Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Thromb Res ; 221: 51-57, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470070

RESUMO

Local coagulation activation has been shown to impact both primary tumor growth and metastasis in mice. It is well known that components of the blood clotting cascade such as tissue factor and thrombin play a role in tumor progression by activating cellular receptors and local formation of fibrin. However, whether venous thromboembolism (VTE) or a hypercoagulable state has a direct impact on cancer progression is unknown. Here we have combined an orthotopic murine breast cancer model, using female Nod-SCID mice, with siRNA-mediated silencing of antithrombin (siAT) leading to the induction of a systemic hypercoagulable state. We show that, compared to control siRNA-treated (not experiencing a hypercoagulable state) tumor-bearing mice, siAT treated tumor-bearing mice do not show enhanced tumor growth nor enhanced metastasis. We conclude that, in this murine model for hypercoagulability, induction of a hypercoagulable state does not contribute to breast cancer progression.


Assuntos
Neoplasias da Mama , Trombofilia , Humanos , Feminino , Animais , Camundongos , Antitrombinas , Modelos Animais de Doenças , Xenoenxertos , Camundongos SCID , Trombofilia/genética , Anticoagulantes , Neoplasias da Mama/complicações , Neoplasias da Mama/genética , Antitrombina III/genética , RNA Interferente Pequeno
2.
Bull Cancer ; 108(10S): S92-S95, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34920812

RESUMO

Treatment of hematological malignancies by autologous T cells expressing a chimeric antigen receptor (CAR) is a breakthrough in the field of cancer immunotherapy. As CAR-T cells are entering advanced phases of clinical development, there is a need to develop universal, ready-to-use products using immune cells from healthy donors, to reduce time to treatment, improve response rate and finally reduce the cost of production. Mucosal-associated invariant T cells (MAIT) are unconventional T cells which recognize microbial-derived riboflavin derivatives presented by the conserved MR1 molecule and are endowed with potent effector functions. Because they are not selected by classical MHC/peptide complexes and express a semi-invariant T cell receptor, MAIT cells do not mediate alloreactivity, prompting their use as a new source of universal effector cells for allogeneic CAR-T cell therapy without the need to inactivate their endogenous TCR. We produced CD19-CAR MAIT cells as proof-of-concept allowing subsequent head-to-head comparison with currently used CD19-CAR T cells. We demonstrated their anti-tumor efficacy in vitro and their capacity to engraft without mediating GVHD in preclinical immunodeficient mouse models. Universal, off-the-shelf CAR-MAIT cells could provide a suitable alternative to current autologous CAR-T cells to treat patients regardless of HLA disparity, without production delay, enabling a cost-effective manufacturing model for large-scale clinical application.


Assuntos
Neoplasias Hematológicas/terapia , Imunoterapia Adotiva/métodos , Células T Invariantes Associadas à Mucosa/transplante , Receptores de Antígenos Quiméricos/imunologia , Animais , Antígenos CD19/imunologia , Análise Custo-Benefício , Neoplasias Hematológicas/imunologia , Camundongos , Camundongos SCID , Células T Invariantes Associadas à Mucosa/citologia , Células T Invariantes Associadas à Mucosa/imunologia , Estudo de Prova de Conceito
3.
Cell Transplant ; 30: 9636897211052291, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34628956

RESUMO

Prior to transplantation into individuals with type 1 diabetes, in vitro assays are used to evaluate the quality, function and survival of isolated human islets. In addition to the assessments of these parameters in islet, they can be evaluated by multiparametric morphological scoring (0-10 points) and grading (A, B, C, D, and F) based on islet characteristics (shape, border, integrity, single cells, and diameter). However, correlation between the multiparametric assessment and transplantation outcome has not been fully elucidated. In this study, 55 human islet isolations were scored using this multiparametric assessment. The results were correlated with outcomes after transplantation into immunodeficient diabetic mice. In addition, the multiparametric assessment was compared with oxygen consumption rate of isolated islets as a potential prediction factor for successful transplantations. All islet batches were assessed and found to score: 9 points (n = 18, Grade A), 8 points (n = 19, Grade B), and 7 points (n = 18, Grade B). Islets that scored 9 (Grade A), scored 8 (Grade B) and scored 7 (Grade B) were transplanted into NOD/SCID mice and reversed diabetes in 81.2%, 59.4%, and 33.3% of animals, respectively (P < 0.0001). Islet scoring and grading correlated well with glycemic control post-transplantation (P < 0.0001) and reversal rate of diabetes (P < 0.05). Notably, islet scoring and grading showed stronger correlation with transplantation outcome compared to oxygen consumption rate. Taken together, a multiparametric assessment of isolated human islets was highly predictive of transplantation outcome in diabetic mice.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 1/fisiopatologia , Transplante das Ilhotas Pancreáticas/métodos , Animais , Humanos , Camundongos , Camundongos SCID , Estudos Retrospectivos , Resultado do Tratamento
4.
BMC Cancer ; 21(1): 991, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34479484

RESUMO

BACKGROUND: The study here investigated quantitative ultrasound (QUS) parameters to assess tumour response to ultrasound-stimulated microbubbles (USMB) and hyperthermia (HT) treatment in vivo. Mice bearing prostate cancer xenografts were exposed to various treatment conditions including 1% (v/v) Definity microbubbles stimulated at ultrasound pressures 246 kPa and 570 kPa and HT duration of 0, 10, 40, and 50 min. Ultrasound radiofrequency (RF) data were collected using an ultrasound transducer with a central frequency of 25 MHz. QUS parameters based on form factor models were used as potential biomarkers of cell death in prostate cancer xenografts. RESULTS: The average acoustic concentration (AAC) parameter from spherical gaussian and the fluid-filled spherical models were the most efficient imaging biomarker of cell death. Statistical significant increases of AAC were found in the combined treatment groups: 246 kPa + 40 min, 246 kPa + 50 min, and 570 kPa + 50 min, in comparison with control tumours (0 kPa + 0 min). Changes in AAC correlates strongly (r2 = 0.62) with cell death fraction quantified from the histopathological analysis. CONCLUSION: Scattering property estimates from spherical gaussian and fluid-filled spherical models are useful imaging biomarkers for assessing tumour response to treatment. Our observation of changes in AAC from high ultrasound frequencies was consistent with previous findings where parameters related to the backscatter intensity (AAC) increased with cell death.


Assuntos
Hipertermia Induzida/métodos , Neoplasias da Próstata/terapia , Ultrassom/métodos , Animais , Apoptose , Proliferação de Células , Terapia Combinada , Humanos , Masculino , Camundongos , Camundongos SCID , Microbolhas , Neoplasias da Próstata/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Front Immunol ; 12: 687715, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177940

RESUMO

The outcome of organ transplantation is largely dictated by selection of a well-matched donor, which results in less chance of graft rejection. An allogeneic immune response is the main immunological barrier for successful organ transplantation. Donor and recipient human leukocyte antigen (HLA) mismatching diminishes outcomes after solid organ transplantation. The current evaluation of HLA incompatibility does not provide information on the immunogenicity of individual HLA mismatches and impact of non-HLA-related alloantigens, especially in vivo. Here we demonstrate a new method for analysis of alloimmune responsiveness between donor and recipient in vivo by introducing a humanized mouse model. Using molecular, cellular, and genomic analyses, we demonstrated that a recipient's personalized humanized mouse provided the most sensitive assessment of allogeneic responsiveness to potential donors. In our study, HLA typing provided a better recipient-donor match for one donor among two related donors. In contrast, assessment of an allogeneic response by mixed lymphocyte reaction (MLR) was indistinguishable between these donors. We determined that, in the recipient's humanized mouse model, the donor selected by HLA typing induced the strongest allogeneic response with markedly increased allograft rejection markers, including activated cytotoxic Granzyme B-expressing CD8+ T cells. Moreover, the same donor induced stronger upregulation of genes involved in the allograft rejection pathway as determined by transcriptome analysis of isolated human CD45+cells. Thus, the humanized mouse model determined the lowest degree of recipient-donor alloimmune response, allowing for better selection of donor and minimized immunological risk of allograft rejection in organ transplantation. In addition, this approach could be used to evaluate the level of alloresponse in allogeneic cell-based therapies that include cell products derived from pluripotent embryonic stem cells or adult stem cells, both undifferentiated and differentiated, all of which will produce allogeneic immune responses.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Rejeição de Enxerto/prevenção & controle , Antígenos HLA/imunologia , Teste de Histocompatibilidade , Histocompatibilidade , Leucócitos Mononucleares/transplante , Transplante de Órgãos , Baço/imunologia , Tolerância ao Transplante , Animais , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Bases de Dados Genéticas , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/metabolismo , Sobrevivência de Enxerto , Antígenos HLA/genética , Humanos , Isoanticorpos/metabolismo , Leucócitos Mononucleares/imunologia , Teste de Cultura Mista de Linfócitos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Órgãos/efeitos adversos , Fenótipo , Valor Preditivo dos Testes , Baço/metabolismo , Transcriptoma , Transplante Homólogo
6.
Drug Test Anal ; 13(7): 1341-1353, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33759363

RESUMO

Ecdysteroids are of interest as potential sport performance enhancers, due to their anabolic effects. The current study aimed to analyze levels of the most abundant ecdysteroid, ecdysterone (20-hydroxyecdysone, 20-OHE) in easily available dietary supplements, and, outline an analytical strategy for its detection, and that, of its metabolites, (1) following administration of pure 20-OHE to uPA(+/+)-SCID mice with humanized liver, (2) in a human volunteer after ingestion of two supplements, one with a relatively low, and the other a high, concentration of 20-OHE, and, (3) to estimate the prevalence of use of 20-OHE in elite athletes (n = 1000). Of the 16 supplements tested, only five showed detectable levels of 20-OHE, with concentrations ranging from undetectable up to 2.3 mg per capsule. Urine of uPA(+/+)-SCID urine showed the presence of 20-OHE and its metabolite, 14 deoxy ecdysterone, within 24 hours (hr) of ingestion. In humans, both the parent and the metabolite were detectable within 2 to 5 hr of ingestion, with the metabolite being detectable for longer than the parent. After ingestion of a low dose supplement, the parent and metabolite were detectable for 70 and 48 hr, while following the higher dose it was 96 and 48 hr, respectively. Analysis of urines from athletes (n = 1000) confirmed four positives for 20-OHE, suggesting a prevalence of use of 0.4%. Prevalence of its use by elite athletes was relatively low, however, this needs to be confirmed in other populations, and with other related ecdysteroids.


Assuntos
Suplementos Nutricionais/análise , Dopagem Esportivo/prevenção & controle , Ecdisterona/urina , Detecção do Abuso de Substâncias/métodos , Adulto , Animais , Atletas , Ecdisterona/análise , Ecdisterona/metabolismo , Feminino , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos SCID , Prevalência , Fatores de Tempo
7.
Hum Gene Ther ; 32(13-14): 730-743, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33287637

RESUMO

Chimeric antigen receptors (CARs) are artificial fusion proteins that incorporate antigen-recognition domains and T cell signaling domains. CD30 is a cell surface protein expressed on Hodgkin's lymphoma, some T cell lymphomas, and some B cell lymphomas. CD30 has a restricted expression pattern in normal cells, so CD30 has good potential as a clinical target for CAR T cells. We compared three different anti-CD30 CAR designs incorporating a single-chain variable fragment derived from the 5F11 fully human monoclonal antibody. 5F11-28Z has hinge, transmembrane, and costimulatory domains from CD28 and a CD3ζ T cell activation domain. 5F11-CD828Z has hinge and transmembrane domains from CD8α, a CD28 costimulatory domain, and a CD3ζ T cell activation domain. 5F11-CD8BBZ is identical to 5F11-CD828Z, except for the replacement of the CD28 moiety with a 4-1BB moiety. We found that T cells expressing 5F11-CD8BBZ had lower levels of CD30-specific degranulation and cytokine release compared with CD28-containing CARs. When compared to the CD28-containing CARs, T cells expressing 5F11-CD8BBZ had higher levels of nonspecific functional activity, including degranulation, cytokine release, and proliferation, when stimulated with CD30-negative target cells. We established tumors in nod-scid common gamma-chain deficient (NSG) mice and treated the tumors with T cells expressing different CARs. T cells expressing 5F11-28Z were most effective at eradicating tumors. T cells expressing 5F11-CD828Z had intermediate effectiveness, and T cells expressing 5F11-CD8BBZ were least effective. CD30+ T cells are lost from cultures of T cells containing 5F11-28Z-expressing T cells. This indicated the killing of CD30+ T cells by the 5F11-28Z-expressing T cells. Despite this, the number of T cells in the cultures consistently accumulated to numbers needed for use in a clinical trial. Based on all in vitro and murine experiments comparing the different CARs, we selected 5F11-28Z for further development, and we have initiated a clinical trial testing 5F11-28Z T cells.


Assuntos
Receptores de Antígenos Quiméricos , Anticorpos de Cadeia Única , Animais , Antígenos CD28/genética , Humanos , Imunoterapia Adotiva , Camundongos , Camundongos SCID , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Linfócitos T , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Sci Rep ; 10(1): 14003, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32814802

RESUMO

Indocyanine green (ICG) is the most commonly used FDA-approved agent for clinical optical imaging, administered through injections only, due to its poor membrane permeability. Although ICG has vast potential for non-invasive non-radioactive imaging in patients, the clinical applications are limited by the invasive administration and short half-life in blood circulation. To expand the clinical value of ICG, non-toxic chitosan-based ICG-loaded films were designed for sublingual administration for near-infrared (NIR) and short-wave infrared (SWIR) optical imaging. Two film formulations were developed with different ICG release rates. Mold-casted self-emulsifying films rapidly released ICG (80% in 4 h) in the form of nanosized droplets, which were mostly swallowed and produced significant contrast of upper digestive tract to enable in vivo swallowing evaluations using NIR/SWIR imaging. Regular films released ICG slowly (80% in 25 h), allowing for steady absorption of ICG to systemic circulation. Inflammation in mouse feet was detected within 30 min after sublingual administration with a 1.43-fold fluorescence increase within 1 h at the inflammation sites, comparable to a 1.76-fold increase through intravenous injection. Administering ICG using sublingual films displayed notable potential for non-invasive diagnosis and monitoring of inflammatory conditions and swallowing disorders, addressing a current need for alternatives to ICG parenteral administration.


Assuntos
Deglutição , Verde de Indocianina/administração & dosagem , Inflamação/diagnóstico por imagem , Extremidade Inferior/patologia , Imagem Óptica/métodos , Administração Sublingual , Animais , Liberação Controlada de Fármacos , Meia-Vida , Humanos , Verde de Indocianina/farmacocinética , Inflamação/diagnóstico , Camundongos Nus , Camundongos SCID , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
Turk J Haematol ; 37(4): 234-247, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32755128

RESUMO

Objective: Relapsed and refractory CD19-positive B-cell acute lymphoblastic leukemia (ALL) and non-Hodgkin lymphoma (NHL) are the focus of studies on hematological cancers. Treatment of these malignancies has undergone recent transformation with the development of new gene therapy and molecular biology techniques, which are safer and well-tolerated therapeutic approaches. The CD19 antigen is the most studied therapeutic target in these hematological cancers. This study reports the results of clinical-grade production, quality control, and in vivo efficacy processes of ISIKOK-19 cells as the first academic clinical trial of CAR-T cells targeting CD19-expressing B cells in relapsed/refractory ALL and NHL patients in Turkey. Materials and Methods: We used a lentiviral vector encoding the CD19 antigen-specific antibody head (FMC63) conjugated with the CD8-CD28-CD3ζ sequence as a chimeric antigen receptor (CAR) along with a truncated form of EGFR (EGFRt) on human T-lymphocytes (CAR-T). We preclinically assessed the efficacy and safety of the manufactured CAR-T cells, namely ISIKOK-19, from both healthy donors' and ALL/NHL patients' peripheral blood mononuclear cells. Results: We showed significant enhancement of CAR lentivirus transduction efficacy in T-cells using BX-795, an inhibitor of the signaling molecule TBK1/IKKƐ, in order to cut the cost of CAR-T cell production. In addition, ISIKOK-19 cells demonstrated a significantly high level of cytotoxicity specifically against a CD19+ B-lymphocyte cancer model, RAJI cells, in NOD/SCID mice. Conclusion: This is the first report of preclinical assessment of efficacy and safety analysis of CAR-T cells (ISIKOK-19) targeting CD19-expressing B cells in relapsed/refractory ALL and NHL patients in Turkey.


Assuntos
Antígenos CD19/imunologia , Imunoterapia Adotiva , Linfoma não Hodgkin/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos Quiméricos/imunologia , Animais , Antígenos CD19/genética , Citotoxicidade Imunológica/genética , Modelos Animais de Doenças , Expressão Gênica , Vetores Genéticos/genética , Humanos , Imunoterapia Adotiva/métodos , Lentivirus/genética , Ativação Linfocitária , Linfoma não Hodgkin/etiologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras/etiologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transdução Genética
10.
Cell Rep ; 31(9): 107688, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32492433

RESUMO

Leukemia stem cells (LSCs) are believed to have more distinct vulnerabilities than the bulk acute myeloid leukemia (AML) cells, but their rarity and the lack of universal markers for their prospective isolation hamper their study. We report that genetically clonal induced pluripotent stem cells (iPSCs) derived from an AML patient and characterized by exceptionally high engraftment potential give rise, upon hematopoietic differentiation, to a phenotypic hierarchy. Through fate-tracking experiments, xenotransplantation, and single-cell transcriptomics, we identify a cell fraction (iLSC) that can be isolated prospectively by means of adherent in vitro growth that resides on the apex of this hierarchy and fulfills the hallmark features of LSCs. Through integrative genomic studies of the iLSC transcriptome and chromatin landscape, we derive an LSC gene signature that predicts patient survival and uncovers a dependency of LSCs, across AML genotypes, on the RUNX1 transcription factor. These findings can empower efforts to therapeutically target AML LSCs.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Leucemia Mieloide Aguda/patologia , Animais , Diferenciação Celular , Linhagem Celular , Cromatina/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/antagonistas & inibidores , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação da Expressão Gênica , Heterogeneidade Genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Cadeias de Markov , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fenótipo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , RNA-Seq , Análise de Célula Única
11.
J Transl Med ; 18(1): 255, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32580742

RESUMO

BACKGROUND: Patient-derived xenograft (PDX) mouse models of cancer have been recognized as better mouse models that recapitulate the characteristics of original malignancies including preserved tumor heterogeneity, lineage hierarchy, and tumor microenvironment. However, common challenges of PDX models are the significant time required for tumor expansion, reduced tumor take rates, and higher costs. Here, we describe a fast, simple, and cost-effective method of expanding PDX of pancreatic ductal adenocarcinoma (PDAC) in mice. METHODS: We used two established frozen PDAC PDX tissues (derived from two different patients) and implanted them subcutaneously into SCID mice. After tissues reached 10-20 mm in diameter, we performed survival surgery on each mouse to harvest 90-95% of subcutaneous PDX (incomplete resection), allowing the remaining 5-10% of PDX to continue growing in the same mouse. RESULTS: We expanded three consecutive passages (P1, P2, and P3) of PDX in the same mouse. Comparing the times required for in vivo expansion, P2 and P3 (expanded through incomplete resection) grew 26-60% faster than P1. Moreover, such expanded PDX tissues were successfully implanted orthotopically into mouse pancreases. Within 20 weeks using only 14 mice, we generated sufficient PDX tissue for future implantation of 200 mice. Our histology study confirmed that the morphologies of cancer cells and stromal structures were similar across all three passages of subcutaneous PDX and the orthotopic PDX and were reflective of the original patient tumors. CONCLUSIONS: Taking advantage of incomplete resection of tumors associated with high local recurrence, we established a fast method of PDAC PDX expansion in mice.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Análise Custo-Benefício , Xenoenxertos , Humanos , Camundongos , Camundongos SCID , Recidiva Local de Neoplasia , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Am Soc Nephrol ; 31(5): 921-929, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32354986

RESUMO

BACKGROUND: The utility of kidney organoids in regenerative medicine will rely on the functionality of the glomerular and tubular structures in these tissues. Recent studies have demonstrated the vascularization and subsequent maturation of human pluripotent stem cell-derived kidney organoids after renal subcapsular transplantation. This raises the question of whether the glomeruli also become functional upon transplantation. METHODS: We transplanted kidney organoids under the renal capsule of the left kidney in immunodeficient mice followed by the implantation of a titanium imaging window on top of the kidney organoid. To assess glomerular function in the transplanted human pluripotent stem cell-derived kidney tissue 1, 2, and 3 weeks after transplantation, we applied high-resolution intravital multiphoton imaging through the imaging window during intravenous infusion of fluorescently labeled low and high molecular mass dextran molecules or albumin. RESULTS: After vascularization, glomerular structures in the organoid displayed dextran and albumin size selectivity across their glomerular filtration barrier. We also observed evidence of proximal tubular dextran reuptake. CONCLUSIONS: Our results demonstrate that human pluripotent stem cell-derived glomeruli can develop an appropriate barrier function and discriminate between molecules of varying size. These characteristics together with tubular presence of low molecular mass dextran provide clear evidence of functional filtration. This approach to visualizing glomerular filtration function will be instrumental for translation of organoid technology for clinical applications as well as for disease modeling.


Assuntos
Células-Tronco Pluripotentes Induzidas/transplante , Glomérulos Renais/metabolismo , Organoides/transplante , Albuminas/metabolismo , Animais , Dextranos/metabolismo , Genes Reporter , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Microscopia Intravital/métodos , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Microscopia de Fluorescência por Excitação Multifotônica , Organoides/irrigação sanguínea , Organoides/metabolismo , Tamanho da Partícula , Técnica de Janela Cutânea , Imagem com Lapso de Tempo/métodos
13.
Reprod Sci ; 27(8): 1609-1619, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32430713

RESUMO

Diminished ovarian reserve (DOR) and primary ovarian insufficiency (POI) are primary factors leading to infertility. However, there is a lack of appropriate animal models of DOR usable for assessing new therapeutic strategies. In this study, we aimed to evaluate whether chemotherapy treatment in mice could reproduce features similar of that observed in women with DOR. Twenty-one Nonobese diabetic/severe combined immunodeficiency (NOD/SCID) female mice were allocated to 3 groups (n = 7/group): control, single dose of vehicle (Dimethyl Sulfoxide [DMSO]); DOR, single reduced chemotherapy dose; and POI, single standard chemotherapy dose. After 21 days, mice underwent ovarian hyperstimulation and mating. Part of the animals were harvested to analyze ovarian reserve, ovulation and fertilization rates, and morphology, apoptosis, and vascularization of the ovarian stroma. The remaining mice underwent multiple matings to assess pregnancy rates and litter sizes. The DOR and POI mice showed an impaired estrous cyclicity and a decrease in ovarian mass, number of follicles, Metaphase II (MII) oocytes, and embryos as well as in ovarian stroma vascularization. Mice in both models showed also an increase in the percentage of morphologically abnormal follicles, stromal degeneration, and apoptosis. Similar to that observed in DOR and POI patients, these impairments were less severe in DOR than in POI mice. None of the POI females were able to achieve a pregnancy. Meanwhile, DOR females achieved several consecutive pregnancies, although litter size was decreased when compared to controls. In conclusion, a mouse model which displayed most of the ovarian characteristics and fertility outcomes of women with DOR has been established using a single dose of chemotherapy.


Assuntos
Antineoplásicos/toxicidade , Reserva Ovariana/efeitos dos fármacos , Ovário/efeitos dos fármacos , Ovário/metabolismo , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/metabolismo , Animais , Feminino , Preservação da Fertilidade/métodos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Reserva Ovariana/fisiologia , Ovário/patologia , Gravidez , Insuficiência Ovariana Primária/patologia
14.
Nat Commun ; 11(1): 550, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992716

RESUMO

Many cellular models aimed at elucidating cancer biology do not recapitulate pathobiology including tumor heterogeneity, an inherent feature of cancer that underlies treatment resistance. Here we introduce a cancer modeling paradigm using genetically engineered human pluripotent stem cells (hiPSCs) that captures authentic cancer pathobiology. Orthotopic engraftment of the neural progenitor cells derived from hiPSCs that have been genome-edited to contain tumor-associated genetic driver mutations revealed by The Cancer Genome Atlas project for glioblastoma (GBM) results in formation of high-grade gliomas. Similar to patient-derived GBM, these models harbor inter-tumor heterogeneity resembling different GBM molecular subtypes, intra-tumor heterogeneity, and extrachromosomal DNA amplification. Re-engraftment of these primary tumor neurospheres generates secondary tumors with features characteristic of patient samples and present mutation-dependent patterns of tumor evolution. These cancer avatar models provide a platform for comprehensive longitudinal assessment of human tumor development as governed by molecular subtype mutations and lineage-restricted differentiation.


Assuntos
Engenharia Genética , Glioblastoma/genética , Glioblastoma/patologia , Células-Tronco Pluripotentes/patologia , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Genoma , Glioblastoma/metabolismo , Glioma/genética , Glioma/patologia , Humanos , Camundongos , Camundongos SCID , Mutação , Transplante de Neoplasias , Células-Tronco Neoplásicas/patologia , Neurofibromina 1/genética , PTEN Fosfo-Hidrolase/genética , Transplante Heterólogo , Proteína Supressora de Tumor p53/genética
15.
Clin Cancer Res ; 26(6): 1338-1348, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31831564

RESUMO

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) remains a deadly disease urgently requiring new treatments. Overexpression of the protein transporter exportin-1 (XPO1) leads to mislocalization of tumor-suppressor proteins (TSP) and their inactivation. Earlier, we showed that blocking XPO1 by CRISPR/Cas9 validated Selective Inhibitor of Nuclear Export (SINE) compounds (selinexor and analogs) restores the antitumor activity of multiple TSPs leading to suppression of PDAC in vitro and in orthotopic models. EXPERIMENTAL DESIGN: We evaluate the synergy between SINE compounds and standard-of-care treatments in preclinical models and in a PDAC Phase Ib trial. RESULTS: SINE compounds synergize with gemcitabine (GEM) and nanoparticle albumin-bound (nab)-paclitaxel leading to suppression of PDAC cellular growth and cancer stem cell (CSC) spheroids disintegration. Label-free quantitative proteome profiling with nuclear and cytoplasmic enrichment showed superior enhancement in nuclear protein fraction in combination treatment. Selinexor inhibited the growth of PDAC CSC and two patient-derived (PDX) subcutaneous xenografts. Selinexor-GEM-nab-paclitaxel blocked PDX and orthotopic tumor growth. In a phase 1b study (NCT02178436), 9 patients were exposed to selinexor (60 mg oral) with GEM (1,000 mg/m2 i.v.) and nab-paclitaxel (125 mg/m2 i.v.) on days 1, 8, and 15 of 28-day cycle. Two patients showed partial response, and 2 had stable disease. An outstanding, durable objective response was observed in one of the responders with progression-free survival of 16 months and overall survival of 22 months. CONCLUSIONS: Our preclinical and ongoing clinical study lends support to the use of selinexor-GEM-nab-paclitaxel as an effective therapy for metastatic PDAC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carioferinas/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Albuminas/administração & dosagem , Animais , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Hidrazinas/administração & dosagem , Camundongos , Camundongos Endogâmicos ICR , Camundongos SCID , Paclitaxel/administração & dosagem , Neoplasias Pancreáticas/patologia , Triazóis/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina , Proteína Exportina 1 , Neoplasias Pancreáticas
16.
Int J Pharm ; 574: 118849, 2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31759108

RESUMO

The utilization of liposomes in biomedical applications has greatly benefited the diagnosis and treatment of various diseases. These biomimetic nano-entities have been very useful in the clinical practice as drug delivery systems in their conventional form, comprising lipids as structural components. However, the scientific efforts have recently shifted towards the development of more sophisticated nanotechnological platforms, which apply functional biomaterials, such as stimuli-responsive polymers, in order to aid the drug molecule targeting concept. These nanosystems are defined as chimeric/mixed, because they combine more than one different in nature biomaterials and their development requires intensive study through biophysical and thermodynamic approaches before they may reach in vivo application. Herein, we designed and developed chimeric liposomes, composed of a phospholipid and pH-responsive amphiphilic diblock copolymers and studied their morphology and behavior based on crucial formulation parameters, including biomaterial concentration, dispersion medium pH and polymer composition. Additionally, their interactions with biological components, pH-responsiveness and membrane thermodynamics were assessed. Finally, preliminary in vivo toxicity experiments of the developed nanosystems were carried out, in order to establish a future protocol for full in vivo evaluation. The results have been correlated with the properties of the chimeric nanosystems and highlight the importance of such approaches for designing and developing effective nanocarriers for biomedical applications.


Assuntos
Lipossomos/química , Nanopartículas/química , Animais , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Nanotecnologia/métodos , Fosfolipídeos/química , Polímeros/química
17.
Vaccine ; 38(6): 1416-1423, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31862194

RESUMO

Tuberculosis still claims more lives than any other pathogen, and a vaccine better than BCG is urgently needed. One of the challenges for novel TB vaccines is to protect against all Mycobacterium tuberculosis lineages, including the most virulent ones, such as the Beijing lineage. Here we developed a live attenuated M. tuberculosis mutant derived from GC1237, a Beijing strain responsible for tuberculosis outbreaks in the Canary Islands. The mutant strain is inactivated both in the Rv1503c gene, responsible for surface glycolipid synthesis, and in the two-component global regulator PhoPR. This double mutant is as safe as BCG in immunodeficient SCID mice. In immune-competent mice and guinea pigs, the mutant is as protective as BCG against M. tuberculosis strains of common lineage 4 (Euro-American). By contrast, in mice the vaccine is protective against a M. tuberculosis strain of lineage 2 (East-Asian, Beijing), while BCG is not. These results highlight differences in protection efficacy of live attenuated M. tuberculosis-derived vaccine candidates depending on their genetic background, and provide insights for the development of novel live vaccines against TB, especially in East-Asian countries where M. tuberculosis strains of the Beijing family are highly dominant.


Assuntos
Vacinas contra a Tuberculose/imunologia , Tuberculose , Animais , Vacina BCG , Cobaias , Camundongos , Camundongos SCID , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Tuberculose/prevenção & controle , Vacinas Atenuadas/imunologia
18.
Biochem Biophys Res Commun ; 522(3): 805-810, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31791589

RESUMO

Liver failure is one of the major risk factors for death worldwide, and the only effective liver transplantation is currently very limited. Adult stem cells can be induced into hepatocytes in vitro and implanted into the body to repair damaged liver. However, most of the induction time in vitro is relatively long, which is not suitable for practical application. Therefore, search for new seed cells that can rapidly differentiate into functional hepatocytes is crucial for the clinical application of cell transplantation therapy. In this study, we explored a three-step protocol to rapidly induce human minor salivary gland mesenchymal stem cells (hMSG-MSCs) into hepatocytes in vitro, and finally obtained hepatocyte-like cells within 6 days. After a series of relevant detection from gene, protein and functional levels, we confirmed that the finally induced cells were mature hepatocyte-like cells with certain hepatocyte functions to some extent. Besides, we injected the preliminary induced cells into mice with acute liver injury, showing a good repair effect on the damaged liver. All these results indicate that the hMSG-MSCs have potential to be a kind of seed cells for rapid hepatic differentiation.


Assuntos
Diferenciação Celular , Hepatócitos/citologia , Células-Tronco Mesenquimais/citologia , Glândulas Salivares Menores/citologia , Animais , Técnicas de Cultura de Células/economia , Técnicas de Cultura de Células/métodos , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/terapia , Feminino , Hepatócitos/transplante , Humanos , Camundongos SCID
19.
PLoS One ; 14(10): e0224096, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31661493

RESUMO

Staphylococcus aureus (S. aureus) infections are a leading cause of death by an infectious agent. Survival within host phagocytic cells is one mechanism by which S. aureus evades antibiotic treatment. A novel THIOMAB™ antibody-antibiotic conjugate (TAC) strategy was developed to kill S. aureus intracellularly and mitigate the spread of infection. In this report, we used a longitudinal whole-body bioluminescence imaging method to study the antibacterial dynamics of TAC alone or in combination with vancomycin in a mouse infection model. Injections of stably luminescent S. aureus bacteria into mice resulted in exponential increases in whole body bioluminescence with a reduction in body weight and survival rate. Vancomycin, a standard-of-care antibiotic, suppressed bacterial growth in mice. However, bacterial growth rebounded in these animals once treatment was discontinued. In contrast, single dose of TAC showed rapid reduction of bioluminescence intensity, which persisted for up to 19 days. The combination of TAC and vancomycin achieved a more sustained and significantly greater reduction of bioluminescence compared with vancomycin alone. In summary, the present study showed an imaging method to longitudinally assess antibacterial drug dynamics in mice and demonstrated that TAC monotherapy or in combination with vancomycin had superior and sustained activity compared to vancomycin alone.


Assuntos
Antibacterianos/farmacologia , Anticorpos Antibacterianos/farmacologia , Anticorpos Monoclonais/farmacologia , Modelos Animais de Doenças , Imunoconjugados/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/química , Anticorpos Antibacterianos/química , Anticorpos Monoclonais/química , Feminino , Camundongos , Camundongos SCID , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/microbiologia , Vancomicina/farmacologia
20.
Cell Rep ; 28(9): 2317-2330.e8, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461649

RESUMO

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor and bi-functional lipid and protein phosphatase. We report that the metabolic regulator pyruvate dehydrogenase kinase1 (PDHK1) is a synthetic-essential gene in PTEN-deficient cancer and normal cells. The PTEN protein phosphatase dephosphorylates nuclear factor κB (NF-κB)-activating protein (NKAP) and limits NFκB activation to suppress expression of PDHK1, a NF-κB target gene. Loss of the PTEN protein phosphatase upregulates PDHK1 to induce aerobic glycolysis and PDHK1 cellular dependence. PTEN-deficient human tumors harbor increased PDHK1, a biomarker of decreased patient survival. This study uncovers a PTEN-regulated signaling pathway and reveals PDHK1 as a potential target in PTEN-deficient cancers.


Assuntos
Neoplasias/metabolismo , PTEN Fosfo-Hidrolase/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Animais , Linhagem Celular Tumoral , Feminino , Glicólise , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , NF-kappa B/metabolismo , Neoplasias/genética , Neoplasias/patologia , PTEN Fosfo-Hidrolase/economia , PTEN Fosfo-Hidrolase/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Proteínas Repressoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA