Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Rev. bras. anestesiol ; 62(6): 828-837, nov.-dez. 2012. ilus, tab
Artigo em Português | LILACS | ID: lil-659013

RESUMO

CONTEÚDO: A hipertermia maligna (HM) é uma doença farmacogenética potencialmente letal que acomete indivíduos geneticamente predispostos. Manifesta-se em indivíduos susceptíveis em resposta à exposição a anestésicos inalatórios, relaxantes musculares despolarizantes ou atividade física extrema em ambientes quentes. Durante a exposição a esses agentes desencadeadores, há um aumento rápido e sustentado da concentração de cálcio mioplasmático (Ca2+) induzido pela hiperativação dos receptores de rianodina (RYR1) do músculo esquelético, causando uma alteração profunda na homeostase de Ca2+, caracterizando um estado hipermetabólico. RYR1, canais de libertação de Ca2+ do retículo sarcoplasmático, é o principal local de susceptibilidade à HM. Várias mutações no gene que codifica a proteína RYR1 foram identificadas, mas outros genes podem estar envolvidos. Atualmente, o método padrão para o diagnóstico de sensibilidade à HM é o teste de contratura muscular para exposição ao halotano-cafeína (CHCT) e o único tratamento é o uso de dantroleno. No entanto, com os avanços no campo da genética molecular, um pleno entendimento da etiologia da doença pode ser fornecido, favorecendo o desenvolvimento de um diagnóstico preciso, menos invasivo, com o teste de ADN, e também proporcionar o desenvolvimento de novas estratégias terapêuticas para o tratamento da HM. Logo, esta breve revisão tem como objetivo integrar os aspectos clínicos e moleculares da HM, reunindo informações para uma melhor compreensão desta canalopatia.


CONTENT: Malignant hyperthermia (MH) is a potentially lethal pharmacogenetic disorder that affects genetically predisposed individuals. It manifests in susceptible individuals in response to exposure to Inhalant anesthetics, depolarizing muscle relaxants or extreme physical activity in hot environments. During exposure to these triggering agents, there is a rapid and sustained increase of myoplasmic calcium (Ca2+) concentration induced by hyperactivation of ryanodine receptor of skeletal muscle (RyR1), causing a profound change in Ca2+ homeostasis, featuring a hypermetabolic state. RyR1, Ca2+ release channels of sarcoplasmic reticulum, is the primary locus for MH susceptibility. Several mutations in the gene encoding the protein RyR1 have been identified; however, other genes may be involved. Actually, the standard method for diagnosing MH susceptibility is the muscle contracture test for exposure to halothane-caffeine (CHCT) and the only treatment is the use of dantrolene. However, with advances in molecular genetics, a full understanding of the disease etiology may be provided, favoring the development of an accurate diagnosis, less invasive, with DNA test, and also will provide the development of new therapeutic strategies for treatment of MH. Thus, this brief review aims to integrate molecular and clinical aspects of MH, gathering input for a better understanding of this channelopathy.


CONTENIDO: La hipertermia maligna (HM) es una enfermedad farmacogenética potencialmente letal que afecta a individuos genéticamente predispuestos. Se manifiesta en los individuos susceptibles en respuesta a la exposición a los anestésicos inhalatorios, relajantes musculares despolarizantes o actividad física extrema en ambientes calientes. Durante la exposición a esos agentes desencadenantes, existe un aumento rápido y constante de la concentración de calcio mioplasmático (Ca2+) inducido por la hiperactivación de los receptores de rianodina (RYR1) del músculo esquelético, causando una alteración profunda en la homeostasa de Ca2+, y caracterizando un estado hipermetabólico. RYR1, canales de liberación de Ca2+ del retículo sarcoplasmático, es la principal región de susceptibilidad a la HM. Varias mutaciones en el gen que codifica la proteína RYR1 han sido identificadas, pero otros genes pueden estar involucrados también. Actualmente, el método estándar para el diagnóstico de la sensibilidad a la HM es el test de contractura muscular para la exposición al halotano-cafeína (CHCT) y el único tratamiento es el uso de dantroleno. Sin embargo, con los avances en el campo de la genética molecular, un pleno entendimiento de la etiología de la enfermedad puede ser suministrado, favoreciendo así el desarrollo de un diagnóstico preciso, menos invasivo, con el test de ADN, y también proporcionar el desarrollo de nuevas estrategias terapéuticas para el tratamiento de la HM. Por eso, esta breve revisión intenta integrar los aspectos clínicos y moleculares de la HM, reuniendo informaciones para lograr una mejor comprensión de esa canalopatía.


Assuntos
Humanos , Hipertermia Maligna , Hipertermia Maligna/diagnóstico , Hipertermia Maligna/genética , Hipertermia Maligna/terapia , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia
2.
Rev Bras Anestesiol ; 62(6): 820-37, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23176990

RESUMO

CONTENT: Malignant hyperthermia (MH) is a potentially lethal pharmacogenetic disorder that affects genetically predisposed individuals. It manifests in susceptible individuals in response to exposure to Inhalant anesthetics, depolarizing muscle relaxants or extreme physical activity in hot environments. During exposure to these triggering agents, there is a rapid and sustained increase of myoplasmic calcium (Ca(2+)) concentration induced by hyperactivation of ryanodine receptor of skeletal muscle (RyR1), causing a profound change in Ca(2+) homeostasis, featuring a hypermetabolic state. RyR1, Ca(2+) release channels of sarcoplasmic reticulum, is the primary locus for MH susceptibility. Several mutations in the gene encoding the protein RyR1 have been identified; however, other genes may be involved. Actually, the standard method for diagnosing MH susceptibility is the muscle contracture test for exposure to halothane-caffeine (CHCT) and the only treatment is the use of dantrolene. However, with advances in molecular genetics, a full understanding of the disease etiology may be provided, favoring the development of an accurate diagnosis, less invasive, with DNA test, and also will provide the development of new therapeutic strategies for treatment of MH. Thus, this brief review aims to integrate molecular and clinical aspects of MH, gathering input for a better understanding of this channelopathy.


Assuntos
Hipertermia Maligna , Humanos , Hipertermia Maligna/diagnóstico , Hipertermia Maligna/genética , Hipertermia Maligna/terapia , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia
3.
Math Biosci ; 226(1): 1-15, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20346962

RESUMO

Mathematical and computational modeling of cardiac excitation-contraction coupling has produced considerable insights into how the heart muscle contracts. With the increase in biophysical and physiological data available, the modeling has become more sophisticated with investigations spanning in scale from molecular components to whole cells. These modeling efforts have provided insight into cardiac excitation-contraction coupling that advanced and complemented experimental studies. One goal is to extend these detailed cellular models to model the whole heart. While this has been done with mechanical and electrophysiological models, the complexity and fast time course of calcium dynamics have made inclusion of detailed calcium dynamics in whole heart models impractical. Novel methods such as the probability density approach and moment closure technique which increase computational efficiency might make this tractable.


Assuntos
Acoplamento Excitação-Contração/fisiologia , Modelos Cardiovasculares , Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Potenciais de Ação/fisiologia , Animais , Sinalização do Cálcio/fisiologia , Cães , Cobaias , Insuficiência Cardíaca/fisiopatologia , Humanos , Método de Monte Carlo , Teoria da Probabilidade , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Função Ventricular/fisiologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-19964372

RESUMO

Local calcium sparks in the dyadic cleft of cardiac myocytes are triggered by calcium influxes via L-type calcium channels (LCCs) located on the transverse tubule (TT) membrane, and subsequently controlled by the regeneration of ryanodine receptors (RyRs) on the sarcoplasmic reticulum (SR). Calcium released from SR channels is known to be responsible for the sparks. Therefore, the activities of RyRs provide straightforward indication to the calcium concentration alteration. A method to study calcium signaling by analyzing RyR-gating statistics is described in the present study. Here we propose a univariate model with a simplified geometry of the dyadic cleft, which specifies the spatial localization of LCCs and RyRs to monitor the activity changes of RyRs. This model is used to explore two crucial aspects of local calcium signaling: the first is to disclose the tight control of calcium influxes via LCCs, and the second is to reveal the interactional impact of the self-regenerative RyRs. Patterns of active RyRs are rendered through numerous computational simulation experiments, manipulating the state initialization and the spatial localization of LCCs and RyRs to observe gating transition of RyRs.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Cálcio/metabolismo , Modelos Cardiovasculares , Miócitos Cardíacos/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Algoritmos , Análise de Variância , Simulação por Computador , Modelos Estatísticos , Método de Monte Carlo , Processos Estocásticos
5.
J Membr Biol ; 220(1-3): 11-20, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17879109

RESUMO

In this study, we present evidence for the mechanism of neomycin inhibition of skeletal ryanodine receptors (RyRs). In single-channel recordings, neomycin produced monophasic inhibition of RyR open probability and biphasic inhibition of [(3)H]ryanodine binding. The half-maximal inhibitory concentration (IC(50)) for channel blockade by neomycin was dependent on membrane potential and cytoplasmic [Ca(2+)], suggesting that neomycin acts both as a pore plug and as a competitive antagonist at a cytoplasmic Ca(2+) binding site that causes allosteric inhibition. This novel Ca(2+)/neomycin binding site had a neomycin affinity of 100 nM: and a Ca(2+) affinity of 35 nM,: which is 30-fold higher than that of the well-described cytoplasmic Ca(2+) activation site. Therefore, a new high-affinity class of Ca(2+) binding site(s) on the RyR exists that mediates neomycin inhibition. Neomycin plugging of the channel pore induced brief (1-2 ms) conductance substates at 30% of the fully open conductance, whereas allosteric inhibition caused complete channel closure with durations that depended on the neomycin concentration. We quantitatively account for these results using a dual inhibition model for neomycin that incorporates voltage-dependent pore plugging and Ca(2+)-dependent allosteric inhibition.


Assuntos
Cálcio/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Neomicina/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Animais , Sítios de Ligação , Cálcio/farmacologia , Relação Dose-Resposta a Droga , Ativação do Canal Iônico/fisiologia , Bicamadas Lipídicas/metabolismo , Cadeias de Markov , Músculo Esquelético/metabolismo , Ligação Proteica/efeitos dos fármacos , Coelhos , Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
6.
Biochemistry ; 46(14): 4272-9, 2007 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-17361990

RESUMO

Ryanodine receptor (RyR) mutations linked with some congenital skeletal and cardiac diseases are localized to three easily definable regions: region 1 (N-terminal domain), region 2 (central domain), and a rather broad region 3 containing the channel pore. As shown in our recent studies, the interdomain interaction between regions 1 and 2 plays a critical role in channel regulation and pathogenesis. Here we present evidence that within region 3 there is a similar channel regulation mechanism mediated by an interdomain interaction. DP15, a peptide corresponding to RyR1 residues 4820-4841, produced significant activation of [3H]ryanodine binding above threshold Ca2+ concentrations (>or=0.3 microM), but MH mutations (L4823P or L4837V) made in DP15 almost completely abolished its channel activating function. To identify the DP15 binding site(s) within RyR1, DP15 (labeled with a fluorescent probe Alexa Fluor 680 and a photoaffinity cross-linker APG) was cross-linked to RyR1, and the site of cross-linking was identified by gel analysis of fluorescently labeled proteolytic fragments with the aid of Western blotting with site-specific antibodies. The shortest fluorescently labeled band was a 96 kDa fragment which was stained with an antibody directed to the region of residues 4114-4142 of RyR1, indicating that the interaction between the region of residues 4820-4841 adjacent to the channel pore and the 96 kDa segment containing the region of residues 4114-4142 is involved in the mechanism of Ca2+-dependent channel regulation. In further support of this concept, anti-DP15 antibody and cardiac counterpart of DP15 produced channel activation similar to that of DP15.


Assuntos
Canais de Cálcio/química , Fragmentos de Peptídeos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos/química , Anticorpos/metabolismo , Anticorpos/farmacologia , Sítios de Ligação , Western Blotting , Cálcio/metabolismo , Cálcio/farmacologia , Reagentes de Ligações Cruzadas/metabolismo , Citoplasma/química , Citoplasma/metabolismo , Relação Dose-Resposta a Droga , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Peso Molecular , Músculo Esquelético/química , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/fisiologia , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/análise , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Retículo Sarcoplasmático
7.
Neurotoxicology ; 28(4): 770-9, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17023049

RESUMO

Malignant hyperthermia (MH) susceptibility is conferred by inheriting one of >60 missense mutations within the highly regulated microsomal Ca(2+) channel known as ryanodine receptor type 1 (RyR1). Although MH susceptible patients lack overt clinical signs, a potentially lethal MH syndrome can be triggered by exposure to halogenated alkane anesthetics. This study compares how non-coplanar 2,2',3,5',6-pentachlorobiphenyl (PCB 95), a congener identified in environmental and human samples, alters the binding properties of [(3)H]ryanodine to RyR1 in vitro. Junctional sarcoplasmic reticulum (SR) was isolated from skeletal muscle dissected from wild type pigs ((Wt)RyR1) and pigs homozygous for MH mutation R615C ((MH)RyR1), a mutation also found in humans. Although the level of (Wt)RyR1 and (MH)RyR1 expression is the same, (MH)RyR1 shows heightened sensitivity to activation and altered regulation by physiological cations. We report here that (MH)RyR1 shows more pronounced activation by Ca(2+), and is less sensitive to channel inhibition by Ca(2+) and Mg(2+), compared to (Wt)RyR1. In a buffer containing 100nM free Ca(2+), conditions typically found in resting cells, PCB 95 (50-1000nM) enhances the activity of (MH)RyR1 whereas it has no detectable effect on (Wt)RyR1. PCB 95 (2microM) decreases channel inhibition by Mg(2+) to a greater extent in (MH)RyR1 (IC(50) increased nine-fold) compared to (Wt)RyR1 (IC(50) increased by 2.5-fold). PCB95 reduces inhibition by Ca(2+) two-fold more with (MH)RyR1 than (Wt)RyR1. Our data suggest that non-coplanar PCBs are more potent and efficacious toward (MH)RyR1 than (Wt)RyR1, and have more profound effects on its cation regulation. Considering the important roles of Ca(2+) and Mg(2+) in regulating Ca(2+) signals involving RyR channels, these data provide the first mechanistic evidence that a genetic mutation known to confer susceptibility to pharmacological agents also enhances sensitivity to an environmental contaminant.


Assuntos
Arginina/genética , Cisteína/genética , Hipertermia Maligna/genética , Mutação , Bifenilos Policlorados/toxicidade , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Técnicas In Vitro , Concentração Inibidora 50 , Hipertermia Maligna/patologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/ultraestrutura , Ligação Proteica/efeitos dos fármacos , Rianodina/farmacocinética , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Retículo Sarcoplasmático/efeitos dos fármacos , Suínos , Trítio/farmacocinética
8.
Biophys J ; 92(4): 1215-23, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17142293

RESUMO

Ryanodine receptors (RyRs) usually form two-dimensional regular array in sarcoplasmic reticulum membranes in muscle cells. The inter-RyRs coupling may be essential for the maintenance of quiescent Ca2+ release in resting state, as well as for the coordinated activation and rapid termination of RyR-mediated Ca2+ release during excitation-contraction coupling. In our previous work, we have reported that the inter-RyRs interaction is modulated by RyR channel's functional state, which inspired us to propose a novel working mechanism of RyR array: "dynamic inter-RyR coupling". In this work, we built a simple model based on cellular automata and the Monte-Carlo method to quantitatively investigate the roles of intermolecular coupling and its modulation in regulating the signaling capabilities of RyR array. Our simulation results showed that with a suitable inter-RyR coupling strength, the combination of rest stability and high response efficiency, namely optimal signal/noise ratio, of Ca2+ signaling could be achieved. Moreover, we also found the continued coupling between open RyRs would delay the system termination rate. The coacquisition of robust termination of array opening relied on the proper decrease of coupling strength between activated RyRs. Obviously, such temporally asymmetric coupling would simultaneously endow the system with physiologically relevant resting stability and fast termination.


Assuntos
Cálcio/fisiologia , Modelos Biológicos , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Ativação do Canal Iônico , Método de Monte Carlo , Conformação Proteica , Retículo Sarcoplasmático/fisiologia
9.
Biophys J ; 90(6): 1999-2014, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16387773

RESUMO

In multiple biological systems, vital intracellular signaling processes occur locally in minute periplasmic subspaces often referred to as signaling microdomains. The number of signaling molecules in these microdomains is small enough to render the notion of continuous concentration changes invalid, such that signaling events are better described using stochastic rather than deterministic methods. Of particular interest is the dyadic cleft in the cardiac myocyte, where short-lived, local increases in intracellular Ca2+ known as Ca2+ sparks regulate excitation-contraction coupling. The geometry of dyadic spaces can alter in disease and development and display significant interspecies variability. We created and studied a 3D Monte Carlo model of the dyadic cleft, specifying the spatial localization of L-type Ca2+ channels and ryanodine receptors. Our analysis revealed how reaction specificity and efficiency are regulated by microdomain geometry as well as the physical separation of signaling molecules into functional complexes. The spark amplitude and rise time were found to be highly dependent on the concentration of activated channels per dyadic cleft and on the intermembrane separation, but not very sensitive to other cleft dimensions. The role of L-type Ca2+ channel and ryanodine receptor phosphorylation was also examined. We anticipate that this modeling approach may be applied to other systems (e.g., neuronal growth cones and chemotactic cells) to create a general description of stochastic events in Ca2+ signaling.


Assuntos
Sinalização do Cálcio/fisiologia , Modelos Neurológicos , Células Musculares/fisiologia , Neurônios/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Retículo Sarcoplasmático/fisiologia , Animais , Simulação por Computador , Humanos , Ativação do Canal Iônico/fisiologia , Modelos Estatísticos , Método de Monte Carlo
10.
Rev Neurol (Paris) ; 160(5 Pt 2): S70-7, 2004 May.
Artigo em Francês | MEDLINE | ID: mdl-15269663

RESUMO

Myoplasmic calcium homeostasis is an essential feature of skeletal muscle contraction. The calcium mobilisation complex (CMC) located at the level of the triadic junction plays a major role for the regulation of calcium fluxes between extra-cellular, cytoplasmic and intra-cellular compartments. The ryanodine receptor type I (RYR1), which is located at the level of the terminal cisternae of the sarcoplasmic reticulum is a key component of the CMC. RYR1 allow the release into the myoplasm of the intralumenal stores of calcium. RYR1 interacts with other proteins: DiHydroPyridine Receptor, triadin, calsequestrin, FKBP12, calmodulin. Malignant hyperthermia (MHS) and congenital core myopathies have been associated with a dysfunction of the CMC. MHS is an autosomic dominant pharmacogenetic disease. The MH crisis is induced by exposure of the predisposed patients to halogenated volatile anaesthetics. MHS is characterised by a genetic heterogeneity and two genes, RYR1 and CACNA1S, have been associated so far with the disease. Mutations in the RYR1 gene have been recently associated with heat stroke, a related syndrome. Central Core Disease (CCD) and Multi minicore Disease (MmD) are congenital myopathies presenting with clinical variability and characterized by the presence of specific although heterogeneous muscle histological features: the cores. Clinical boundaries between the two diseases may overlap and the specific diagnosis is often based on the nature of the cores. These diseases show genetic heterogeneity with both autosomic dominant and recessive mode of inheritance and mutations in the SEPN1, RYR1, ACTA1, TPM3 genes have been reported. Mutations associated with MHS were mainly identified into 2 regions of the N-terminal part of RYR1. Functional role of these two domains is still unclear. Mutations responsible for congenital myopathies mainly mapped to the C terminal region of RYR1 that form the transmembrane calcium channel. Functional studies of the RYR1 mutations have shown that MHS mutations were mainly associated with an alteration of the calcium fluxes in response to caffeine or halothane while CCD mutations would result in a leaky RYR1 channel or would alter the Excitation-Contraction coupling at the level of the CMC.


Assuntos
Músculo Esquelético/fisiopatologia , Doenças Musculares/fisiopatologia , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Humanos , Hipertermia Maligna/genética , Hipertermia Maligna/fisiopatologia , Doenças Musculares/genética , Miopatia da Parte Central/genética , Miopatia da Parte Central/fisiopatologia , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
11.
J Gen Physiol ; 123(5): 533-53, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15111644

RESUMO

Type-II ryanodine receptor channels (RYRs) play a fundamental role in intracellular Ca(2+) dynamics in heart. The processes of activation, inactivation, and regulation of these channels have been the subject of intensive research and the focus of recent debates. Typically, approaches to understand these processes involve statistical analysis of single RYRs, involving signal restoration, model estimation, and selection. These tasks are usually performed by following rather phenomenological criteria that turn models into self-fulfilling prophecies. Here, a thorough statistical treatment is applied by modeling single RYRs using aggregated hidden Markov models. Inferences are made using Bayesian statistics and stochastic search methods known as Markov chain Monte Carlo. These methods allow extension of the temporal resolution of the analysis far beyond the limits of previous approaches and provide a direct measure of the uncertainties associated with every estimation step, together with a direct assessment of why and where a particular model fails. Analyses of single RYRs at several Ca(2+) concentrations are made by considering 16 models, some of them previously reported in the literature. Results clearly show that single RYRs have Ca(2+)-dependent gating modes. Moreover, our results demonstrate that single RYRs responding to a sudden change in Ca(2+) display adaptation kinetics. Interestingly, best ranked models predict microscopic reversibility when monovalent cations are used as the main permeating species. Finally, the extended bandwidth revealed the existence of novel fast buzz-mode at low Ca(2+) concentrations.


Assuntos
Algoritmos , Cálcio/metabolismo , Ativação do Canal Iônico/fisiologia , Modelos Biológicos , Modelos Estatísticos , Técnicas de Patch-Clamp/métodos , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Animais , Sinalização do Cálcio/fisiologia , Células Cultivadas , Simulação por Computador , Interpretação Estatística de Dados , Cães , Homeostase/fisiologia , Cadeias de Markov , Potenciais da Membrana/fisiologia , Microssomos/fisiologia , Método de Monte Carlo , Miócitos Cardíacos/fisiologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processos Estocásticos
12.
Biochem J ; 380(Pt 2): 561-9, 2004 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15027895

RESUMO

N-terminal and central domains of ryanodine receptor 1 (RyR1), where many reported malignant hyperthermia (MH) mutations are localized, represent putative channel regulatory domains. Recent domain peptide (DP) probe studies led us to the hypothesis that these domains interact to stabilize the closed state of channel (zipping), while weakening of domain-domain interactions (unzipping) by mutation de-stabilizes the channel, making it leaky to Ca2+ or sensitive to the agonists of RyR1. As shown previously, DP1 (N-terminal domain peptide) and DP4 (central domain peptide) produced MH-like channel activation/sensitization effects, presumably by peptide binding to sites critical to stabilizing domain-domain interactions and resultant loss of conformational constraints. Here we report that polyclonal anti-DP1 and anti-DP4 antibodies also produce MH-like channel activation and sensitization effects as evidenced by about 4-fold enhancement of high affinity [3H]ryanodine binding to RyR1 and by a significant left-shift of the concentration-dependence of activation of sarcoplasmic reticulum Ca2+ release by polylysine. Fluorescence quenching experiments demonstrate that the accessibility of a DP4-directed, conformationally sensitive fluorescence probe linked to the RyR1 N-terminal domain is increased in the presence of domain-specific antibodies, consistent with the view that these antibodies produce unzipping of interacting domains that are of hindered accessibility to the surrounding aqueous environment. Our results suggest that domain-specific antibody binding induces a conformational change resulting in channel activation, and are consistent with the hypothesis that interacting N-terminal and central domains are intimately involved in the regulation of RyR1 channel function.


Assuntos
Canais de Cálcio/fisiologia , Peptídeos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos/química , Anticorpos/metabolismo , Anticorpos/farmacologia , Especificidade de Anticorpos/fisiologia , Cálcio/metabolismo , Canais de Cálcio/química , Hipertermia Maligna/metabolismo , Dados de Sequência Molecular , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Proteínas Musculares/fisiologia , Músculo Esquelético/química , Peptídeos/química , Peptídeos/imunologia , Peptídeos/fisiologia , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína/fisiologia , Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Trítio/metabolismo
13.
Diabetes ; 52(7): 1825-36, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12829653

RESUMO

Decrease in cardiac contractility is a hallmark of chronic diabetes. Previously we showed that this defect results, at least in part, from a dysfunction of the type 2 ryanodine receptor calcium-release channel (RyR2). The mechanism(s) underlying RyR2 dysfunction is not fully understood. The present study was designed to determine whether non-cross-linking advanced glycation end products (AGEs) on RyR2 increase with chronic diabetes and if formation of these post-translational complexes could be attenuated with insulin treatment. Overnight digestion of RyR2 from 8-week control animals (8C) with trypsin afforded 298 peptides with monoisotopic mass (M+H(+)) >or=500. Digestion of RyR2 from 8-week streptozotocin-induced diabetic animals (8D) afforded 21% fewer peptides, whereas RyR2 from 6-week diabetic/2-week insulin-treated animals generated 304 peptides. Using an in-house PERLscript algorithm, search of matrix-assisted laser desorption ionization-time of flight mass data files identified several M+H(+) peaks corresponding to theoretical RyR2 peptides with single N(epsilon)-(carboxymethyl)-lysine, imidazolone A, imidazone B, pyrraline, or 1-alkyl-2-formyl-3,4-glycosyl pyrrole modification that were present in 8D but not 8C. Insulin treatment minimized production of some of these nonenzymatic glycation products. These data show for the first time that AGEs are formed on intracellular RyR2 during diabetes. Because AGE complexes are known to compromise protein activity, these data suggest a potential mechanism for diabetes-induced RyR2 dysfunction.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Produtos Finais de Glicação Avançada/metabolismo , Coração/fisiopatologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Regulação da Expressão Gênica/fisiologia , Masculino , Miocárdio/metabolismo , Fragmentos de Peptídeos , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Valores de Referência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Tripsina
14.
J Biol Chem ; 275(16): 11618-25, 2000 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-10766778

RESUMO

Localized distribution of malignant hyperthermia (MH) and central core disease (CCD) mutations in N-terminal and central domains of the ryanodine receptor suggests that the interaction between these domains may be involved in Ca(2+) channel regulation. To test this hypothesis, we investigated the effects of a new synthetic domain peptide DP4 corresponding to the Leu(2442)-Pro(2477) region of the central domain. DP4 enhanced ryanodine binding and induced a rapid Ca(2+) release. The concentration for half-maximal activation by agonists was considerably reduced in the presence of DP4. These effects of DP4 are analogous to the functional modifications of the ryanodine receptor caused by MH/CCD mutations (viz. hyperactivation of the channel and hypersensitization of the channel to agonists). Replacement of Arg of DP4 with Cys, mimicking the in vivo Arg(2458)-to-Cys(2458) mutation, abolished the activating effects of DP4. An N-terminal domain peptide DP1 (El-Hayek, R., Saiki, Y., Yamamoto, T., and Ikemoto, N. (1999) J. Biol. Chem. 274, 33341-33347) shows similar activation/sensitization effects. The addition of both DP4 and DP1 produced mutual interference of their activating functions. We tentatively propose that contact between the two (N-terminal and central) domains closes the channel, whereas removal of the contact by these domain peptides or by MH/CCD mutations de-blocks the channel, resulting in hyperactivation/hyper-sensitization effects.


Assuntos
Fragmentos de Peptídeos/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Substituição de Aminoácidos , Animais , Arginina/metabolismo , Cálcio/metabolismo , Cistina/metabolismo , Microssomos/química , Músculo Esquelético/química , Mutagênese Sítio-Dirigida , Miocárdio/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Polilisina/metabolismo , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Relação Estrutura-Atividade , Fatores de Tempo
15.
Am J Vet Res ; 61(3): 242-7, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10714513

RESUMO

OBJECTIVE: To determine whether an alteration in calcium regulation by skeletal muscle sarcoplasmic reticulum, similar to known defects that cause malignant hyperthermia (MH), could be identified in membrane vesicles isolated from the muscles of Thoroughbreds with recurrent exertional rhabdomyolysis (RER). SAMPLE POPULATION: Muscle biopsy specimens from 6 Thoroughbreds with RER and 6 healthy (control) horses. PROCEDURES: RER was diagnosed on the basis of a history of > 3 episodes of exertional rhabdomyolysis confirmed by increases in serum creatine kinase (CK) activity. Skeletal muscle membrane vesicles, prepared by differential centrifugation of muscle tissue homogenates obtained from the horses, were characterized for sarcoplasmic reticulum (SR) activities, including the Ca2+ release rate for the ryanodine receptor-Ca2+ release channel, [3H]ryanodine binding activities, and rate of SR Ca2+-ATPase activity and its activation by Ca2+. RESULTS: Time course of SR Ca2+-induced Ca2+ release and [3H]ryanodine binding to the ryanodine receptor after incubation with varying concentrations of ryanodine, caffeine, and ionized calcium did not differ between muscle membranes obtained from control and RER horses. Furthermore, the maximal rate of SR Ca2+-ATPase activity and its affinity for Ca2+ did not differ between muscle membranes from control horses and horses with RER. CONCLUSIONS AND CLINICAL RELEVANCE: Despite clinical and physiologic similarities between RER and MH, we concluded that RER in Thoroughbreds does not resemble the SR ryanodine receptor defect responsible for MH and may represent a novel defect in muscle excitation-contraction coupling, calcium regulation, or contractility.


Assuntos
Cálcio/fisiologia , Doenças dos Cavalos/fisiopatologia , Músculo Esquelético/fisiopatologia , Rabdomiólise/veterinária , Animais , Biópsia/veterinária , Cafeína/química , Cálcio/análise , Cálcio/química , ATPases Transportadoras de Cálcio/análise , Relação Dose-Resposta a Droga , Feminino , Doenças dos Cavalos/etiologia , Cavalos , Masculino , Esforço Físico , Recidiva , Rabdomiólise/etiologia , Rabdomiólise/fisiopatologia , Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Retículo Sarcoplasmático/fisiologia , Contagem de Cintilação/veterinária
16.
J Gen Physiol ; 113(3): 469-89, 1999 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10051521

RESUMO

In cardiac muscle, release of activator calcium from the sarcoplasmic reticulum occurs by calcium- induced calcium release through ryanodine receptors (RyRs), which are clustered in a dense, regular, two-dimensional lattice array at the diad junction. We simulated numerically the stochastic dynamics of RyRs and L-type sarcolemmal calcium channels interacting via calcium nano-domains in the junctional cleft. Four putative RyR gating schemes based on single-channel measurements in lipid bilayers all failed to give stable excitation-contraction coupling, due either to insufficiently strong inactivation to terminate locally regenerative calcium-induced calcium release or insufficient cooperativity to discriminate against RyR activation by background calcium. If the ryanodine receptor was represented, instead, by a phenomenological four-state gating scheme, with channel opening resulting from simultaneous binding of two Ca2+ ions, and either calcium-dependent or activation-linked inactivation, the simulations gave a good semiquantitative accounting for the macroscopic features of excitation-contraction coupling. It was possible to restore stability to a model based on a bilayer-derived gating scheme, by introducing allosteric interactions between nearest-neighbor RyRs so as to stabilize the inactivated state and produce cooperativity among calcium binding sites on different RyRs. Such allosteric coupling between RyRs may be a function of the foot process and lattice array, explaining their conservation during evolution.


Assuntos
Coração/fisiologia , Contração Miocárdica/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Algoritmos , Animais , Canais de Cálcio/fisiologia , Canais de Cálcio Tipo L , Simulação por Computador , Metabolismo Energético/fisiologia , Ativação do Canal Iônico/fisiologia , Modelos Biológicos , Método de Monte Carlo , Proteínas Musculares/fisiologia , Ratos , Retículo Sarcoplasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA