Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 457
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Neurosci ; 44(14)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38395612

RESUMO

ß-Catenin is a bifunctional molecule that is an effector of the wingless-related integration site (Wnt) signaling to control gene expression and contributes to the regulation of cytoskeleton and neurotransmitter vesicle trafficking. In its former role, ß-catenin binds transcription factor 7-like 2 (TCF7L2), which shows strong genetic associations with the pathogenesis of obesity and type-2 diabetes. Here, we sought to determine whether ß-catenin plays a role in the neuroendocrine regulation of body weight and glucose homeostasis. Bilateral injections of adeno-associated virus type-2 (AAV2)-mCherry-Cre were placed into the arcuate nucleus of adult male and female ß-catenin flox mice, to specifically delete ß-catenin expression in the mediobasal hypothalamus (MBH-ß-cat KO). Metabolic parameters were then monitored under conditions of low-fat (LFD) and high-fat diet (HFD). On LFD, MBH-ß-cat KO mice showed minimal metabolic disturbances, but on HFD, despite having only a small difference in weekly caloric intake, the MBH-ß-cat KO mice were significantly heavier than the control mice in both sexes (p < 0.05). This deficit seemed to be due to a failure to show an adaptive increase in energy expenditure seen in controls, which served to offset the increased calories by HFD. Both male and female MBH-ß-cat KO mice were highly glucose intolerant when on HFD and displayed a significant reduction in both leptin and insulin sensitivity compared with controls. This study highlights a critical role for ß-catenin in the hypothalamic circuits regulating body weight and glucose homeostasis and reveals potential mechanisms by which genetic variation in this pathway could impact on development of metabolic disease.


Assuntos
Diabetes Mellitus Tipo 2 , Dieta Hiperlipídica , Animais , Feminino , Masculino , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Peso Corporal/genética , Diabetes Mellitus Tipo 2/patologia , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/genética , Glucose/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo
2.
Magn Reson Med ; 91(6): 2519-2531, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38193348

RESUMO

PURPOSE: The determination of blood-brain barrier (BBB) integrity and partial pressure of oxygen (pO2) in the brain is of substantial interest in several neurological applications. This study aimed to assess the feasibility of using trityl OX071-based pulse electron paramagnetic resonance imaging (pEPRI) to provide a quantitative estimate of BBB integrity and pO2 maps in mouse brains as a function of neuroinflammatory disease progression. METHODS: Five Connexin-32 (Cx32)-knockout (KO) mice were injected with lipopolysaccharide to induce neuroinflammation for imaging. Three wild-type mice were also used to optimize the imaging procedure and as control animals. An additional seven Cx32-KO mice were used to establish the BBB leakage of trityl using the colorimetric assay. All pEPRI experiments were performed using a preclinical instrument, JIVA-25 (25 mT/720 MHz), at times t = 0, 4, and 6 h following lipopolysaccharide injection. Two pEPRI imaging techniques were used: (a) single-point imaging for obtaining spatial maps to outline the brain and calculate BBB leakage using the signal amplitude, and (b) inversion-recovery electron spin echo for obtaining pO2 maps. RESULTS: A statistically significant change in BBB leakage was found using pEPRI with the progression of inflammation in Cx32 KO animals. However, the change in pO2 values with the progression of inflammation for these animals was not statistically significant. CONCLUSIONS: For the first time, we show the ability of pEPRI to provide pO2 maps in mouse brains noninvasively, along with a quantitative assessment of BBB leakage. We expect this study to open new queries from the field to explore the pathology of many neurological diseases and provide a path to new treatments.


Assuntos
Barreira Hematoencefálica , Doenças Neuroinflamatórias , Camundongos , Animais , Barreira Hematoencefálica/diagnóstico por imagem , Camundongos Knockout , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Lipopolissacarídeos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Inflamação/diagnóstico por imagem , Conexinas
3.
Mamm Genome ; 34(2): 244-261, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37160609

RESUMO

Rare diseases (RDs) are a challenge for medicine due to their heterogeneous clinical manifestations and low prevalence. There is a lack of specific treatments and only a few hundred of the approximately 7,000 RDs have an approved regime. Rapid technological development in genome sequencing enables the mass identification of potential candidates that in their mutated form could trigger diseases but are often not confirmed to be causal. Knockout (KO) mouse models are essential to understand the causality of genes by allowing highly standardized research into the pathogenesis of diseases. The German Mouse Clinic (GMC) is one of the pioneers in mouse research and successfully uses (preclinical) data obtained from single-gene KO mutants for research into monogenic RDs. As part of the International Mouse Phenotyping Consortium (IMPC) and INFRAFRONTIER, the pan-European consortium for modeling human diseases, the GMC expands these preclinical data toward global collaborative approaches with researchers, clinicians, and patient groups.Here, we highlight proprietary genes that when deleted mimic clinical phenotypes associated with known RD targets (Nacc1, Bach2, Klotho alpha). We focus on recognized RD genes with no pre-existing KO mouse models (Kansl1l, Acsf3, Pcdhgb2, Rabgap1, Cox7a2) which highlight novel phenotypes capable of optimizing clinical diagnosis. In addition, we present genes with intriguing phenotypic data (Zdhhc5, Wsb2) that are not presently associated with known human RDs.This report provides comprehensive evidence for genes that when deleted cause differences in the KO mouse across multiple organs, providing a huge translational potential for further understanding monogenic RDs and their clinical spectrum. Genetic KO studies in mice are valuable to further explore the underlying physiological mechanisms and their overall therapeutic potential.


Assuntos
Doenças Raras , Camundongos , Animais , Humanos , Camundongos Knockout , Doenças Raras/genética , Técnicas de Inativação de Genes , Fenótipo
4.
Fundam Clin Pharmacol ; 37(4): 739-752, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36797226

RESUMO

Mitochondrial permeability transition pore (mPTP) opening is a critical event leading to cell injury during myocardial ischemia-reperfusion but having a reliable cellular model to study the effect of drugs targeting mPTP is an unmet need. This study evaluated whether the Ca2+ electrogenic ionophore ferutinin is a relevant tool to induce mPTP in cardiomyocytes. mPTP opening was monitored using the calcein/cobalt fluorescence technique in adult cardiomyocytes isolated from wild-type and cyclophylin D (CypD) knock-out mice. Concomitantly, the effect of ferutinin was assessed in isolated myocardial mitochondria. Our results confirmed the Ca2+ ionophoric effect of ferutinin in isolated mitochondria and cardiomyocytes. Ferutinin induced all the hallmarks of mPTP opening in cells (loss of calcein, of mitochondrial potential and cell death), but none of them could be inhibited by CypD deletion or cyclosporine A, indicating that mPTP opening was not the major contributor to the effect of ferutinin. This was confirmed in isolated mitochondria where ferutinin acts by different mechanisms dependent and independent of the mitochondrial membrane potential. At low ferutinin/mitochondria concentration ratio, ferutinin displays protonophoric-like properties, lowering the mitochondrial membrane potential and limiting oxidative phosphorylation without mitochondrial swelling. At high ferutinin/mitochondria ratio, ferutinin induced a sudden Ca2+ independent mitochondrial swelling, which is only partially inhibited by cyclosporine A. Together, these result show that ferutinin is not a suitable tool to investigate CypD-dependent mPTP opening in isolated cardiomyocytes because it possesses other mitochondrial properties such as swelling induction and mitochondrial uncoupling properties which impede its utilization.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Camundongos , Animais , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/farmacologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Ciclosporina/farmacologia , Ciclosporina/metabolismo , Miócitos Cardíacos , Mitocôndrias Cardíacas/metabolismo , Camundongos Knockout , Cálcio/metabolismo
5.
Nat Commun ; 13(1): 7439, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509749

RESUMO

Brown adipose tissue plays a central role in the regulation of the energy balance by expending energy to produce heat. NAD+-dependent deacylase sirtuins have widely been recognized as positive regulators of brown adipose tissue thermogenesis. However, here we reveal that SIRT7, one of seven mammalian sirtuins, suppresses energy expenditure and thermogenesis by regulating brown adipose tissue functions. Whole-body and brown adipose tissue-specific Sirt7 knockout mice have higher body temperature and energy expenditure. SIRT7 deficiency increases the protein level of UCP1, a key regulator of brown adipose tissue thermogenesis. Mechanistically, we found that SIRT7 deacetylates insulin-like growth factor 2 mRNA-binding protein 2, an RNA-binding protein that inhibits the translation of Ucp1 mRNA, thereby enhancing its inhibitory action on Ucp1. Furthermore, SIRT7 attenuates the expression of batokine genes, such as fibroblast growth factor 21. In conclusion, we propose that SIRT7 serves as an energy-saving factor by suppressing brown adipose tissue functions.


Assuntos
Tecido Adiposo Marrom , Sirtuínas , Camundongos , Animais , Tecido Adiposo Marrom/metabolismo , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Metabolismo Energético/fisiologia , Camundongos Knockout , RNA Mensageiro/metabolismo , Mamíferos/genética , Sirtuínas/genética , Sirtuínas/metabolismo
6.
Brain Res ; 1795: 148060, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36030973

RESUMO

Fragile X syndrome (FXS), a leading monogenic cause of autism spectrum disorders (ASDs), typically occurs as the result of a mutation silencing the Fmr1 gene, preventing production of the fragile X messenger ribonucleoprotein (FMRP). FXS is characterized, in part, by hyperactivity, impaired behavioral flexibility, and the development of repetitive, or stereotyped, behaviors. While these phenotypes are influenced by striatal activity, few studies have examined FXS or FMRP in the context of striatal function. Here, we report enhanced repetitive behaviors in Fmr1 knockout (KO) compared to wild type (WT) mice according to multiple measures, including quantity and intensity of stereotypic behaviors in an open field and nose poking activity in an unbaited hole board test. However, using a baited version of the hole board assay, we see that KO mice do show some behavioral flexibility in that they make changes in their nose poking behavior following familiarization with an appetitive bait. By contrast, repeated exposure to cocaine (15 mg/kg) promotes repetitive behavior in both WT and KO mice, in a manner mostly independent of genotype. Branch length alterations in medium spiny neurons (MSNs) of the dorsolateral striatum (DLS) are similar between WT cocaine-treated and KO saline-treated mice, possibly suggesting shared synaptic mechanisms. Overall, we suggest that scoring open field behavior is a sensitive measure for repetitive sensory-motor behaviors in Fmr1 KO mice. In addition, our findings show that synaptic contacts onto MSNs in the DLS should be examined in conjunction with measures of stereotypical behavior.


Assuntos
Cocaína , Síndrome do Cromossomo X Frágil , Animais , Espinhas Dendríticas , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Camundongos , Camundongos Knockout
7.
Biomolecules ; 12(7)2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35883529

RESUMO

Lycopene is a carotenoid found in tomatoes that has potent antioxidant activity. The Mediterranean diet is particularly rich in lycopene, which has well-known beneficial effects on cardiovascular health. We tested the effects of lycopene extract in a group of 20 ApoE knockout mice, fed with a high fat western diet for 14 weeks. Starting from week 3 and up to week 14, the mice were randomly divided into two groups that received lycopene (n = 10) by oral suspension every day at the human equivalent dose of 60 mg/day (0.246 mg/mouse/day), or the vehicle solution (n = 10). The lycopene administration reduced triglycerides and cholesterol blood levels starting from week 6 and continuing through to the end of the experiment (p < 0.001). This reduction was mediated by an enhanced liver expression of PPAR-α and AMPK-α and reduced SREBP levels (p < 0.0001). As a histological red-out, the extent of atherosclerotic plaques and the intima−media thickness in the aorta were significantly reduced by lycopene. In this context, lycopene augmented the Nrf-2 positivity staining in the endothelium, thereby confirming that its antioxidant activity was mediated by this nuclear factor. The positive results obtained in this pre-clinical model further support the use of lycopene extracts to reduce atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Espessura Intima-Media Carotídea , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Humanos , Licopeno/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR alfa/metabolismo , Placa Aterosclerótica/metabolismo
8.
Pharm Res ; 39(2): 239-250, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35118567

RESUMO

PURPOSE: We have hypothesized that a high concentration of circulating monocytes and macrophages may contribute to the fast weight-based clearance of monoclonal antibodies (mAbs) in young children. Exploring this hypothesis, this work uses modeling to clarify the role of monocytes and macrophages in the elimination of mAbs. METHODS: Leveraging pre-clinical data from mice, a minimal physiologically-based pharmacokinetic model was developed to characterize mAb uptake and FcRn-mediated recycling in circulating monocytes, macrophages, and endothelial cells. The model characterized IgG disposition in complex scenarios of site-specific FcRn deletion and variable endogenous IgG levels. Evaluation was performed for predicting IgG disposition with co-administration of high dose IVIG. A one-at-a-time sensitivity analysis quantified the role of relevant cellular parameters on IgG elimination in various scenarios. RESULTS: The plasma AUC of mAbs was highly sensitive to endothelial cell parameters, but had near-nil sensitivity to monocyte and macrophage parameters, even in scenarios with 90% loss of FcRn expression/activity. In mice with normal FcRn expression, simulations suggest that less than 2% of an IV dose is eliminated in macrophages, while endothelial cells are predicted to dominate mAb elimination. CONCLUSIONS: The model suggests that the role of monocytes and macrophages in IgG homeostasis includes extensive uptake and highly efficient FcRn-mediated protection, but not appreciable degradation when FcRn is present. Therefore, it is very unlikely that a high concentration of circulating monocytes can contribute to explaining the fast weight-based clearance of mAbs in very young children, even if FcRn expression/activity was 90% lower in children than in adults.


Assuntos
Anticorpos Monoclonais/farmacocinética , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoglobulina G/metabolismo , Macrófagos/metabolismo , Modelos Biológicos , Monócitos/metabolismo , Receptores Fc/metabolismo , Animais , Anticorpos Monoclonais/administração & dosagem , Vias de Eliminação de Fármacos , Células Endoteliais/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Imunoglobulina G/administração & dosagem , Imunoglobulinas Intravenosas/administração & dosagem , Injeções Intravenosas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Fc/genética
9.
Arch Toxicol ; 96(2): 613-624, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34973110

RESUMO

The receptor tyrosine kinase, MERTK, plays an essential role in homeostasis of the retina via efferocytosis of shed outer nuclear segments of photoreceptors. The Royal College of Surgeons rat model of retinal degeneration has been linked to loss-of-function of MERTK, and together with the MERTK knock-out mouse, phenocopy retinitis pigmentosa in humans with MERTK mutations. Given recent efforts and interest in MERTK as a potential immuno-oncology target, development of a strategy to assess ocular safety at an early pre-clinical stage is critical. We have applied a state-of-the-art, multi-modal imaging platform to assess the in vivo effects of pharmacological inhibition of MERTK in mice. This involved the application of mass spectrometry imaging (MSI) to characterize the ocular spatial distribution of our highly selective MERTK inhibitor; AZ14145845, together with histopathology and transmission electron microscopy to characterize pathological and ultra-structural change in response to MERTK inhibition. In addition, we assessed the utility of a human retinal in vitro cell model to identify perturbation of phagocytosis post MERTK inhibition. We identified high localized total compound concentrations in the retinal pigment epithelium (RPE) and retinal lesions following 28 days of treatment with AZ14145845. These lesions were present in 4 of 8 treated animals, and were characterized by a thinning of the outer nuclear layer, loss of photoreceptors (PR) and accumulation of photoreceptor outer segments at the interface of the RPE and PRs. Furthermore, the lesions were very similar to that shown in the RCS rat and MERTK knock-out mouse, suggesting a MERTK-induced mechanism of PR cell death. This was further supported by the observation of reduced phagocytosis in the human retinal cell model following treatment with AZ14145845. Our study provides a viable, translational strategy to investigate the pre-clinical toxicity of MERTK inhibitors but is equally transferrable to novel chemotypes.


Assuntos
Fagocitose/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , c-Mer Tirosina Quinase/antagonistas & inibidores , Animais , Linhagem Celular , Feminino , Humanos , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Imagem Multimodal , Células Fotorreceptoras de Vertebrados/patologia , Ratos , Ratos Long-Evans , Ratos Wistar , Degeneração Retiniana/induzido quimicamente , Epitélio Pigmentado da Retina/metabolismo , Distribuição Tecidual , c-Mer Tirosina Quinase/genética
10.
Lipids Health Dis ; 21(1): 6, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996482

RESUMO

BACKGROUND: Phosphatidylinositol 4-phosphate 5-kinase type I c (PIP5K1c) catalyses the synthesis of phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) by phosphorylating phosphatidylinositol 4 phosphate, which plays multiple roles in regulating focal adhesion formation, invasion, and cell migration signal transduction cascades. Here, a new physiological mechanism of PIP5K1c in adipocytes and systemic metabolism is reported. METHODS: Adipose-specific conditional knockout mice were generated to delete the PIP5K1c gene in adipocytes. In addition, in vitro research investigated the effect of PIP5K1c deletion on adipogenesis. RESULTS: Deletion of PIP5K1c in adipocytes significantly alleviated high fat diet (HFD)-induced obesity, hyperlipidaemia, hepatic steatosis, and insulin resistance. PIP5K1c deficiency in adipocytes also decreased adipocyte volume in HFD-induced obese mice, whereas no significant differences were observed in body weight and adipose tissue weight under normal chow diet conditions. PIP5K1c knockout in adipocytes significantly enhanced energy expenditure, which protected mice from HFD-induced weight gain. In addition, adipogenesis was markedly impaired in mouse stromal vascular fraction (SVF) from PIP5K1c-deleted mice. CONCLUSION: Under HFD conditions, PIP5K1c regulates adipogenesis and adipose tissue homeostasis. Together, these data indicate that PIP5K1c could be a novel potential target for regulating fat accumulation, which could provide novel insight into the treatment of obesity.


Assuntos
Adipócitos/metabolismo , Metabolismo Energético , Resistência à Insulina , Obesidade/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Adipogenia , Animais , Western Blotting , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/fisiologia , Feminino , Resistência à Insulina/fisiologia , Camundongos , Camundongos Knockout , Obesidade/etiologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Biomed Res Int ; 2022: 7950834, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35083333

RESUMO

OBJECTIVE: In this study, α-Gal epitope-deficient (GGTA1 knockout (GTKO)) mice were used to assess the immunological risks of xenogeneic dural patch by comparing with raw material. METHODS: The xenogeneic dural patch (T2) was prepared from bovine pericardium (T1, raw material) through decellularization and carboxymethyl chitosan (CMCS) coating. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were used to characterize the collagen fibers and surface microstructural changes in the T1 and T2 samples. The remnant α-Gal epitopes and DNA of implants were detected by standardized method. T1 and T2 were implanted subcutaneously into GTKO mice for 4 and 12 weeks, respectively, and the negative control group (Con) was only performed sham operation. The total serum antibody, anti-Gal antibody, and splenic lymphocyte subtypes were analyzed by ELISA or flow cytometry, and histological analysis of implant-tissue was performed by H&E and Masson stain. RESULTS: TEM and Sirius red staining showed that the collagen fibers in the dural patch were closely arranged, and SEM showed that a loose three-dimensional structure was successfully constructed on the surface of the dural patch after CMCS coating. The remnant DNA in T2 was 24.64 ± 8.73 ng/mg (dry weight), and clearance of α-Gal epitope was up to 99.83% compared to T1. The significant increases in serum total IgM, anti-Gal IgG, and anti-Gal IgM at 4 weeks and the significant changes in anti-Gal IgG and spleen lymphocyte at 12 weeks were observed in the T1 group, but no significant change was observed in the T2 group, compared to the control group. Histological semiquantitative analysis showed severe cell and tissue responses at 4 weeks and a moderate response at 12 weeks in the T1 group, while a moderate response at 4 weeks and a slight response at 12 weeks in the T2 group. CONCLUSIONS: The results demonstrated that the xenogeneic dural patch has a lower and acceptable immunological risk compared to the raw material and control, respectively. On the other hand, it was suggested that GTKO mice are useful experimental model for immunological risk assessment of animal tissue-derived biomaterials.


Assuntos
Colágeno , Imunoglobulina G , Animais , Bovinos , Epitopos , Imunoglobulina M , Camundongos , Camundongos Knockout , Medição de Risco , Transplante Heterólogo/métodos
12.
Pharmacol Ther ; 231: 107974, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34530008

RESUMO

Kisspeptin (encoded by the Kiss1 gene) and its receptor, KISS1R (encoded by the Kiss1r gene), have well-established roles in stimulating reproduction via central actions on reproductive neural circuits, but recent evidence suggests that kisspeptin signaling also influences metabolism and energy balance. Indeed, both Kiss1 and Kiss1r are expressed in many metabolically-relevant peripheral tissues, including both white and brown adipose tissue, the liver, and the pancreas, suggesting possible actions on these tissues or involvement in their physiology. In addition, there may be central actions of kisspeptin signaling, or factors co-released from kisspeptin neurons, that modulate metabolic, feeding, or thermoregulatory processes. Accumulating data from animal models suggests that kisspeptin signaling regulates a wide variety of metabolic parameters, including body weight and energy expenditure, adiposity and adipose tissue function, food intake, glucose metabolism, respiratory rates, locomotor activity, and thermoregulation. Herein, the current evidence for the involvement of kisspeptin signaling in each of these physiological parameters is reviewed, gaps in knowledge identified, and future avenues of important research highlighted. Collectively, the discussed findings highlight emerging non-reproductive actions of kisspeptin signaling in metabolism and energy balance, in addition to previously documented roles in reproductive control, but also emphasize the need for more research to resolve current controversies and uncover underlying molecular and physiological mechanisms.


Assuntos
Metabolismo Energético , Kisspeptinas , Animais , Peso Corporal/fisiologia , Metabolismo Energético/fisiologia , Humanos , Kisspeptinas/metabolismo , Camundongos , Camundongos Knockout , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo
13.
Adv Sci (Weinh) ; 9(2): e2102949, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34747141

RESUMO

Adipose thermogenesis plays a pivotal role in whole-body metabolic homeostasis. Although transcriptional mechanisms that promote thermogenesis are extensively studied, the negative regulatory network is still poorly understood. Here, a Krüppel-associated box (KRAB) domain-containing zinc finger protein, ZFP961, as a potent repressor of the thermogenic program is identified. ZFP961 expression is induced by cold and ß3-adrenergic agonist in adipose tissue. ZFP961 represses brown fat-selective gene expression and mitochondrial respiration without any effect on general adipogenesis in cultured adipocytes. Adipose-specific knockdown and overexpression of ZFP961 produce remarkable and opposite phenotypes of white fat remodeling. ZFP961 knockout mice display robust inguinal white adipose tissue browning, which is abolished by reexpression of full-length ZFP961, but not by KRAB domain-deleted ZFP961 mutant. ZFP961-deficient mice are cold tolerant and resistant to high-fat diet-induced obesity, hyperglycemia, and hepatic steatosis. ZFP961 suppresses thermogenic gene expression by directly interacting with PPARα and blocking its transcriptional activity, which can be completely negated by the PPARα agonist. The findings uncover ZFP961 as a critical physiological brake that limits adipose thermogenesis and provides insights into the regulatory mechanisms that maintain energy balance and tissue homeostasis.


Assuntos
Tecido Adiposo/metabolismo , Metabolismo Energético/genética , PPAR alfa/genética , PPAR alfa/metabolismo , Termogênese/genética , Dedos de Zinco/genética , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
14.
Diabetes ; 70(12): 2823-2836, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34620617

RESUMO

Cyclic nucleotides cAMP and cGMP are important second messengers for the regulation of adaptive thermogenesis. Their levels are controlled not only by their synthesis, but also their degradation. Since pharmacological inhibitors of cGMP-specific phosphodiesterase 9 (PDE9) can increase cGMP-dependent protein kinase signaling and uncoupling protein 1 expression in adipocytes, we sought to elucidate the role of PDE9 on energy balance and glucose homeostasis in vivo. Mice with targeted disruption of the PDE9 gene, Pde9a, were fed nutrient-matched high-fat (HFD) or low-fat diets. Pde9a -/- mice were resistant to HFD-induced obesity, exhibiting a global increase in energy expenditure, while brown adipose tissue (AT) had increased respiratory capacity and elevated expression of Ucp1 and other thermogenic genes. Reduced adiposity of HFD-fed Pde9a -/- mice was associated with improvements in glucose handling and hepatic steatosis. Cold exposure or treatment with ß-adrenergic receptor agonists markedly decreased Pde9a expression in brown AT and cultured brown adipocytes, while Pde9a -/- mice exhibited a greater increase in AT browning, together suggesting that the PDE9-cGMP pathway augments classical cold-induced ß-adrenergic/cAMP AT browning and energy expenditure. These findings suggest PDE9 is a previously unrecognized regulator of energy metabolism and that its inhibition may be a valuable avenue to explore for combating metabolic disease.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/genética , Metabolismo Energético/genética , Obesidade/genética , Termogênese/genética , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Células Cultivadas , Dieta Hiperlipídica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/prevenção & controle , Regulação para Cima/genética
15.
Cell Rep ; 37(2): 109804, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34644563

RESUMO

Patients with activated phosphatidylinositol 3-kinase delta (PI3Kδ) syndrome (APDS) present with sinopulmonary infections, lymphadenopathy, and cytomegalvirus (CMV) and/or Epstein-Barr virus (EBV) viremia, yet why patients fail to clear certain chronic viral infections remains incompletely understood. Using patient samples and a mouse model (Pik3cdE1020K/+ mice), we demonstrate that, upon activation, Pik3cdE1020K/+ CD8+ T cells exhibit exaggerated features of effector populations both in vitro and after viral infection that are associated with increased Fas-mediated apoptosis due to sustained FoxO1 phosphorylation and Fasl derepression, enhanced mTORC1 and c-Myc signatures, metabolic perturbations, and an altered chromatin landscape. Conversely, Pik3cdE1020K/+ CD8+ cells fail to sustain expression of proteins critical for central memory, including TCF1. Strikingly, activated Pik3cdE1020K/+ CD8+ cells exhibit altered transcriptional and epigenetic circuits characterized by pronounced interleukin-2 (IL-2)/STAT5 signatures and heightened IL-2 responses that prevent differentiation to memory-like cells in IL-15. Our data position PI3Kδ as integrating multiple signaling nodes that promote CD8+ T cell effector differentiation, providing insight into phenotypes of patients with APDS.


Assuntos
Linfócitos T CD8-Positivos/enzimologia , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Memória Imunológica , Doenças da Imunodeficiência Primária/enzimologia , Transcrição Gênica , Viroses/enzimologia , Adolescente , Adulto , Animais , Apoptose , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Estudos de Casos e Controles , Criança , Cromatina/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/imunologia , Modelos Animais de Doenças , Ativação Enzimática , Proteína Ligante Fas/genética , Proteína Ligante Fas/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/imunologia , Transdução de Sinais , Viroses/genética , Viroses/imunologia
16.
Life Sci ; 285: 119988, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34592238

RESUMO

Strategies capable of attenuating TLR4 can attenuate metabolic processes such as inflammation, endoplasmic reticulum (ER) stress, and apoptosis in the body. Physical exercise has been a cornerstone in suppressing inflammation and dysmetabolic outcomes caused by TRL4 activation. Thus, the present study aimed to evaluate the effects of a chronic physical exercise protocol on the TLR4 expression and its repercussion in the inflammation, ER stress, and apoptosis pathways in mice hearts. Echocardiogram, RT-qPCR, immunoblotting, and histological techniques were used to evaluate the left ventricle of wild-type (WT) and Tlr4 knockout (TLR4 KO) mice submitted to a 4-week physical exercise protocol. Moreover, we performed a bioinformatics analysis to expand the relationship of Tlr4 mRNA in the heart with inflammation, ER stress, and apoptosis-related genes of several isogenic strains of BXD mice. The TLR4 KO mice had higher energy expenditure and heart rate in the control state but lower activation of apoptosis and ER stress pathways. The bioinformatics analysis reinforced these data. In the exercised state, the WT mice improved performance and cardiac function. However, these responses were blunted in the KO group. In conclusion, TLR4 has an essential role in the inhibition of apoptosis and ER stress pathways, as well as in the training-induced beneficial adaptations.


Assuntos
Apoptose/genética , Estresse do Retículo Endoplasmático/genética , Metabolismo Energético/genética , Ventrículos do Coração , Condicionamento Físico Animal , Receptor 4 Toll-Like/genética , Função Ventricular , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Ecocardiografia , Deleção de Genes , Glicogênio/metabolismo , Frequência Cardíaca , Inflamação/genética , Inflamação/patologia , Camundongos , Camundongos Knockout , RNA Mensageiro/metabolismo
17.
Mol Brain ; 14(1): 148, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556164

RESUMO

The Cre/LoxP-based conditional knockout technology is a powerful tool for gene function analysis that allows region- and time-specific gene manipulation. However, inserting a pair of LoxP cassettes to generate conditional knockout can be technically challenging and thus time- and resource-consuming. This study proposes an efficient, low-cost method to generate floxed mice using in vitro fertilization and the CRISPR-Cas9 system over two consecutive generations. This method allowed us to produce floxed mice targeting exons 5 and 6 of CaMK1 in a short period of 125 days, using only 16 mice. In addition, we directly edited the genome of fertilized eggs of mice with our target genetic background, C57BL/6 N, to eliminate additional backcrossing steps. We confirmed that the genome of the generated floxed mice was responsive to the Cre protein. This low-cost, time-saving method for generating conditional knockout will facilitate comprehensive, tissue-specific genome analyses.


Assuntos
Sistemas CRISPR-Cas , Eletroporação/métodos , Edição de Genes/métodos , Marcação de Genes/métodos , Camundongos Knockout , Neurociências/métodos , Animais , Sequência de Bases , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/genética , Transferência Embrionária , Éxons/genética , Edição de Genes/economia , Marcação de Genes/economia , Integrases , Camundongos , Camundongos Endogâmicos C57BL , Neurociências/economia , Transgenes
18.
Nat Commun ; 12(1): 5363, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508093

RESUMO

The activity of epiphyseal growth plates, which drives long bone elongation, depends on extensive changes in chondrocyte size and shape during differentiation. Here, we develop a pipeline called 3D Morphometric Analysis for Phenotypic significance (3D MAPs), which combines light-sheet microscopy, segmentation algorithms and 3D morphometric analysis to characterize morphogenetic cellular behaviors while maintaining the spatial context of the growth plate. Using 3D MAPs, we create a 3D image database of hundreds of thousands of chondrocytes. Analysis reveals broad repertoire of morphological changes, growth strategies and cell organizations during differentiation. Moreover, identifying a reduction in Smad 1/5/9 activity together with multiple abnormalities in cell growth, shape and organization provides an explanation for the shortening of Gdf5 KO tibias. Overall, our findings provide insight into the morphological sequence that chondrocytes undergo during differentiation and highlight the ability of 3D MAPs to uncover cellular mechanisms that may regulate this process.


Assuntos
Condrócitos/fisiologia , Fator 5 de Diferenciação de Crescimento/metabolismo , Lâmina de Crescimento/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Diferenciação Celular , Proliferação de Células , Embrião de Mamíferos , Feminino , Fator 5 de Diferenciação de Crescimento/economia , Lâmina de Crescimento/citologia , Lâmina de Crescimento/diagnóstico por imagem , Imageamento Tridimensional , Microscopia Intravital , Camundongos Knockout , Modelos Animais , Tíbia/citologia , Tíbia/efeitos dos fármacos , Tíbia/crescimento & desenvolvimento , Microtomografia por Raio-X
19.
Mol Metab ; 53: 101324, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34418595

RESUMO

OBJECTIVE: Administration of FGF21 to mice reduces body weight and increases body temperature. The increase in body temperature is generally interpreted as hyperthermia, i.e. a condition secondary to the increase in energy expenditure (heat production). Here, we examine an alternative hypothesis: that FGF21 has a direct pyrexic effect, i.e. FGF21 increases body temperature independently of any effect on energy expenditure. METHODS: We studied the effects of FGF21 treatment on body temperature and energy expenditure in high-fat-diet-fed and chow-fed mice exposed acutely to various ambient temperatures, in high-fat diet-fed mice housed at 30 °C (i.e. at thermoneutrality), and in mice lacking uncoupling protein 1 (UCP1). RESULTS: In every model studied, FGF21 increased body temperature, but energy expenditure was increased only in some models. The effect of FGF21 on body temperature was more (not less, as expected in hyperthermia) pronounced at lower ambient temperatures. Effects on body temperature and energy expenditure were temporally distinct (daytime versus nighttime). FGF21 enhanced UCP1 protein content in brown adipose tissue (BAT); there was no measurable UCP1 protein in inguinal brite/beige adipose tissue. FGF21 increased energy expenditure through adrenergic stimulation of BAT. In mice lacking UCP1, FGF21 did not increase energy expenditure but increased body temperature by reducing heat loss, e.g. a reduced tail surface temperature. CONCLUSION: The effect of FGF21 on body temperature is independent of UCP1 and can be achieved in the absence of any change in energy expenditure. Since elevated body temperature is a primary effect of FGF21 and can be achieved without increasing energy expenditure, only limited body weight-lowering effects of FGF21 may be expected.


Assuntos
Temperatura Corporal/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/farmacologia , Proteína Desacopladora 1/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Fatores de Crescimento de Fibroblastos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Desacopladora 1/deficiência
20.
FASEB J ; 35(8): e21772, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34252225

RESUMO

Genetic deletion of Src associated in mitosis of 68kDa (Sam68), a pleiotropic adaptor protein prevents high-fat diet-induced weight gain and insulin resistance. To clarify the role of Sam68 in energy metabolism in the adult stage, we generated an inducible Sam68 knockout mice. Knockout of Sam68 was induced at the age of 7-10 weeks, and then we examined the metabolic profiles of the mice. Sam68 knockout mice gained less body weight over time and at 34 or 36 weeks old, had smaller fat mass without changes in food intake and absorption efficiency. Deletion of Sam68 in mice elevated thermogenesis, increased energy expenditure, and attenuated core-temperature drop during acute cold exposure. Furthermore, we examined younger Sam68 knockout mice at 11 weeks old before their body weights deviate, and confirmed increased energy expenditure and thermogenic gene program. Thus, Sam68 is essential for the control of adipose thermogenesis and energy homeostasis in the adult.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/deficiência , Metabolismo Energético , Termogênese , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Masculino , Camundongos , Camundongos Knockout , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA