Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.949
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Sci Total Environ ; 944: 173640, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38825200

RESUMO

Formaldehyde, a human carcinogen, is formulated into building materials in the U.S. and worldwide. We used literature information and mass balances to obtain order-of-magnitude estimates of formaldehyde inventories in U.S. residential buildings as well as associated exposures, excess morbidity, and healthcare costs along with other economic ramifications. Use of formaldehyde in building materials dates to the 1940s and continues today unabated, despite its international classification in 2004 as a human carcinogen. Global production of formaldehyde was about 32 million metric tons (MMT) in 2006. In the U.S., 5.7 ± 0.05 to 7.4 ± 0.125 MMT of formaldehyde were produced annually from 2006 to 2022, with 65 ± 5 % of this mass (3.7 ± 0.03 to 4.8 ± 0.08 MMT) entering building materials. For a typical U.S. residential building constructed in 2022, we determined an average total mass of formaldehyde containing chemicals of 48.2 ± 10.1 kg, equivalent to 207 ± 40 g of neat formaldehyde per housing unit. When extrapolated to the entire U.S. housing stock, this equates to 29,800 ± 5760 metric tons of neat formaldehyde. If the health threshold in indoor air of 0.1 mg/m3 is never surpassed in a residential building, safe venting of embedded formaldehyde would take years. Using reported indoor air exceedances, up to 645 ± 33 excess cancer cases may occur U.S. nationwide annually generating up to US$65 M in cancer treatment costs alone, not counting ~16,000 ± 1000 disability adjusted life-years. Other documents showed health effects of formaldehyde exist, but could not be quantified reliably, including sick building syndrome outcomes such as headache, asthma, and various respiratory illnesses. Opportunities to improve indoor air exposure assessments are discussed with special emphasis on monitoring of building wastewater. Safer alternatives to formaldehyde in building products exist and are recommended for future use.


Assuntos
Poluição do Ar em Ambientes Fechados , Formaldeído , Formaldeído/análise , Humanos , Estados Unidos , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Habitação , Custos de Cuidados de Saúde , Carcinógenos/análise , Materiais de Construção , Exposição Ambiental/estatística & dados numéricos
2.
Sci Total Environ ; 946: 174331, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38945247

RESUMO

Mosques are important places for Muslims where they perform their prayers. The congregators are exposed to hazardous pollutants such as polycyclic aromatic hydrocarbons (PAHs) associated with dust. However, studies on PAHs exposure in religious places are scarce. Air-condition filter (ACF) dust can correspond to air quality to a certain extent, since dust particles derived from indoor and outdoor places stick to it. Therefore, the present study aimed to evaluate the 16 EPA PAHs in ACF dust from mosques to determine their levels, profiles, sources and risks. Average Σ16 PAHs concentrations were 1039, 1527, 2284 and 5208 ng/g in AC filter dust from mosques in residential (RM), suburban (SM), urban (UM) and car repair workshop (CRWM), respectively, and the differences were statistically significant (p < 0.001). Based on the molecular diagnostic PAH ratios, PAHs in mosques dust is emitted from local incomplete fuel combustion, as well as complete fossil fuels combustion sources (pyrogenic), petroleum spills, crude and fuel oil, traffic emissions, and other possible sources of industrial emissions in different functional areas. The incremental lifetime cancer risks (ILCRs) values for children and adults across the different types of mosques follow the order: CRWM > UM > SM > RM. ILCRs values for both children and adults were found in order: dermal contact > ingestion > inhalation. The cancer risk levels via ingestion for children were relatively higher than the adults. The values of cancer risk for children and adults via dermal contact and ingestion (except in RM) were categorized in the 'potentially high risk' category (> 10-4). The mean values of total cancer risks (CR) for children (5.74 × 10-3) and adults (5.07 × 10-3) in mosques also exceeded the accepted threat value (>10-4). Finally, it is recommended that regular and frequent monitoring of PAHs should be carried out in mosques to improve the quality and maintain the health of congregators around the globe.


Assuntos
Poluição do Ar em Ambientes Fechados , Poeira , Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/análise , Arábia Saudita , Poeira/análise , Humanos , Medição de Risco , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Exposição Ambiental/estatística & dados numéricos , Carcinógenos/análise
3.
Sci Rep ; 14(1): 12006, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796506

RESUMO

Formaldehyde, a known carcinogenic compound, is commonly used in various medical settings. The objective of this study was to assess the carcinogenic and non-carcinogenic risks associated with occupational exposure to formaldehyde. This study was conducted in the pathology labs of four hospitals in Tehran. Cancer and non-cancer risks were evaluated using the quantitative risk assessment method proposed by the United States environmental protection agency (USEPA), along with its provided database known as the integrated risk information system (IRIS). Respiratory symptoms were assessed using the American thoracic society (ATS) questionnaire. The results indicated that 91.23% of exposure levels in occupational groups exceed the NIOSH standard of 0.016 ppm. Regarding carcinogenic risk, 41.03% of all the studied subjects were in the definite carcinogenic risk range (LCR > 10-4), 23.08% were in the possible carcinogenic risk range (10-5 < LCR < 10-4), and 35.90% were in the negligible risk range (LCR < 10-6). The highest index of occupational carcinogenesis was observed in the group of lab technicians with a risk number of 3.7 × 10-4, followed by pathologists with a risk number of 1.7 × 10-4. Furthermore, 23.08% of the studied subjects were within the permitted health risk range (HQ < 1.0), while 76.92% were within the unhealthy risk range (HQ > 1.0). Overall, the findings revealed significantly higher carcinogenic and non-carcinogenic risks among lab technicians and pathologists. Therefore, it is imperative to implement control measures across various hospital departments to mitigate occupational formaldehyde exposure levels proactively. These findings can be valuable for policymakers in the health sector, aiding in the elimination or reduction of airborne formaldehyde exposure in work environments.


Assuntos
Carcinógenos , Formaldeído , Exposição Ocupacional , Formaldeído/efeitos adversos , Formaldeído/toxicidade , Formaldeído/análise , Humanos , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Irã (Geográfico)/epidemiologia , Medição de Risco , Carcinógenos/toxicidade , Carcinógenos/análise , Masculino , Feminino , Adulto , Hospitais , Pessoa de Meia-Idade , Inquéritos e Questionários , Laboratórios Hospitalares
4.
Environ Sci Pollut Res Int ; 31(24): 35038-35054, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720126

RESUMO

In the present study, Brassica napus, a food plant, was grown for phytoextraction of selected heavy metals (HMs) from marble industry wastewater (WW) under oxalic acid (OA) amendment. The hydroponic experiment was performed under different combination of WW with OA in complete randomized design. Photosynthetic pigments and growth reduction were observed in plants treated with WW alone amendments. The combination of OA in combination with WW significantly enhanced the growth of plants along with antioxidant enzyme activities compared with WW-treated-only plants. HM stress alone enhanced the hydrogen peroxide, electrolyte leakage, and malondialdehyde contents in plants. OA-treated plants were observed with enhanced accumulation of cadmium (Cd), copper (Cu), and lead (Pb) concentrations in the roots and shoots of B. napus. The maximum concentration and accumulation of Cd in root, stem, and leaves was increased by 25%, 30%, and 30%; Cu by 42%, 24%, and 17%; and Pb by 45%, 24%, and 43%, respectively, under OA amendment. Average daily intake and hazard quotient (HQ) were calculated for males, females, and children in two phases of treatments in phytoremediation of metals before and after accumulation into B. napus leaves and stems. HQ of metals in the leaves and stem was < 1 before metal accumulation, whereas > 1 was observed after HM accumulation for all males, females, and children. Similarly, the hazard index of the three study types was found > 1. It was observed that the estimated excess lifetime cancer risk was of grade VII (very high risk), not within the accepted range of 1 × 10-4 to 1 × 10-6. Based on the present study, the increased levels of HMs up to carcinogenicity was observed in the B. napus which is not safe to be consumed later as food.


Assuntos
Biodegradação Ambiental , Brassica napus , Ácido Oxálico , Águas Residuárias , Brassica napus/metabolismo , Águas Residuárias/química , Metais Pesados , Medição de Risco , Carcinógenos
5.
Chem Res Toxicol ; 37(6): 1011-1022, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38804898

RESUMO

Nitrosamines are in the cohort of concern (CoC) as determined by regulatory guidance. CoC compounds are considered highly potent carcinogens that need to be limited below the threshold of toxicological concern, 1.5 µg/day. Nitrosamines like NDMA and NDEA require strict control, while novel nitrosamine drug substance-related impurities (NDSRIs) may or may not be characterized as potent carcinogens. A risk assessment based on the structural features of NDSRIs is important in order to predict potency because they lack substance-specific carcinogenicity. Herein, we present a quantum mechanical (QM)-based analysis on structurally diverse sets of nitrosamines to better understand how structure influences the reactivity that could result in carcinogenicity. We describe the potency trend through activation energies corresponding to α-hydroxylation, aldehyde formation, diazonium intermediate formation, reaction with DNA base, and hydrolysis reactions, and other probable metabolic pathways associated with the carcinogenicity of nitrosamines. We evaluated activation energies for selected cases such as N-nitroso pyrrolidines, N-nitroso piperidines, N-nitroso piperazines, N-nitroso morpholines, N-nitroso thiomorpholine, N-methyl nitroso aromatic, fluorine-substituted nitrosamines, and substituted aliphatic nitrosamines. We compare these results to the recent framework of the carcinogenic potency characterization approach (CPCA) proposed by health authorities which is meant to give guidance on acceptable intakes (AI) for NDSRIs lacking substance-specific carcinogenicity data. We show examples where QM modeling and CPCA are aligned and examples where CPCA both underestimates and overestimates the AI. In cases where CPCA predicts high potency for NDSRIs, QM modeling can help better estimate an AI. Our results suggest that a combined mechanistic understanding of α-hydroxylation, aldehyde formation, hydrolysis, and reaction with DNA bases could help identify the structural features that underpin the potency of nitrosamines. We anticipate this work will be a valuable addition to the CPCA and provide a more analytical way to estimate AI for novel NDSRIs.


Assuntos
Nitrosaminas , Teoria Quântica , Nitrosaminas/química , Carcinógenos/química , Carcinógenos/toxicidade , Estrutura Molecular , Humanos
6.
Arch Toxicol ; 98(8): 2463-2485, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38811392

RESUMO

A modular strategy is described for the testing and assessment (MoSt) of non-genotoxic carcinogenicity (NGTxC) that is suitable for regulatory applications. It utilizes and builds upon work conducted by the OECD expert group on NGTxC. The approach integrates relevant test methods from the molecular- to cellular- and further to tissue level, many of which have been recently reviewed. Six progressive modules are included in the strategy. Advice is provided for the iterative selection of the next appropriate test method within each step of the strategy. Assessment is completed by a weight of evidence conclusion, which integrates the different streams of modular information. The assessment method gives higher weight to findings that are mechanistically linked with biological relevance to carcinogenesis. With a focus on EU-REACH, and pending upon successful test method validation and acceptance, this will also enable the MoSt for NGTxC to be applied for regulatory purposes across different regulatory jurisdictions.


Assuntos
Testes de Carcinogenicidade , Carcinógenos , Testes de Carcinogenicidade/métodos , Carcinógenos/toxicidade , Animais , Humanos , Medição de Risco/métodos
7.
Environ Geochem Health ; 46(5): 165, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592368

RESUMO

Soil pollution around Pb-Zn smelters has attracted widespread attention around the world. In this study, we compiled a database of eight potentially toxic elements (PTEs) Pb, Zn, Cd, As, Cr, Ni, Cu, and Mn in the soil of Pb-Zn smelting areas by screening the published research papers from 2000 to 2023. The pollution assessment and risk screening of eight PTEs were carried out by geo-accumulation index (Igeo), potential ecological risk index (PERI) and health risk assessment model, and Monte Carlo simulation employed to further evaluate the probabilistic health risks. The results suggested that the mean values of the eight PTEs all exceeded the corresponding values in the upper crust, and more than 60% of the study sites had serious Pb and Cd pollution (Igeo > 4), with Brazil, Belgium, China, France and Slovenia having higher levels of pollution than other regions. Besides, PTEs in smelting area caused serious ecological risk (PERI = 10912.12), in which Cd was the main contributor to PREI (86.02%). The average hazard index (HI) of the eight PTEs for adults and children was 7.19 and 9.73, respectively, and the average value of total carcinogenic risk (TCR) was 4.20 × 10-3 and 8.05 × 10-4, respectively. Pb and As are the main contributors to non-carcinogenic risk, while Cu and As are the main contributors to carcinogenic risk. The probability of non-carcinogenic risk in adults and children was 84.05% and 97.57%, while carcinogenic risk was 92.56% and 79.73%, respectively. In summary, there are high ecological and health risks of PTEs in the soil of Pb-Zn smelting areas, and Pb, Cd, As and Cu are the key elements that cause contamination and risk, which need to be paid attention to and controlled. This study is expected to provide guidance for soil remediation in Pb-Zn smelting areas.


Assuntos
Cádmio , Chumbo , Adulto , Criança , Humanos , Chumbo/toxicidade , Carcinogênese , Carcinógenos , Poluição Ambiental , Probabilidade , Medição de Risco , Solo , Zinco
8.
J Trace Elem Med Biol ; 84: 127454, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38669815

RESUMO

BACKGROUND: The perennial evergreen tea (Camellia sinensis) plant is one of the most popular nonalcoholic drinks in the world. Fertilizers and industrial, agricultural, and municipal activities are the usual drivers of soil contamination, contaminating tea plants with potentially toxic elements (PTEs). These elements might potentially accumulate to larger amounts in the leaves of plants after being taken up from the soil. Thus, frequent monitoring of these elements is critically important. METHODS: The present study intended to determine PTEs (Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb) in both tea leaves and infusions using ICP-OES. Various multivariate data analysis methods such as principal component analysis (PCA) and hierarchical cluster analysis (HCA) were employed to elucidate the potential sources of PTEs contamination, whether from anthropogenic activities or natural origins. Additionally, Pearson's correlation coefficient (PCC) was calculated to assess the relationships between the variables under study. RESULTS: The mean contents (mg/L) of all studied elements in tea infusions decreased in order Mn (150.59 ±â€¯1.66) > Fe (11.39 ±â€¯0.99) > Zn (6.62 ±â€¯0.89) > Cu (5.86 ±â€¯0.62) > Co (3.25 ±â€¯0.64) > Ni (1.69 ±â€¯0.23) > Pb (1.08 ±â€¯0.16) > Cr (0.57 ±â€¯0.09) > Cd (0.46 ±â€¯0.09) > Al (0.05 ±â€¯0.008), indicating that Mn exhibits the highest abundance. The mean concentration trend in tea leaf samples mirrored that of infusions, albeit with higher concentrations of PTEs in the former. The tolerable dietary intake (TDI) value for Ni and provisional tolerable monthly intake (PTMI) value for Cd surpassed the standards set by the WHO and EFSA. Calculated hazard index (HI < 1) and cumulative cancer risk (CCR) values suggest negligible exposure risk. CONCLUSION: Elevated levels of PTEs in commonly consumed tea products concern the public and regulatory agencies.


Assuntos
Chá , Chá/química , Análise Multivariada , Análise de Componente Principal , Carcinógenos/análise , Oligoelementos/análise , Humanos , Folhas de Planta/química , Camellia sinensis/química
9.
Toxicology ; 505: 153811, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653375

RESUMO

E-waste -the aftermath of large amount of electrical and electronic equipment ferried into Africa from which Nigeria receives a significant chunk, is composed of components known to be hazardous to health. Composition of series of heavy metals (HMs) in e-waste is traceable to many health conditions including cancer which is hitherto incompletely understood. This study harmonizes primary data on HMs from e-waste in different Nigerian environmental media including the air, soil, surface dust, water and plant. We estimated the possible health implications, single and aggregative soil and water pollution indices both in adult and children categories, carcinogenic and non-carcinogenic risks secondary to HM exposure and mapped out the possible mechanism of carcinogenesis. Analysis showed that soil, water, surface dust and plant matrices in Nigerian environment are variedly but considerably contaminated with combination of HMs. The significantly high values of the hazard quotient and hazard index of both water and surface dust matrices are indicative of adverse health effect of the non-carcinogenic risk. The highest HQ is generated by Pb and Cr through dermal exposure to soil and surface dust with mean values of 1718.48, 1146.14, 1362.10 and 1794.61 respectively among Nigerian children followed by the oral exposure. This pattern of observation is similar to that obtained for adult category. HI due to Pb and Cr in soil constitutes the highest HI (2.05E+03 and 1.18E+03 respectively) followed by surface dust. However, this study precipitates the observation that children are more at health risk than adults in contaminated environment. Carcinogenic risk also follows the same pattern of expression in the Nigerian environment. We conclude that exposure to e-waste poses significant carcinogenic and non-carcinogenic health risks and the induction of toxicity may be mediated via DNA damage, oxidative stress and inflammatory/immune cells dysfunction in Nigerian environment.


Assuntos
Resíduo Eletrônico , Metais Pesados , Humanos , Carcinógenos/toxicidade , Carcinógenos/análise , Resíduo Eletrônico/efeitos adversos , Resíduo Eletrônico/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Poluentes Ambientais/toxicidade , Metais Pesados/análise , Metais Pesados/toxicidade , Metais Pesados/efeitos adversos , Nigéria , Medição de Risco , Gerenciamento de Resíduos
10.
Am J Manag Care ; 30(4): 161-168, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38603530

RESUMO

OBJECTIVES: Generic medications represent 90% of prescriptions in the US market and provide a tremendous financial benefit for patients. Recently, multiple generic drugs have been recalled due to the presence of carcinogens, predominantly N-nitrosodimethylamine (NDMA), including an extensive recall of extended-release (ER) metformin products in 2020. STUDY DESIGN: Primary pharmaceutical quality testing and database analysis. METHODS: We tested marketed metformin immediate-release (IR) and ER tablets from a wide sample of generic manufacturers for the presence of carcinogenic impurities NDMA and N,N-dimethylformamide (DMF). We examined the association of level of impurity with drug price and the impact of the 2020 FDA recalls on unit price and prescription fill rate. RESULTS: Postrecall NDMA levels were significantly lower in metformin ER samples (standardized mean difference = -2.0; P = .01); however, we found continued presence of carcinogens above the FDA threshold in 2 of 30 IR samples (6.67%). Overall, the presence of contaminant levels was not significantly associated with price for either IR (NDMA: R2 = 0.142; P = .981; DMF: R2 = 0.382; P = .436) or ER (NDMA: R2 = 0.124; P = .142; DMF: R2 = 0.199; P = .073) samples. Despite recalls, metformin ER prescription fills increased by 8.9% while unit price decreased by 19.61% (P < .05). CONCLUSIONS: Recalls of metformin ER medications were effective in lowering NDMA levels below the FDA threshold; however, some samples of generic metformin still contained carcinogens even after FDA-announced recalls. The absence of any correlation with price indicates that potentially safer products are available on the market for the same price as poorer-quality products.


Assuntos
Metformina , Humanos , Metformina/uso terapêutico , Medicamentos Genéricos , Prescrições , Dimetilnitrosamina/análise , Carcinógenos
11.
Toxicol Sci ; 199(2): 172-193, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38547404

RESUMO

Formaldehyde is recognized as carcinogenic for the portal of entry sites, though conclusions are mixed regarding lymphohematopoietic (LHP) cancers. This systematic review assesses the likelihood of a causal relationship between formaldehyde and LHP cancers by integrating components recommended by NASEM. Four experimental rodent bioassays and 16 observational studies in humans were included following the implementation of the a priori protocol. All studies were assessed for risk of bias (RoB), and meta-analyses were conducted on epidemiological studies, followed by a structured assessment of causation based on GRADE and Bradford Hill. RoB analysis identified systemic limitations precluding confidence in the epidemiological evidence due to inadequate characterization of formaldehyde exposure and a failure to adequately adjust for confounders or effect modifiers, thus suggesting that effect estimates are likely to be impacted by systemic bias. Mixed findings were reported in individual studies; meta-analyses did not identify significant associations between formaldehyde inhalation (when measured as ever/never exposure) and LHP outcomes, with meta-SMRs ranging from 0.50 to 1.51, depending on LHP subtype. No associations with LHP-related lesions were reported in reliable animal bioassays. No biologically plausible explanation linking the inhalation of FA and LHP was identified, supported primarily by the lack of systemic distribution and in vivo genotoxicity. In conclusion, the inconsistent associations reported in a subset of the evidence were not considered causal when integrated with the totality of the epidemiological evidence, toxicological data, and considerations of biological plausibility. The impact of systemic biases identified herein could be quantitatively assessed to better inform causality and use in risk assessment.


Assuntos
Formaldeído , Exposição por Inalação , Formaldeído/toxicidade , Humanos , Animais , Exposição por Inalação/efeitos adversos , Neoplasias Hematológicas/induzido quimicamente , Neoplasias Hematológicas/epidemiologia , Medição de Risco , Carcinógenos/toxicidade
12.
Sci Total Environ ; 926: 171747, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38531460

RESUMO

Conventional monitoring and mapping approaches are laborious, expensive, and time-consuming because they need a large number of data and consequently extensive sampling and experimental operations. Therefore, due to the growing concern about the potential of contamination of soils and agricultural products with heavy metals (HMs), a field experiment was conducted on 77 farm lands in an area of 2300 ha in the southeast of Shiraz (Iran) to investigate the source of metal contamination in the soils and vegetables and to model spatial distribution of HMs (iron, Fe; manganese, Mn; copper, Cu; zinc, Zn; cadmium, Cd; nickel, Ni, and lead, Pb) over the region using geographic information system (GIS) and geostatistical (Ordinary Kriging, OK) approaches and compare the results with deterministic approaches (Inverse Distance Weighting, IDW with different weighting power). Furthermore, some ecological and health risks indices including Pollution index (PI), Nemerow integrated pollution index (NIPI), pollution load index (PLI), degree of contamination (Cdeg), modified contamination degree (mCd), PIaverage and PIvector for soil quality, multi-element contamination (MEC), the probability of toxicity (MERMQ), the potential ecological index (RI), total hazard index (THI) and total carcinogenic risk index (TCR) based on ingestion, inhalation, and dermal exposure pathways for adults and children respectively for analyzing the noncarcinogenic and carcinogenic risks were calculated. Experimental semivariogram of the mentioned HMs were calculated and theoretical models (i.e., exponential, spherical, Gaussian, and linear models) were fitted in order to model their spatial structures and to investigate the most representative models. Moreover, principal component analysis (PCA) and cluster analysis (CA) were used to identify sources of HMs in the soils. Results showed that IDW method was more efficient than the OK approach to estimate the properties and HMs contents in the soils and plants. The estimated daily intake of metals (DIM) values of Pb and Ni exceeded their safe limits. In addition, Cd was the main element responsible for ecological risk. The PIave and PIvector indices showed that soil quality in the study area is not suitable. According to mCd values, the soils classified as ultra-high contaminated for Cu and Cd, extremely high for Zn and Pb, very high, high, and very low degree of contamination for Ni, Mn, and Fe, respectively. 36, 60, and 4 % of the sampling sites had high, medium, and low risk levels with 49, 21, and 9 % probability of toxicity, respectively. The maximum health risk index (HRI) value of 20.42 with extremely high risk for children was obtained for Ni and the HI for adults and children were 0.22 and 1.55, respectively. The THI values of Pb and Cd were the highest compared to the other HMs studied, revealing a possible non-cancer risk in children associated with exposure to these metals. The routes of exposure with the greatest influence on the THI and TCR indices were in the order of ingestion > inhalation > dermal. Therefore, ingestion, as the main route of exposure, is the route of greatest contribution to health risks. PCA analysis revealed that Fe, Mn, Cu, and Ni may originate from natural sources, while Fe was appeared to be controlled by fertilizer, and Cu primarily coming from pesticide, while Cd and Pb were mainly associated with the anthropogenic contamination, atmospheric depositions, and terrific in the urban soils. While, Zn mainly originated from fertilization. Findings are vital for developing remediation approaches for controlling the contaminants distribution as well as for monitoring and mapping the quality and health of soil resources.


Assuntos
Metais Pesados , Poluentes do Solo , Adulto , Criança , Humanos , Verduras , Sistemas de Informação Geográfica , Monitoramento Ambiental , Cádmio/análise , Cobre/análise , Chumbo/análise , Medição de Risco , Metais Pesados/análise , Solo/química , Carcinógenos/análise , Receptores de Antígenos de Linfócitos T , Poluentes do Solo/análise , China
13.
Huan Jing Ke Xue ; 45(3): 1361-1370, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471852

RESUMO

Atmospheric PM2.5 samples were collected in Heze, Shandong Province, from a total of three sampling sites at Heze College, Huarun Pharmacy, and a wastewater treatment plant between October 15, 2017 and January 31, 2018, to determine the concentrations of 21 metal elements in PM2.5 using inductively coupled plasma mass spectrometry (ICP-MS). The degree of elemental enrichment was also discussed, the health risks and potential heavy metal ecological risks were assessed. The results showed that ρ (PM2.5) ranged from 26.7 to 284.1 µg·m-3 at the three sampling sites during the sampling period, and the concentration values did not differ significantly, all of which were at high pollution levels. The highest concentrations of K were found in the three sampling sites, accounting for 31.03%, 39.47%, and 38.43% of the total, respectively, mainly due to the high contribution of biomass burning in autumn and winter in Heze, a large agricultural city. The highest concentrations of Zn, 89.70, 84.21, and 67.68 ng·m-3, were found in the trace elements at the three sampling sites, respectively. The enrichment factor results showed that the enrichment factor values of Zn, Pb, Sn, Sb, Cd, and Se were higher than 100, among which the enrichment factors of Cd and Se were higher than 2 000 and 4 000, respectively, which were significantly influenced by anthropogenic activities and might have been related to industrial production, metal smelting, road sources, and coal combustion emissions. The health risk results showed that there was some potential non-carcinogenic risk (HQ>0.1 for children and adults) for As and a combined potential non-carcinogenic risk (HI>0.1) and some potential carcinogenic risk (CRT>1×10-6) for both children and adults at the three sampling sites. There was a more significant carcinogenic risk (CRT>1×10-4) for adults at the wastewater treatment plant, and the slightly higher carcinogenic risk for adults than that for children may have been related to the longer outdoor activity and higher PM2.5 exposure for adults. The elements with the highest potential ecological risk values were Cd, As, and Pb, with Cd exhibiting a very high potential ecological risk that should be taken seriously. All three sampling sites showed a very high combined potential ecological risk, with the intensity spatially expressed as Heze College>Huarun Pharmacy>wastewater treatment plant.


Assuntos
Cádmio , Metais Pesados , Criança , Adulto , Humanos , Cádmio/análise , Chumbo/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Carcinógenos/análise , Medição de Risco , Material Particulado/análise , China , Poeira/análise
14.
Huan Jing Ke Xue ; 45(2): 1049-1057, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471942

RESUMO

Risk assessment is a critical part of risk management for contaminated sites. However, in the specific management practice of As-contaminated sites, it is difficult to obtain realistic health risks for contaminated sites based on the total amount of pollutants and determined values of the model, thus preventing the control requirements of later remediation to be met. An increasing number of studies have recently been conducting risk assessments by considering bioavailability, modification parameters, and combined probabilistic models. To improve the accuracy of risk assessment results, taking a large As-contaminated site as a case, 432 sampling sites were set up and collected at different depths to analyze the level and distribution characteristics of As pollution, and probabilistic risk assessment was conducted with the modification of model parameters through literature research and Monte Carlo simulation. Then, the impact of traditional methods and probabilistic methods on health risk assessment was explored in comparison. The results indicated that ω(As) in the top soil of the study area ranged from 2.70-97.0 mg·kg-1, with a spatial variation coefficient of 0.61 and weaker spatial continuity. The carcinogenic risk and hazard index obtained by the traditional risk assessment method were 2.12E-4 and 8.36, respectively, which obviously overestimated the actual risk level and were not conductive to the refined management of As-contaminated sites. Combined with modification of model parameters and probabilistic risk assessment, the non-carcinogenic risk for adults and children was found to be at an acceptable level, and the carcinogenic risk was reduced by nearly an order of magnitude compared to that in the conventional method. Considering the relative biological effectiveness (RBA) of As, the 95% quantile of the total carcinogenic risk was 1.24E-5, a reduction of up to 36.41% compared to the uncorrected corresponding risk value of 1.95E-5. The carcinogenic risk of soil As for adults and children in the study area exceeded acceptable risk levels 1E-6, with oral ingestion of soil being the primary route of exposure. In addition, the results of the sensitivity analysis of the parameters showed that As concentration, daily oral ingestion rate of soils, and exposure duration of children had relatively larger effects for health risks. This work will provide a methodological and theoretical basis for achieving accurate risk assessment of As-contaminated sites and provide concepts for refined risk management.


Assuntos
Arsênio , Metais Pesados , Poluentes do Solo , Adulto , Criança , Humanos , Arsênio/análise , Método de Monte Carlo , Medição de Risco/métodos , Poluição Ambiental/análise , Solo , Carcinógenos/análise , Poluentes do Solo/análise , Monitoramento Ambiental , China , Metais Pesados/análise
15.
Environ Geochem Health ; 46(3): 103, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436752

RESUMO

In this study, we focused on soil contaminated by polycyclic aromatic hydrocarbons (PAHs) at typical coking-polluted sites in Beijing, conducted research on enhanced PAH bioremediation and methods to evaluate remediation effects based on toxicity testing, and examined changes in pollutant concentrations during ozone preoxidation coupled with biodegradation in test soil samples. The toxicity of mixed PAHs in soil was directly evaluated using the Ames test, and the correlation between mixed PAH mutagenicity and benzo(a)pyrene (BaP) toxicity was investigated in an effort to establish a carcinogenic risk assessment model based on biological toxicity tests to evaluate remediation effects on PAH-contaminated soil. This study provides a theoretical and methodological foundation for evaluating the effect of bioremediation on PAH-contaminated soil at industrially contaminated sites. The results revealed that the removal rate of PAHs after 5 min of O3 preoxidation and 4 weeks of soil reaction with saponin surfactants and medium was 83.22%. The soil PAH extract obtained after remediation had a positive effect on the TA98 strain at a dose of 2000 µg·dish-1, and the carcinogenic risk based on the Ames toxicity test was 8.98 times greater than that calculated by conventional carcinogenic PAH toxicity parameters. The total carcinogenic risk of the remediated soil samples was approximately one order of magnitude less than that of the original soil samples.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Pequim , Biodegradação Ambiental , Carcinogênese , Carcinógenos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Solo , Testes de Toxicidade
16.
Sci Rep ; 14(1): 7552, 2024 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555404

RESUMO

Asbestos is widely used in construction, manufacturing, and other common industrial fields. Human activities such as mining, processing, and transportation can release heavy metals from asbestos into the surrounding soil environment, posing a health hazard to the mining area's environment and its surrounding residents. The purpose of the present study was to determine the extent of ecological and human health damage caused by asbestos pollution, as well as the primary contributors to the contamination, by examining a large asbestos mine and the surrounding soil in China. The level of heavy metal pollution in soil and sources were analyzed using methods such as the geo-accumulation index (Igeo), potential ecological risk index (RI), and positive matrix factorization (PMF) model. A Monte Carlo simulation-based health risk model was employed to assess the health risks of heavy metals in the study area's soil to human beings. The results showed that the concentrations of As, Pb, Cr, Cu, and Ni in the soil were 1.74, 0.13, 13.31, 0.33, and 33.37 times higher than the local soil background values, respectively. The Igeo assessment indicated significant accumulation effects for Ni, Cr, and As. The RI evaluation revealed extremely high comprehensive ecological risks (RI ≥ 444) in the vicinity of the waste residue heap and beneficiation area, with Ni exhibiting strong individual potential ecological risk (Eir ≥ 320). The soil health risk assessment demonstrated that As and Cr posed carcinogenic risks to adults, with mean carcinogenic indices (CR) of 1.56E - 05 and 4.14E - 06, respectively. As, Cr, and Cd posed carcinogenic risks to children, with mean CRs of 1.08E - 04, 1.61E - 05, and 2.68E - 06, respectively. Cr also posed certain non-carcinogenic risks to both adults and children. The PMF model identified asbestos contamination as the primary source of heavy metals in the soil surrounding the asbestos mining area, contributing to 79.0%. According to this study, it is recommended that management exercise oversight and regulation over the concentrations of Ni, Cr, Cd, and As in the soil adjacent to asbestos mines, establish a designated control zone to restrict population activities, and locate residential zones at a safe distance from the asbestos mine production zone.


Assuntos
Amianto , Metais Pesados , Poluentes do Solo , Humanos , Adulto , Criança , Solo/química , Monitoramento Ambiental/métodos , Cádmio/análise , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Amianto/toxicidade , Carcinógenos/análise , Metais Pesados/toxicidade , Metais Pesados/análise , China , Medição de Risco
17.
Environ Geochem Health ; 46(4): 125, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483680

RESUMO

Sydney estuary catchment supports the largest city in Australia and provides essential eco-social and environmental services; however, the region has been influenced by extensive anthropogenic modification. Soil metal concentrations in the catchment had been studied previously; however, the current investigation was designed to determine the risk posed by these contaminants to human health. Soil metal concentrations were higher than observed in most global capitals and increased substantially in the south and south-east of the catchment and close to the central business district. Road-side soils and road dust contained the highest concentration of metals in the catchment. Lead in catchment soils was closely related to traffic density and sourced from the historic use of Pb in petrol. A human health assessment indicated that soil Cd, Ni and Zn posed no non-carcinogenic risk (NCR), or carcinogenic risk (CR) for children, or adults in Sydney estuary catchment and that Cu and Cr may pose minor NCR for children. Vehicle-related Pb raised the greatest human health risk in catchment soils and may pose NCR at 32% and 4.3% of sites for children and adults, respectively. Inconsistent analytical techniques used in CR and NCR evaluations produce incomparable assessments and a consistent` methodology is suggested to improve interpretation. Human health risk may well be higher than commonly calculated due to pollutants present in urban soil not being included in assessments.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Criança , Adulto , Monitoramento Ambiental/métodos , Metais Pesados/toxicidade , Metais Pesados/análise , Estuários , Chumbo , Solo , Austrália , Carcinógenos/análise , Medição de Risco/métodos , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , China
18.
Environ Sci Pollut Res Int ; 31(11): 17275-17288, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340303

RESUMO

Minimal research exists on polychlorinated biphenyl (PCB) exposure from traditional Chinese medicines (TCMs), despite their significant contributions to domestic and international health protection. This study is the first to investigate the levels, profiles, and health risks of PCB residue in Pheretima, a typical TCM produced from earthworm. Seventy-seven Pheretima samples from different regions of China were analyzed for 45 PCB congeners. PCBs were found in all samples exhibiting species-dependent discrepancies. ∑45PCBs was ranging from 0.532 to 25.2 µg/kg (mean 4.46 µg/kg), with CB-11 being the most abundant congener contributing 71.8% ± 10.8% to ∑45PCBs, followed by CB-47, which were all non-Aroclor congeners called unintentionally produced PCBs (UP-PCBs). The average estimated daily intake of ∑45PCBs, ∑7ID-PCBs (indicative polychlorinated biphenyls), and CB-11 were 0.71, 0.04, and 0.51 ng/kg bw/d, respectively. The ∑HQ of PCBs in Pheretima samples was 2.97 × 10-4-2.46 × 10-2 (mean 2.77 × 10-3, 95th 4.21 × 10-3), while the ∑RQ ranged from 1.19 × 10-8 to 2.88 × 10-6 (mean 4.87 × 10-7, 95th 2.31 × 10-6). These findings indicate that Pheretima ingestion does not pose significant non-carcinogenic risks. However, certain individual samples exhibit an acceptable level of potential risks, particularly when considering that PCBs are recognized as endocrine disruptors and classified as probable carcinogens. These results contribute to the safety evaluation of traditional medicines and suggest the potential use of Pheretima as a bioindicator for PCB pollution. It is advisable to monitor UP-PCBs as indicator congeners and gather additional toxicological data.


Assuntos
Oligoquetos , Bifenilos Policlorados , Animais , Bifenilos Policlorados/análise , Carcinógenos , Medição de Risco , China , Medicina Tradicional Chinesa
19.
Sci Total Environ ; 920: 170669, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38316297

RESUMO

Polychlorinated biphenyls (PCBs) are a class of typical persistent organic pollutants (POPs) with carcinogenicity and extensively found in diverse environmental mediums. The Taihu Basin is one of the most economically developed regions in China, and it has also caused a lot of historical legacy and unconscious emissions of PCBs, posing a threat to the health of people in the region. This study counted the concentrations of PCBs in five environmental media (water, soil, air, dust, and food) in the Taihu Basin from 2000 to 2020 and used Monte Carlo simulation to simulate the multi-channel exposure of PCBs in people of different ages (children, teenagers, and adults), and evaluated their noncarcinogenic and carcinogenic health risks. Finally, the human health ambient water quality standards (AWQC) for PCBs were obtained using regional exposure parameters and bioaccumulation factors. The results showed that the pollution of PCBs in the Taihu Basin was relatively serious in China. The concentration of PCBs in dust is higher than other environmental media. And exposure to water and food is the main exposure pathway for PCBs in the population of the region. Besides, PCBs pose no noncarcinogenic risk to people in this region, but their carcinogenic risk to residents exceeds the safety threshold. Among the three population groups, adults have the highest risk of cancer, and prevention measures need to be taken by controlling the intake of related foods and the concentration of PCBs in water. The following human health AWQC values of the PCBs in Taihu Basin is 3.2 × 10-9 mg/L.


Assuntos
Bifenilos Policlorados , Adulto , Adolescente , Criança , Humanos , Bifenilos Policlorados/análise , Qualidade da Água , Monitoramento Ambiental , Carcinógenos/análise , China , Medição de Risco , Poeira
20.
J Hazard Mater ; 468: 133802, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38377909

RESUMO

To investigate the environmental behavior of and carcinogenic risk posed by 16 priority-controlled polycyclic aromatic hydrocarbons (PAHs), soil samples and air samples from the coke oven top were collected in two prototype coking plants (named PF and JD). The PF soils contained more PAHs than the JD soils because the PF plant employed the side-charging technique and had a lower coke oven height. The soils from both plants contained enough PAHs to pose a carcinogenic risk, and this risk was higher in the PF plant. Data were collected on the source characteristic spectrum of stable carbon isotopic composition (δ13C) of PAHs emitted from the coke oven top (δ13C values of -36.02‰ to -32.05‰ for gaseous PAHs and -34.09‰ to -25.28‰ for particulate PAHs), and these data fill a research gap and may be referenced for isotopic-technology-based source apportionment. Diagnostic ratios and isotopic technology revealed that the coking plant soils were mainly influenced by the coking process, followed by vehicle exhaust; the soils near the boundary of each plant were slightly affected by C3 plant burning. For most PAHs [excluding fluoranthene, benzo(k)fluoranthene, indeno(1,2,3-c,d)pyrene, and dibenzo(a,h)anthracene], the dominant migration process was the net volatilization of PAHs from soil to air. In the PF plant, 13C was depleted in gaseous PAHs during volatilization.


Assuntos
Coque , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Isótopos de Carbono/análise , Coque/análise , Carbono/análise , Carcinógenos/análise , China , Medição de Risco , Monitoramento Ambiental , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA