential utilization as a novel, minimally invasive cell therapy for joint disease through modulation of local immune and inflammatory events.


Assuntos
Tecido Adiposo/citologia , Imunomodulação , Células-Tronco Mesenquimais/citologia , Patela/anatomia & histologia , Controle Social Formal , Adulto , Plaquetas/citologia , Plaquetas/efeitos dos fármacos , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Meios de Cultura/farmacologia , Citocinas/metabolismo , Feminino , Humanos , Imunomodulação/efeitos dos fármacos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Soro , Transcrição Gênica/efeitos dos fármacos
15.
Cells ; 9(6)2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481562

RESUMO

The prevalence of arthritic diseases is increasing in developed countries, but effective treatments are currently lacking. The injection of mesenchymal stem cells (MSCs) represents a promising approach to counteract the degenerative and inflammatory environment characterizing those pathologies, such as osteoarthritis (OA). However, the majority of clinical approaches based on MSCs are used within an autologous paradigm, with important limitations. For this reason, allogeneic MSCs isolated from cord blood (cbMSCs) and Wharton's jelly (wjMSCs) gained increasing interest, demonstrating promising results in this field. Moreover, recent evidences shows that MSCs beneficial effects can be related to their secretome rather than to the presence of cells themselves. Among the trophic factors secreted by MSCs, extracellular vesicles (EVs) are emerging as a promising candidate for the treatment of arthritic joints. In the present review, the application of umbilical cord MSCs and their secretome as innovative therapeutic approaches in the treatment of arthritic joints will be examined. With the prospective of routine clinical applications, umbilical cord MSCs and EVs will be discussed also within an industrial and regulatory perspective.


Assuntos
Pesquisa Biomédica , Indústria Farmacêutica , Células-Tronco Mesenquimais/citologia , Proteoma/metabolismo , Cordão Umbilical/citologia , Animais , Artrite/terapia , Humanos
16.
J Biomed Mater Res A ; 108(10): 2044-2056, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32319212

RESUMO

Thanks to its biological properties, the human amniotic membrane (HAM) can be used as a barrier membrane for guided bone regeneration (GBR). However, no study has assessed the influence of the preservation method of HAM for this application. This study aimed to establish the most suitable preservation method of HAM for GBR. Fresh (F), cryopreserved (C) lyophilized (L), and decellularized and lyophilized (DL) HAM were compared. The impact of preservation methods on collagen and glycosaminoglycans (GAG) content was evaluated using Masson's trichrome and alcian blue staining. Their suture retention strengths were assessed. In vitro, the osteogenic potential of human bone marrow mesenchymal stromal cells (hBMSCs) cultured on the four HAMs was evaluated using alkaline phosphatase staining and alizarin red quantification assay. In vivo, the effectiveness of fresh and preserved HAMs for GBR was assessed in a mice diaphyseal bone defect after 1 week or 1 month healing. Micro-CT and histomorphometric analysis were performed. The major structural components of HAM (collagen and GAG) were preserved whatever the preservation method used. The tearing strength of DL-HAM was significantly higher. In vitro, hBMSCs seeded on DL-HAM displayed a stronger ALP staining, and alizarin red staining quantification was significantly higher at Day 14. In vivo, L-HAM and DL-HAM significantly enhanced early bone regeneration. One month after the surgery, only DL-HAM slightly promoted bone regeneration. Several preserving methods of HAM have been studied for bone regeneration. Here, we have demonstrated that DL-HAM achieved the most promising results for GBR.


Assuntos
Âmnio/química , Regeneração Óssea , Células-Tronco Mesenquimais/citologia , Alicerces Teciduais/química , Animais , Células Cultivadas , Criopreservação , Humanos , Camundongos , Osteogênese , Engenharia Tecidual/métodos
17.
Biotechniques ; 69(1): 410-413, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32285683

RESUMO

Mesenchymal stem cells (MSCs) represent a promising therapeutic candidate for treating many diseases. However, their proliferation and therapeutic abilities decline during the aging process and disease development. Therefore, fetal MSCs derived from the umbilical cord (UC) attract more attention. Storing and delivering the UC is one critical step for efficient MSC isolation. Although the culture medium-based solution is suitable for UC storage, it is not feasible for large-scale preparation because of its high price. Thus, we demonstrate here that a simple solution containing a pH buffering reagent, calcium, magnesium and glucose could be used as a cost-effective storage solution for UC delivery and efficient MSC isolation.


Assuntos
Células-Tronco Mesenquimais/citologia , Cordão Umbilical/citologia , Envelhecimento/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Análise Custo-Benefício/métodos , Meios de Cultura/metabolismo , Humanos
18.
Med Res Rev ; 40(4): 1315-1334, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32017179

RESUMO

Human mesenchymal stromal cells (hMSCs) are emerging as one of the most important cell types in advanced therapies and regenerative medicine due to their great therapeutic potential. The development of hMSC-based products focuses on the use of hMSCs as biological active substances, and they are considered medicinal products by the primary health agencies worldwide. Due to their regulatory status, the development of hMSC-based products is regulated by specific criteria that range from the design phase, nonclinical studies, clinical studies, to the final registration and approval. Patients should only be administered hMSC-based products within the framework of a clinical trial or after the product has obtained marketing authorization; in both cases, authorization by health authorities is usually required. Considering the above, this paper describes the current general regulatory requirements for hMSC-based products, by jurisdiction, to be implemented throughout their entire development process. These measures may provide support for researchers from both public and private entities and academia to optimize the development of these products and their subsequent marketing, thereby improving access to them by patients.


Assuntos
Internacionalidade , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Controle Social Formal , Pesquisa Translacional Biomédica , Humanos , Marketing
19.
Nanoscale ; 12(3): 1759-1778, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31895375

RESUMO

Ultrasmall superparamagnetic iron oxide nanoparticles with a size <5 nm are emerging nanomaterials for their excellent biocompatibility, chemical stability, and tunable surface modifications. The applications explored include dual-modal or multi-modal imaging, drug delivery, theranostics and, more recently, magnetic resonance angiography. Good biocompatibility and biosafety are regarded as the preliminary requirements for their biomedical applications and further exploration in this field is still required. We previously synthesized and characterized ultrafine (average core size of 3 nm) silica-coated superparamagnetic iron oxide fluorescent nanoparticles, named sub-5 SIO-Fl, uniform in size, shape, chemical properties and composition. The cellular uptake and in vitro biocompatibility of the as-synthesized nanoparticles were demonstrated in a human colon cancer cellular model. Here, we investigated the biocompatibility of sub-5 SIO-Fl nanoparticles in human Amniotic Mesenchymal Stromal/Stem Cells (hAMSCs). Kinetic analysis of cellular uptake showed a quick nanoparticle internalization in the first hour, increasing over time and after long exposure (48 h), the uptake rate gradually slowed down. We demonstrated that after internalization, sub-5 SIO-Fl nanoparticles neither affect hAMSC growth, viability, morphology, cytoskeletal organization, cell cycle progression, immunophenotype, and the expression of pro-angiogenic and immunoregulatory paracrine factors nor the osteogenic and myogenic differentiation markers. Furthermore, sub-5 SIO-Fl nanoparticles were intravenously injected into mice to investigate the in vivo biodistribution and toxicity profile for a time period of 7 weeks. Our findings showed an immediate transient accumulation of nanoparticles in the kidney, followed by the liver and lungs, where iron contents increased over a 7-week period. Histopathology, hematology, serum pro-inflammatory response, body weight and mortality studies demonstrated a short- and long-term biocompatibility and biosafety profile with no apparent acute and chronic toxicity caused by these nanoparticles in mice. Overall, these results suggest the feasibility of using sub-5 SIO-Fl nanoparticles as a promising agent for stem cell magnetic targeting as well as for diagnostic and therapeutic applications in oncology.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis , Nanopartículas de Magnetita/química , Teste de Materiais , Células-Tronco Mesenquimais/metabolismo , Dióxido de Silício , Animais , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Feminino , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Desenvolvimento Muscular/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Dióxido de Silício/química , Dióxido de Silício/farmacologia
20.
J Biomed Mater Res A ; 108(1): 94-102, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31498963

RESUMO

Foreign body response to implanted hydrogels and consequently fibrotic overgrowth on implanted spheres will decrease in vivo performance of these biomaterials. Considering the previous reports related to the immune-privileged properties of mesenchymal stem cells (MSCs), we hypothesized that encapsulated human placenta-derived MSCs (HP-MSCs) will mitigate the foreign body response against alginate hydrogels. The HP-MSC-laden alginate hydrogel was cross-linked with a CaCl2 solution. Morphological and mechanical properties of alginate spheres were determined by scanning electron microscopy imaging, degradation, and swelling tests. The HP-MSC-laden alginate spheres or cell-free spheres were implanted into the peritoneal cavity of BALB/c mice. After intraperitoneal implantation of spheres into BALB/c mice over a period of 14 days, capsules were recovered and precapsular fibrotic tissue on their surfaces was investigated. Assessment of encapsulated HP-MSC viability using acridine orange/propidium iodide staining revealed that foreign body response against cell-laden hydrogel results in fibrous overgrowth on spheres and consequently leads to the HP-MSC necrosis. In spite of immunomodulatory effects of MSCs, the introduction of spheres into the body induces foreign body response that affects the viability of immuno-isolated HP-MSCs during 14-day posttransplant period. The presence of HP-MSCs within alginate hydrogel could not reduce the fibrotic overgrowth on spheres compared with cell-free spheres. Therefore, there is an essential need for hydrogels that mitigate the foreign body response as a key challenge in the development of tissue engineering and drug delivery technologies.


Assuntos
Alginatos/efeitos adversos , Reação a Corpo Estranho/patologia , Células-Tronco Mesenquimais/citologia , Microesferas , Implantação de Prótese/efeitos adversos , Adulto , Animais , Diferenciação Celular , Linhagem da Célula , Sobrevivência Celular , Células Cultivadas , Feminino , Humanos , Hidrogéis/química , Injeções Intraperitoneais , Masculino , Camundongos Endogâmicos BALB C , Placenta/citologia , Gravidez , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA