Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nutrients ; 12(4)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316687

RESUMO

Shikonin, a natural plant pigment, is known to have anti-obesity activity and to improve insulin sensitivity. This study aimed to examine the effect of shikonin on hepatic steatosis, focusing on the AMP-activated protein kinase (AMPK) and energy expenditure in Hepa 1-6 cells and in high-fat fed mice. Shikonin increased AMPK phosphorylation in a dose- and time-dependent manner, and inhibition of AMPK with compound C inhibited this activation. In an oleic acid-induced steatosis model in hepatocytes, shikonin suppressed oleic acid-induced lipid accumulation, increased AMPK phosphorylation, suppressed the expression of lipogenic genes, and stimulated fatty acid oxidation-related genes. Shikonin administration for four weeks decreased body weight gain and the accumulation of lipid droplets in the liver of high-fat fed mice. Furthermore, shikonin promoted energy expenditure by activating fatty acid oxidation. In addition, shikonin increased the expression of PPARγ coactivator-1α (PGC-1α), carnitine palmitoyltransferase-1 (CPT1) and other mitochondrial function-related genes. These results suggest that shikonin attenuated a high fat diet-induced nonalcoholic fatty liver disease by stimulating fatty acid oxidation and energy expenditure via AMPK activation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético/efeitos dos fármacos , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Naftoquinonas/farmacologia , Fitoterapia , Animais , Anti-Inflamatórios não Esteroides , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Fígado Gorduroso/etiologia , Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Camundongos , Naftoquinonas/uso terapêutico , Oxirredução/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosforilação/efeitos dos fármacos
2.
Am J Clin Nutr ; 98(3): 648-58, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23902784

RESUMO

BACKGROUND: Previous studies suggested that physical activity energy expenditure (AEE) is a major determinant of dietary fat oxidation, which is a central component of fat metabolism and body weight regulation. OBJECTIVE: We tested this hypothesis by investigating the effect of contrasted physical activity levels on dietary saturated and monounsaturated fatty acid oxidation in relation to insulin sensitivity while controlling energy balance. DESIGN: Sedentary lean men (n = 10) trained for 2 mo according to the current guidelines on physical activity, and active lean men (n = 9) detrained for 1 mo by reducing structured and spontaneous activity. Dietary [d31]palmitate and [1-¹³C]oleate oxidation and incorporation into triglyceride-rich lipoproteins and nonesterified fatty acid, AEE, and muscle markers were studied before and after interventions. RESULTS: Training increased palmitate and oleate oxidation by 27% and 20%, respectively, whereas detraining reduced them by 31% and 13%, respectively (P < 0.05 for all). Changes in AEE were positively correlated with changes in oleate (R² = 0.62, P < 0.001) and palmitate (R² = 0.66, P < 0.0001) oxidation. The d31-palmitate appearance in nonesterified fatty acid and very-low-density lipoprotein pools was negatively associated with changes in fatty acid translocase CD36 (R² = 0.30), fatty acid transport protein 1 (R² = 0.24), and AcylCoA synthetase long chain family member 1 (ACSL1) (R² = 0.25) expressions and with changes in fatty acid binding protein expression (R² = 0.33). The d31-palmitate oxidation correlated with changes in ACSL1 (R² = 0.39) and carnitine palmitoyltransferase 1 (R² = 0.30) expressions (P < 0.05 for all). Similar relations were observed with oleate. Insulin response was associated with AEE (R² = 0.34, P = 0.02) and oleate (R² = 0.52, P < 0.01) and palmitate (R² = 0.62, P < 001) oxidation. CONCLUSION: Training and detraining modified the oxidation of the 2 most common dietary fats, likely through a better trafficking and uptake by the muscle, which was negatively associated with whole-body insulin sensitivity.


Assuntos
Gorduras na Dieta/metabolismo , Metabolismo Energético , Exercício Físico/fisiologia , Peroxidação de Lipídeos , Ácido Oleico/metabolismo , Palmitatos/metabolismo , Comportamento Sedentário , Acetato-CoA Ligase/metabolismo , Adulto , Carnitina O-Palmitoiltransferase/metabolismo , Proteínas de Transporte de Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Lipoproteínas VLDL/metabolismo , Masculino , Oxirredução , Adulto Jovem
3.
J Physiol ; 591(18): 4655-66, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23818692

RESUMO

Twelve weeks of daily l-carnitine and carbohydrate feeding in humans increases skeletal muscle total carnitine content, and prevents body mass accrual associated with carbohydrate feeding alone. Here we determined the influence of L-carnitine and carbohydrate feeding on energy metabolism, body fat mass and muscle expression of fuel metabolism genes. Twelve males exercised at 50% maximal oxygen consumption for 30 min once before and once after 12 weeks of twice daily feeding of 80 g carbohydrate (Control, n=6) or 1.36 g L-carnitine + 80 g carbohydrate (Carnitine, n=6). Maximal carnitine palmitolytransferase 1 (CPT1) activity remained similar in both groups over 12 weeks. However, whereas muscle total carnitine, long-chain acyl-CoA and whole-body energy expenditure did not change over 12 weeks in Control, they increased in Carnitine by 20%, 200% and 6%, respectively (P<0.05). Moreover, body mass and whole-body fat mass (dual-energy X-ray absorptiometry) increased over 12 weeks in Control by 1.9 and 1.8 kg, respectively (P<0.05), but did not change in Carnitine. Seventy-three of 187 genes relating to fuel metabolism were upregulated in Carnitine vs. Control after 12 weeks, with 'insulin signalling', 'peroxisome proliferator-activated receptor signalling' and 'fatty acid metabolism' as the three most enriched pathways in gene functional analysis. In conclusion, increasing muscle total carnitine in healthy humans can modulate muscle metabolism, energy expenditure and body composition over a prolonged period, which is entirely consistent with a carnitine-mediated increase in muscle long-chain acyl-group translocation via CPT1. Implications to health warrant further investigation, particularly in obese individuals who have a reduced reliance on muscle fat oxidation during low-intensity exercise.


Assuntos
Tecido Adiposo/metabolismo , Carnitina/metabolismo , Metabolismo Energético , Exercício Físico , Redes Reguladoras de Genes , Músculo Esquelético/metabolismo , Tecido Adiposo/fisiologia , Adulto , Carnitina O-Palmitoiltransferase/metabolismo , Método Duplo-Cego , Humanos , Metabolismo dos Lipídeos , Masculino , Músculo Esquelético/fisiologia , Consumo de Oxigênio , PPAR alfa/metabolismo
4.
FASEB J ; 24(9): 3451-61, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20453112

RESUMO

Chronic overnutrition and modern lifestyles are causing a worldwide epidemic of obesity and associated comorbidities, which is creating a demand to identify underlying biological mechanisms and to devise effective treatments. In rats receiving a high-fat diet (HFD), we analyzed the effects of a 4-wk administration of a novel functional analog of iodothyronines, TRC150094 (TRC). HFD-TRC rats exhibited increased energy expenditure (+24% vs. HFD rats; P<0.05) and body weight (BW) gain comparable to that of standard chow-fed (N) rats [N, HFD, and HFD-TRC rats, +97 g, +140 g (P<0.05 vs. N), and +98 g (P<0.05 vs. HFD)]. HFD-TRC rats had significantly less visceral adipose tissue (vs. HFD rats) and exhibited altered metabolism in two major tissues that are very active metabolically. In liver, mitochondrial fatty acid import and oxidation were increased (+56 and +32%, respectively; P<0.05 vs. HFD rats), and consequently the hepatic triglyceride content was lower (-35%; P<0.05 vs. HFD rats). These effects were independent of the AMP-activated protein kinase-acetyl CoA-carboxylase-malonyl CoA pathway but involved sirtuin 1 activation. In skeletal muscle, TRC induced a fiber shift toward the oxidative type in tibialis anterior muscle, increasing its capacity to oxidize fatty acids. HFD-TRC rats had lower (vs. HFD rats) plasma cholesterol and triglyceride concentrations. If reproduced in humans, these results will open interesting possibilities regarding the counteraction of metabolic dysfunction associated with ectopic/visceral fat accumulation.


Assuntos
Adiposidade/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/metabolismo , Tironinas/farmacologia , Animais , Western Blotting , Peso Corporal/efeitos dos fármacos , Carnitina O-Palmitoiltransferase/metabolismo , Gorduras na Dieta/efeitos adversos , Ingestão de Alimentos/efeitos dos fármacos , Masculino , Obesidade/sangue , Obesidade/induzido quimicamente , Obesidade/metabolismo , Oxirredução/efeitos dos fármacos , Ratos , Ratos Wistar , Sirtuína 1/metabolismo , Tironinas/química , Tireotropina/sangue , Tiroxina/sangue , Triglicerídeos/sangue , Tri-Iodotironina/sangue
5.
Int J Obes (Lond) ; 32 Suppl 4: S49-54, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18719599

RESUMO

Energy balance is monitored by the hypothalamus. Malonyl-CoA, an intermediate in fatty acid synthesis, serves as an indicator of energy status in the hypothalamic neurons. The cellular malonyl-CoA level is determined by its rate of synthesis, catalyzed by acetyl-CoA carboxylase (ACC), and rate of removal, by fatty acid synthase (FAS). Malonyl-CoA functions in the hypothalamic neurons that express orexigenic and anorexigenic neuropeptides. Inhibitors of FAS, administered systemically or intracerebroventricularly to mice, increase hypothalamic malony-CoA and suppress food intake. Recent evidence suggests that the changes of hypothalamic malonyl-CoA during feeding and fasting cycles are caused by changes in the phosphorylation state and activity of ACC mediated via 5'-AMP-activated protein kinase (AMPK). Stereotactic delivery of a viral malonyl-CoA decarboxylase (MCD) vector into the ventral hypothalamus lowers malonyl-CoA and increases food intake. Fasting decreases hypothalamic malonyl-CoA and refeeding increases hypothalamic malonyl-CoA, to alter feeding behavior in the predicted manner. Malonyl-CoA level is under the control of AMP kinase which phosphorylates/inactivates ACC. Malonyl-CoA is an inhibitor of carnitine palmitoyl-CoA transferase-1 (CPT1), an outer mitochondrial membrane enzyme that regulates entry into, and oxidation of fatty acids, by mitochondria. CPT1c, a recently discovered, brain-specific enzyme expressed in the hypothalamus, has high sequence similarity to liver/muscle CPT1a/b and binds malonyl-CoA, but does not catalyze the prototypical reaction. This suggests that CPT1c has a unique function or activation mechanism. CPT1c knockout (KO) mice have lower food intake, weigh less and have less body fat, consistent with the role as an energy-sensing malonyl-CoA target. Paradoxically, CPT1c protects against the effects of a high-fat diet. CPT1cKO mice exhibit decreased rates of fatty acid oxidation, consistent with their increased susceptibility to diet-induced obesity. We suggest that CPT1c may be a downstream target of malonyl-CoA that regulates energy homeostasis.


Assuntos
Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Hipotálamo/enzimologia , Malonil Coenzima A/metabolismo , Acetil-CoA Carboxilase/metabolismo , Animais , Carboxiliases/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Ácido Graxo Sintases/metabolismo , Hipotálamo/fisiologia , Malonil Coenzima A/fisiologia , Camundongos
6.
J Nutr ; 132(9): 2682-9, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12221229

RESUMO

We examined the effects of feeding conjugated linoleic acids (CLA) to adult male hamsters on several components of energy metabolism and body composition. Hamsters (n = 54) were assigned for 6-8 wk to one of three diets: 1) a standard diet (in percentage energy: lipids, 33, carbohydrates, 49, and proteins, 18); 2) to the standard diet augmented with the 9c,11t-isomer of CLA to 1.6% of energy (R group); or 3) the standard diet augmented with the 9c,11t-isomer and the 10t,12c-CLA isomer to 3.2 (1.6 + 1.6) % of energy (CLA mix group). (15)N uniformly labeled milk-protein was included in the diet to measure the incorporation of dietary protein into liver and muscle. Basal metabolic rate, thermogenic response to feeding and energy expenditure during spontaneous activity or during an exercise at approximately 60% of VO(2max) were measured. Carnitine palmitoyltransferase-I (CPT-I), leptin, insulin and triiodothyronine concentrations, as well as the in vivo overall adiposity changes were also determined. After 6 wk, the whole-body triglyceride content determined in vivo by NMR was significantly higher in the R group than in the control and CLA mix groups. The CLA mix group differed from the others in the lack of body triglyceride accumulation between d 21 and d 45 of the study, and the appearance of a slight insulin-resistance (homeostatic model assessment index, P < 0.05). Paradoxically, the lack of effect on whole-body lipid oxidation was associated with a greater CPT-I-specific activity in tissues of both CLA-fed groups (P < 0.05). No other major effects of CLA feeding were detected. In conclusion, CLA supplementation in hamsters did not affect adipose weight or the components of energy expenditure despite a theoretically higher capacity of red muscle to oxidize lipids. Only a CLA mixture prevented whole-body triglyceride accumulation over time.


Assuntos
Metabolismo Energético , Ácido Linoleico/administração & dosagem , Triglicerídeos/metabolismo , Animais , Composição Corporal/fisiologia , Calorimetria Indireta , Carnitina O-Palmitoiltransferase/metabolismo , Cricetinae , Metabolismo Energético/efeitos dos fármacos , Ácido Linoleico/química , Ácido Linoleico/farmacologia , Fígado/enzimologia , Fígado/metabolismo , Masculino , Mesocricetus , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Nitrogênio/metabolismo , Isótopos de Nitrogênio , Condicionamento Físico Animal/fisiologia
7.
Metabolism ; 40(8): 873-6, 1991 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-1861636

RESUMO

The effect of insulin on the properties of liver carnitine palmitoyltransferase I (CPT I) was assessed in conscious starved rats with the euglycemic hyperinsulinemic clamp. A 24-hour clamp was necessary to fully reverse the effect of starvation on liver malonyl-CoA concentration, CPT I maximal activity, and apparent km and Ki for malonyl-CoA. Since glucagon was not decreased during the clamp, insulin is the major factor involved in the regulation of CPT I.


Assuntos
Carnitina O-Palmitoiltransferase/metabolismo , Técnica Clamp de Glucose , Insulina/farmacologia , Fígado/enzimologia , Inanição/metabolismo , Animais , Feminino , Glucagon/sangue , Insulina/sangue , Cinética , Malonil Coenzima A/metabolismo , Concentração Osmolar , Ratos , Ratos Endogâmicos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA