Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Phys Med Biol ; 68(11)2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37072007

RESUMO

Objective. The purpose of this investigation is to establish the water calorimeter as the primary standard in PTB's ultra-high pulse dose rate (UHPDR) 20 MeV reference electron beams.Approach. The calorimetric measurements were performed at the PTB research linac facility using the UHPDR reference electron beam setups that enable a dose per pulse between about 0.1 Gy and 6 Gy. The beam is monitored by an in-flange integrating current transformer. The correction factors required to determine the absorbed dose to water were evaluated using thermal and Monte Carlo simulations. Measurements were performed with different total doses delivered per pulse by modifying the instantaneous dose rate within a pulse and by changing the pulse length. The obtained temperature-time traces were compared to the simulated ones to validate the thermal simulations. In addition, absorbed-dose-to-water measurements obtained using the secondary standard alanine dosimeter system were compared to measurements performed with the primary standard.Main results. The simulated and measured temperature-time traces were shown to be consistent, within combined uncertainties, with one another. Measurements with alanine dosimeters proved to be consistent withink= 1 of the total combined uncertainty with the absorbed dose to water determined using the primary standard.Significance. The total relative standard uncertainty of absorbed dose to water determined using the PTB water calorimeter primary standard in UHPDR electron beams was estimated to be less than 0.5%, and the combined correction factors were found to deviate from 1 by less than 1% for both PTB UHPDR 20 MeV reference electron beams. The water calorimeter is therefore considered to be an established primary standard for the higher energy UHPDR reference electron beams.


Assuntos
Radiometria , Água , Radiometria/métodos , Água/química , Elétrons , Calorimetria/métodos , Temperatura , Método de Monte Carlo
2.
Med Phys ; 49(10): 6635-6645, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35912973

RESUMO

PURPOSE: The purpose of this investigation is to evaluate the use of a probe-format graphite calorimeter, Aerrow, as an absolute and relative dosimeter of high-energy pulse dose rate (UHPDR) electron beams for in-water reference and depth-dose-type measurements, respectively. METHODS: In this paper, the calorimeter system is used to investigate the potential influence of dose per pulses delivered up to 5.6 Gy, the number of pulses delivered per measurement, and its potential for relative measurement (depth-dose curve measurement). The calorimeter system is directly compared against an Advanced Markus ion chamber. The finite element method was used to calculate heat transfer corrections along the percentage depth dose of a 20-MeV electron beam. Monte Carlo-calculated dose conversion factors necessary to calculate absorbed dose-to-water at a point from the measured dose-to-graphite are also presented. RESULTS: The comparison of Aerrow against a fully calibrated Advanced Markus chamber, corrected for the saturation effect, has shown consistent results in terms of dose-to-water determination. The measured reference depth is within 0.5 mm from the expected value from Monte Carlo simulation. The relative standard uncertainty estimated for Aerrow was 1.06%, which is larger compared to alanine dosimetry (McEwen et al. https://doi.org/10.1088/0026-1394/52/2/272) but has the advantage of being a real-time detector. CONCLUSION: In this investigation, it was demonstrated that the Aerrow probe-type graphite calorimeter can be used for relative and absolute dosimetries in water in an UHPDR electron beam. To the author's knowledge, this is the first reported use of an absorbed dose calorimeter for an in-water percentage depth-dose curve measurement. The use of the Aerrow in quasi-adiabatic mode has greatly simplified the signal readout, compared to isothermal mode, as the resistance was directly measured with a high-stability digital multimeter.


Assuntos
Grafite , Alanina , Calorimetria/métodos , Elétrons , Método de Monte Carlo , Radiometria/métodos , Água
3.
Phys Med ; 98: 18-27, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35489128

RESUMO

PURPOSE: To present primary standards establishment in terms of Dose Area Product (DAP) for small field sizes. METHODS: A large section graphite calorimeter and two plane-parallel ionization chambers were designed and built in-house. These chambers were calibrated in a 6MV FFF beam at the maximum dose rate of 1400 UM/min for fields defined by specifically designed circular collimators of 5, 7.5, 10, 13 and 15 mm diameter and jaws of 5, 7, 10, 13 and 15 mm side length on a Varian TrueBeam linac. RESULTS: The two chambers show the same behaviour regardless of field shape and size. From 5 to 15 mm, calibration coefficients slightly increase with the field size with a magnitude of 1.8% and 1.1% respectively for the two chambers, and are independent of the field shape. This tendency was confirmed by Monte Carlo calculations. The average associated uncertainty of the calibration coefficients is around 0.6% at k=1. CONCLUSIONS: For the first time, primary standards in terms of DAP were established by graphite calorimetry for an extended range of small field sizes. These promising results open the door for an alternative approach in small fields dosimetry.


Assuntos
Grafite , Calorimetria/métodos , Método de Monte Carlo , Aceleradores de Partículas , Fótons/uso terapêutico , Radiometria/métodos
4.
Phys Med Biol ; 67(5)2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35081517

RESUMO

Objective.Experimental determination of beam qualitykQfactors for two types of Farmer ionization chambers, NE2571 and IBA FC65-G, in a scanned proton beam for three nominal energies (140 MeV, 180 MeV and 220 MeV) based on water calorimetry.Approach.Beam quality correction factors were determined comparing the results obtained with water calorimetry and ionometry. Water calorimetry was performed to determine the absorbed dose at a depth of measurement in water of 5 g cm-2, limited by the extension of the calorimeter glass vessel used. For the ionometry, two chambers of each type were included in the study. The ionization chambers were calibrated in terms of absorbed dose to water in60Co at the Swedish Secondary Standard Dosimetry Laboratory, directly traceable to the BIPM, and were used according to the IAEA TRS-398 Code of Practice.Main results. ThekQvalues determined in the present work have been compared with the values tabulated in TRS-398 and its forthcoming update and also with those obtained in previous water calorimetric measurements and Monte Carlo calculations. All results were found to agree within the combined uncertainties of the different data.Significance. It is expected that the present work will serve as an experimental contribution tokQ-factors for the two chamber types and three scanned proton beam qualities used.


Assuntos
Prótons , Radiometria , Calibragem , Calorimetria/métodos , Método de Monte Carlo , Radiometria/métodos , Água/química
5.
Biotechnol Bioeng ; 119(2): 493-503, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34796477

RESUMO

Lignin valorization may offer a sustainable approach to achieve a chemical industry that is not completely dependent on fossil resources for the production of aromatics. However, lignin is a recalcitrant, heterogeneous, and complex polymeric compound for which only very few catalysts can act in a predictable and reproducible manner. Laccase is one of those catalysts and has often been referred to as an ideal "green" catalyst, as it is able to oxidize various linkages within lignin to release aromatic products, with the use of molecular oxygen and formation of water as the only side product. The extent and rate of laccase-catalyzed lignin conversion were measured using the label-free analytical technique isothermal titration calorimetry (ITC). IITC provides the molar enthalpy of the reaction, which reflects the extent of conversion and the time-dependent power trace, which reflects the rate of the reaction. Calorimetric assessment of the lignin conversion brought about by various fungal and bacterial laccases in the absence of mediators showed marked differences in the extent and rate of conversion for the different enzymes. Kraft lignin conversion by Trametes versicolor laccase followed Michaelis-Menten kinetics and was characterized by the following thermodynamic and kinetic parameters ΔHITC = -(2.06 ± 0.06)·103 kJ mol-1 , KM = 6.6 ± 1.2 µM and Vmax = 0.30 ± 0.02 U/mg at 25°C and pH 6.5. We envision calorimetric techniques as important tools for the development of enzymatic lignin valorization strategies.


Assuntos
Calorimetria/métodos , Lacase , Lignina , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Cinética , Lacase/química , Lacase/metabolismo , Lignina/análise , Lignina/química , Lignina/metabolismo , Polyporaceae/enzimologia , Polyporaceae/genética
6.
Int J Biol Macromol ; 175: 199-208, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33548315

RESUMO

Lignocellulosic wastes may provide a means to economize polyhydroxybutyrate (PHB) production. This study has proposed the use of Agave durangensis leaves obtained from the artisanal mezcal industry as a novel substrate for this aim. Results revealed an increase in PHB biosynthesis (0.32 g/L) and improvement in %PHB (16.79-19.51%) by Bacillus cereus 4N when A. durangensis leaves used as carbon source were physically pre-treated by ultrasound for 30 min (ADL + US30') and thermally pre-treated (ADL + Q). Chemical analyses and SEM studies revealed compositional and morphological changes when A. durangensis leaves were physically pre-treated. Also, elemental analysis of growth media showed that carbon/nitrogen ratios of 14-21, and low nitrogen, hydrogen, and protein content were well-suited for PHB biosynthesis. Confocal microscopy revealed morphological changes in the bacterial cell and carbonosome structure under the influence of different substrates. Finally, Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) analyses showed that homopolymeric PHB with a high thermal-resistance (271.94-272.89 °C) was produced. Therefore, the present study demonstrates the potential use of physically pre-treated A. durangensis leaves to produce PHB. These results promote the development of a circular economy in Mexico, where lignocellulosic wastes can be employed to produce value-added biotechnological products.


Assuntos
Agave/metabolismo , Bacillus cereus/metabolismo , Hidroxibutiratos/química , Agave/microbiologia , Bacillus cereus/crescimento & desenvolvimento , Biotecnologia , Calorimetria/métodos , Carbono/metabolismo , Fermentação , Hidrogênio/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Resíduos/economia
7.
PLoS One ; 15(12): e0244739, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33378411

RESUMO

Isothermal titration calorimetry (ITC) is the gold standard for accurate measurement of thermodynamic parameters in solution reactions. In the data processing of ITC, the non-constant variance of the heat requires special consideration. The variance function approach has been successfully applied in previous studies, but is found to fail under certain conditions in this work. Here, an explicit ITC measurement model consisting of main thermal effects and error components has been proposed to quantitatively evaluate and predict the non-constant variance of the heat data under various conditions. Monte Carlo simulation shows that the ITC measurement model provides higher accuracy and flexibility than variance function in high c-value reactions or with additional error components, for example, originated from the fluctuation of the concentrations or other properties of the solutions. The experimental design of basic error evaluation is optimized accordingly and verified by both Monte Carlo simulation and experiments. An easy-to-run Python source code is provided to illustrate the establishment of the ITC measurement model and the estimation of heat variances. The accurate and reliable non-constant variance of heat is helpful to the application of weighted least squares regression, the proper evaluation or selection of the reaction model.


Assuntos
Calorimetria/métodos , Modelos Teóricos , Termodinâmica , Simulação por Computador , Método de Monte Carlo
8.
Biomed Environ Sci ; 33(8): 566-572, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32933608

RESUMO

OBJECTIVE: This study aimed to measure the basal energy expenditure (BEE) of Chinese healthy adults and establish an accurate predictive equation for this population. METHODS: In total, 470 Chinese healthy adults had their BEE measured using the Cosmed K4b 2 portable metabolic system. Multiple linear regression analysis was applied to develop new optimal equations for predicting BEE. The bias, accuracy rate, concordance correlation coefficient (CCC), and root mean square error (RMSE) were used to evaluate the accuracy of the predictive equations. RESULTS: There was a significant difference in BEE between males and females, with 5,954 kJ/d and 5,089 kJ/d, respectively. People living in rural areas expended significantly higher BEE (5,885 kJ/d) than those in urban areas (5,279 kJ/d). Previous equations developed by Henry, Schofield, Harris-Benedict (H-B), and Liu overestimated the BEE of Chinese healthy adults. The new equations derived from the present study displayed the smallest average bias and RMSE from the measured basal energy expenditure (mBEE). The CCC of the new equations was higher than other predictive equations, but it was lower than 0.8. There was no significant difference in the accuracy rate among all predictive equations. CONCLUSIONS: Sex and regional differences in BEE were observed in Chinese healthy adults. Neither the widely used previous predictive equations nor the one derived in the present study were accurate enough for estimating the BEE of Chinese healthy adults. Further study is required to develop more accurate equations for predicting the BEE of Chinese healthy adults aged between 20-45 years.


Assuntos
Metabolismo Basal , Calorimetria/métodos , Adulto , China , Feminino , Humanos , Masculino , Adulto Jovem
9.
Methods Mol Biol ; 2021: 85-96, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31309498

RESUMO

Urease is one of the most distinctive virulence factors of Proteus mirabilis pathogenesis. Urease activity correlates with many landmark side effects of P. mirabilis catheter-associated urinary tract infections, such as urolithiasis and bacteremia. Here we describe two simple and inexpensive colorimetric methods for quantifying urease activity in single species cultures as well as cocultures.


Assuntos
Calorimetria/métodos , Infecções Relacionadas a Cateter/microbiologia , Proteus mirabilis/patogenicidade , Urease/metabolismo , Proteínas de Bactérias/metabolismo , Técnicas Bacteriológicas , Calorimetria/economia , Humanos , Infecções por Proteus/microbiologia , Proteus mirabilis/enzimologia , Infecções Urinárias/microbiologia , Fatores de Virulência/metabolismo
10.
PLoS One ; 14(6): e0217029, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31188863

RESUMO

The time spent in sedentary behaviour represents an important public health burden. To reduce sedentary time in the general population, the simplest, most effective, and most accessible method is to decrease lying and sitting time. We aimed to compare differences on energy expenditure (EE) across lying, sitting, and standing positions; and to analyse the associations between the change on EE of changing from one position to another and anthropometric and body composition parameters in young healthy adults. A total of 55 (69% women) young healthy adults aged 21.7 ± 2.2 participated in the study. We measured EE by indirect calorimetry across lying, sitting, and standing positions following the standard procedures. The EE was significantly higher in standing than in both lying and sitting positions (mean difference: 0.121±0.292 and 0.125±0.241 kcal/min, respectively; all P<0.001), and no differences were observed between lying and sitting positions (P = 1.000). There was a negative association between the EE differences in sitting vs. standing position and lean body mass (P = 0.048), yet no associations between EE differences with the rest of the anthropometric and body composition parameters were observed in each position pair studied (all P>0.321). Our findings support the fact that increasing the time spent standing could be a simple strategy to slightly increase EE. Therefore, our results have important clinical implications including a better monitoring, characterizing, and promoting countermeasures to sedentariness through low-level physical activities.


Assuntos
Calorimetria/métodos , Metabolismo Energético , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Postura Sentada , Posição Ortostática , Decúbito Dorsal , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA