Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Eur J Pharmacol ; 913: 174632, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34785211

RESUMO

Chloroquine and hydroxychloroquine have been proposed recently as therapy for SARS-CoV-2-infected patients, but during 3 months of extensive use concerns were raised related to their clinical effectiveness and arrhythmogenic risk. Therefore, we estimated for these compounds several proarrhythmogenic risk predictors according to the Comprehensive in vitro Proarrhythmia Assay (CiPA) paradigm. Experiments were performed with either CytoPatch™2 automated or manual patch-clamp setups on HEK293T cells stably or transiently transfected with hERG1, hNav1.5, hKir2.1, hKv7.1+hMinK, and on Pluricyte® cardiomyocytes (Ncardia), using physiological solutions. Dose-response plots of hERG1 inhibition fitted with Hill functions yielded IC50 values in the low micromolar range for both compounds. We found hyperpolarizing shifts of tens of mV, larger for chloroquine, in the voltage-dependent activation but not inactivation, as well as a voltage-dependent block of hERG current, larger at positive potentials. We also found inhibitory effects on peak and late INa and on IK1, with IC50 of tens of µM and larger for chloroquine. The two compounds, tested on Pluricyte® cardiomyocytes using the ß-escin-perforated method, inhibited IKr, ICaL, INa peak, but had no effect on If. In current-clamp they caused action potential prolongation. Our data and those from literature for Ito were used to compute proarrhythmogenic risk predictors Bnet (Mistry HB, 2018) and Qnet (Dutta S et al., 2017), with hERG1 blocking/unblocking rates estimated from time constants of fractional block. Although the two antimalarials are successfully used in autoimmune diseases, and chloroquine may be effective in atrial fibrillation, assays place these drugs in the intermediate proarrhythmogenic risk group.


Assuntos
Antivirais/efeitos adversos , Arritmias Cardíacas/induzido quimicamente , Cloroquina/farmacologia , Hidroxicloroquina/efeitos adversos , Potenciais de Ação/efeitos dos fármacos , Bioensaio , Simulação por Computador , Correlação de Dados , Relação Dose-Resposta a Droga , Canal de Potássio ERG1/agonistas , Canal de Potássio ERG1/antagonistas & inibidores , Canal de Potássio ERG1/metabolismo , Células HEK293 , Humanos , Concentração Inibidora 50 , Canal de Potássio KCNQ1/antagonistas & inibidores , Canal de Potássio KCNQ1/metabolismo , Cinética , Miócitos Cardíacos/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Medição de Risco , SARS-CoV-2/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
2.
J Pharmacol Sci ; 134(2): 75-85, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28615142

RESUMO

Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes hold great potentials to predict pro-arrhythmic risks in preclinical cardiac safety screening, although the hiPSC cardiomyocytes exhibit rather immature functional and structural characteristics, including spontaneous activity. Our physiological characterization and mathematical simulation showed that low expression of the inward-rectifier potassium (IK1) channel is a determinant of spontaneous activity. To understand impact of the low IK1 expression on the pharmacological properties, we tested if transduction of hiPSC-derived cardiomyocytes with KCNJ2, which encodes the IK1 channel, alters pharmacological response to cardiac repolarization processes. The transduction of KCNJ2 resulted in quiescent hiPSC-derived cardiomyocytes, which need pacing to elicit action potentials. Significant prolongation of paced action potential duration in KCNJ2-transduced hiPSC-derived cardiomyocytes was stably measured at 0.1 µM E-4031, although the same concentration of E-4031 ablated firing of non-treated hiPSC-derived cardiomyocytes. These results in single cells were confirmed by mathematical simulations. Using the hiPSC-derived cardiac sheets with KCNJ2-transduction, we also investigated effects of a range of drugs on field potential duration recorded at 1 Hz. The KCNJ2 overexpression in hiPSC-derived cardiomyocytes may contribute to evaluate a part of QT-prolonging drugs at toxicological concentrations with high accuracy.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Bloqueadores dos Canais de Potássio/efeitos adversos , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potenciais de Ação/efeitos dos fármacos , Arritmias Cardíacas/induzido quimicamente , Avaliação Pré-Clínica de Medicamentos/métodos , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Biológicos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Técnicas de Patch-Clamp , Piperidinas/efeitos adversos , Piridinas/efeitos adversos
3.
Sci Rep ; 5: 18404, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26678093

RESUMO

Outward currents through Kir2.1 channels regulate the electrical properties of excitable cells. These currents are subject to voltage-dependent attenuation by the binding of polyamines to high- and low-affinity sites, which leads to inward rectification, thereby controlling cell excitability. To examine the effects of positive charges at the low-affinity site in the cytoplasmic pore on inward rectification, we studied a mutant Kir channel (E224K/H226E) and measured single-channel currents and streaming potentials (Vstream), the latter provide the ratio of water to ions queued in a single-file permeation process in the selectivity filter. The water-ion coupling ratio was near one at a high K(+) concentration ([K(+)]) for the wild-type channel and increased substantially as [K(+)] decreased. On the other hand, fewer ions occupied the selectivity filter in the mutant at all [K(+)]. A model for the Kir channel involving a K(+) binding site in the wide pore was introduced. Model analyses revealed that the rate constants associated with the binding and release to and from the wide-pore K(+) binding site was modified in the mutant. These effects lead to the reduced contribution of a conventional two-ion permeation mode to total conductance, especially at positive potentials, thereby inward rectification.


Assuntos
Citoplasma/metabolismo , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potenciais de Ação , Animais , Sítios de Ligação , Permeabilidade da Membrana Celular , Citoplasma/química , Íons/química , Íons/metabolismo , Cadeias de Markov , Mutagênese Sítio-Dirigida , Oócitos/metabolismo , Técnicas de Patch-Clamp , Potássio/metabolismo , Xenopus/crescimento & desenvolvimento , Xenopus/metabolismo
4.
J Physiol ; 589(Pt 7): 1755-67, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21282289

RESUMO

Normal heart rate variability is critically dependent upon the G-protein-coupled, acetylcholine (ACh)-activated inward rectifier K+ current, I(KACh). A unique feature of I(KACh) is the so-called 'relaxation' gating property that contributes to increased current at hyperpolarized membrane potentials. I(KACh) relaxation refers to a slow decrease or increase in current magnitude with depolarization or hyperpolarization, respectively. The molecular mechanism underlying this perplexing gating behaviour remains unclear. Here, we consider a novel explanation for I(KACh) relaxation based upon the recent finding that G-protein-coupled receptors (GPCRs) are intrinsically voltage sensitive and that the muscarinic agonists acetylcholine (ACh) and pilocarpine (Pilo) manifest opposite voltage-dependent I(KACh) modulation. We show that Pilo activation of I(KACh) displays relaxation characteristics opposite to that of ACh. We explain the opposite effects of ACh and Pilo using Markov models of I(KACh) that incorporate ligand-specific, voltage-dependent parameters. Based on experimental and computational findings, we propose a novel molecular mechanism to describe the enigmatic relaxation gating process: I(KACh) relaxation represents a voltage-dependent change in agonist affinity as a consequence of a voltage-dependent conformational change in the muscarinic receptor.


Assuntos
Acetilcolina/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptores Muscarínicos/metabolismo , Acetilcolina/farmacologia , Animais , Venenos de Abelha/farmacologia , Gatos , Técnicas In Vitro , Ativação do Canal Iônico/efeitos dos fármacos , Cadeias de Markov , Potenciais da Membrana , Modelos Biológicos , Agonistas Muscarínicos/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Pilocarpina/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Conformação Proteica , Receptores Muscarínicos/química
5.
Cell Metab ; 11(1): 58-69, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20074528

RESUMO

Metabolic processes that regulate muscle energy use are major determinants of bodily energy balance. Here, we find that sarcolemmal ATP-sensitive K(+) (K(ATP)) channels, which couple membrane excitability with cellular metabolic pathways, set muscle energy expenditure under physiological stimuli. Disruption of K(ATP) channel function provoked, under conditions of unaltered locomotor activity and blood substrate availability, an extra energy cost of cardiac and skeletal muscle performance. Inefficient fuel metabolism in K(ATP) channel-deficient striated muscles reduced glycogen and fat body depots, promoting a lean phenotype. The propensity to lesser body weight imposed by K(ATP) channel deficit persisted under a high-fat diet, yet obesity restriction was achieved at the cost of compromised physical endurance. Thus, sarcolemmal K(ATP) channels govern muscle energy economy, and their downregulation in a tissue-specific manner could present an antiobesity strategy by rendering muscle increasingly thermogenic at rest and less fuel efficient during exercise.


Assuntos
Peso Corporal , Metabolismo Energético/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Sarcolema/metabolismo , Animais , Gorduras na Dieta , Ingestão de Alimentos , Camundongos , Camundongos Knockout , Fenótipo , Canais de Potássio Corretores do Fluxo de Internalização/deficiência , Canais de Potássio Corretores do Fluxo de Internalização/genética
6.
Exp Clin Endocrinol Diabetes ; 113(7): 388-95, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16025400

RESUMO

Pancreatic islet cell mass (PICM) is a major determinant of the insulin secretory capacity in humans. Currently, the only method for accurate assessment of the PICM is an autopsy study. Thus, development of a technique allowing the non-invasive quantification of PICM is of great interest. The aim of this study was to develop such a non-invasive technique featuring novel fluorine- and (99m)Tc-labelled glibenclamide derivatives. Despite the structural modifications necessary to introduce fluorine into the glibenclamide molecule, all derivatives retained insulin stimulating capacity as well as high affinity binding to human SUR1 when compared to the original glibenclamide. Contrastingly, the lipophilicity of the fluorine-labelled derivatives was altered depending on the particular modification. In the human PET-study a constant but weak radioactive signal could be detected in the pancreas using a fluorine-labelled glibenclamide derivative. However, a reliable assessment and visualisation of the PICM could not be obtained. It can be assumed that the high uptake of the fluorine-labelled tracer e.g. into the the liver and the high plasma protein binding leads to a relatively low signal-to-noise ratio. In case of the presented fluorine-labelled glibenclamide based compounds this could be the result of their invariably high lipophilicity. The development of a (99 m)Tc-labelled glibenclamide derivative with a lower lipophilicity and differing in vivo behaviour, glibenclamide based compounds for non-invasive imaging of the pancreatic islet cell mass may be possible.


Assuntos
Diabetes Mellitus/diagnóstico por imagem , Radioisótopos de Flúor , Glibureto/análogos & derivados , Hipoglicemiantes , Ilhotas Pancreáticas/diagnóstico por imagem , Compostos Radiofarmacêuticos , Tecnécio , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Glibureto/síntese química , Glibureto/farmacocinética , Humanos , Hipoglicemiantes/síntese química , Hipoglicemiantes/farmacocinética , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Canais de Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Ratos Sprague-Dawley , Receptores de Droga/metabolismo , Receptores de Sulfonilureias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA