Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Mol Neurosci ; 69(4): 588-596, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31363911

RESUMO

Autism spectrum disorder (ASD) includes a number of severe neurodevelopmental disorders known by defects in social interaction, impaired verbal and non-verbal interactions, and stereotypic activities and limited interests. Dysregulation of apoptotic pathways have been demonstrated in brain tissues of affected individuals. In the present study, we evaluated expression levels of apoptosis-related genes and miRNAs in peripheral blood of ASD patients compared with healthy subjects. Transcript levels of BCL2, CASP8, and hsa-29c-3p were significantly lower in total ASD patients compared with total normal children (P values = 0.003, 0.002, and 0.01 respectively). When sex of study participants was considered in the analysis, the difference in transcript levels of these genes was significant only in male subjects. Peripheral expression of BCL2 and hsa-29c-3p had 100% sensitivity 92% specificity in ASD diagnosis. The diagnostic power of combination of transcript levels of these genes was estimated to be 78% based on the calculated AUC value. The present study provides evidences for dysregulation of apoptotic pathways in peripheral blood of ASD patients and suggests certain apoptosis-related genes as biomarkers in this regard.


Assuntos
Transtorno Autístico/diagnóstico , Caspase 8/genética , MicroRNAs/sangue , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/sangue , Adolescente , Apoptose , Transtorno Autístico/sangue , Transtorno Autístico/genética , Biomarcadores/sangue , Caspase 8/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fatores Sexuais
2.
Biomed Pharmacother ; 102: 481-493, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29579709

RESUMO

Piperazine is a promising scaffold for drug development due to its broad spectrum of biological activities. Based on this, the new piperazine-containing compound LQFM018 (2) [ethyl 4-((1-(4-chlorophenyl)-1H-pyrazol-4-yl)methyl)piperazine-1-carboxylate] was synthetized and some biological activities investigated. In this work, we described its ability to bind aminergic receptors, antiproliferative effects as well as the LQFM018 (2)-triggered cell death mechanisms, in K562 leukemic cells, by flow cytometric analyses. Furthermore, acute oral systemic toxicity and potential myelotoxicity assessments of LQFM018 (2) were carried out. LQFM018 (2) was originally obtained by molecular simplification from LASSBio579 (1), an analogue compound of clozapine, with 33% of global yield. Binding profile assay to aminergic receptors showed that LQFM018 (2) has affinity for the dopamine D4 receptor (Ki = 0.26 µM). Moreover, it showed cytotoxicity in K562 cells, in a concentration and time-dependent manner; IC50 values obtained were 399, 242 and 119 µM for trypan blue assay and 427, 259 and 50 µM for MTT method at 24, 48 or 72 h, respectively. This compound (427 µM) also promoted increase in LDH release and cell cycle arrest in G2/M phase. Furthermore, it triggered necrotic morphologies in K562 cells associated with intense cell membrane rupture as confirmed by Annexin V/propidium iodide double-staining. LQFM018 (2) also triggered mitochondrial disturb through loss of ΔΨm associated with increase of ROS production. No significant accumulation of cytosolic cytochrome c was verified in treated cells. Furthermore, it was verified an increase of expression of TNF-R1 and mRNA levels of CYLD with no involviment in caspase-3 and -8 activation and NF-κB in K562 cells. LQFM018 (2) showed in vitro myelotoxicity potential, but it was orally well tolerated and classified as UN GHS category 5 (LD50 > 2000-5000 mg/Kg). Thus, LQFM018 (2) seems to have a non-selective action considering hematopoietic cells. In conclusion, it is suggested LQFM018 (2) promotes cell death in K562 cells via necroptotic signaling, probably with involvement of dopamine D4 receptor. These findings open new perspectives in cancer therapy by use of necroptosis inducing agents as a strategy of reverse cancer cell chemoresistance.


Assuntos
Apoptose/efeitos dos fármacos , Piperazinas/farmacologia , Receptores de Dopamina D4/metabolismo , Testes de Toxicidade , Células 3T3 , Administração Oral , Animais , Ligação Competitiva/efeitos dos fármacos , Caspase 3/genética , Caspase 3/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Ciclo Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Citocromos c/metabolismo , Enzima Desubiquitinante CYLD/metabolismo , Exocitose/efeitos dos fármacos , Feminino , Humanos , Células K562 , Cinética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , NF-kappa B/metabolismo , Necrose , Fosfatidilserinas/metabolismo , Piperazina , Piperazinas/síntese química , Piperazinas/química , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo
3.
Methods Mol Biol ; 1510: 11-22, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27761810

RESUMO

Aberrant histone deacetylase (HDAC) activity often correlates with neoplastic transformation and inhibition of HDACs by small molecules has emerged as a promising strategy to treat hematological malignancies in particular. Treatment with HDAC inhibitors (HDACis) often prompts tumor cells to undergo apoptosis, thereby causing a caspase-dependent cleavage of target proteins. An unexpectedly large number of proteins are in vivo caspase substrates and defining caspase-mediated substrate specificity is a major challenge. In this chapter we demonstrate that the hematopoietic transcription factor PU.1 becomes cleaved after treatment of acute myeloid leukemia (AML) cells with the HDACis LBH589 (panobinostat) or MS-275 (entinostat). To define caspase specificity for PU.1, an in vitro caspase assay including caspases 1-10 with in vitro-translated PU.1 is described in detail.


Assuntos
Antineoplásicos/farmacologia , Caspase 8/genética , Regulação Neoplásica da Expressão Gênica , Inibidores de Histona Desacetilases/farmacologia , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Benzamidas/farmacologia , Western Blotting/métodos , Caspase 8/metabolismo , Eletroforese em Gel de Poliacrilamida/métodos , Ativação Enzimática , Células HEK293 , Células HL-60 , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Células K562 , Panobinostat , Proteólise , Proteínas Proto-Oncogênicas/metabolismo , Piridinas/farmacologia , Especificidade por Substrato , Transativadores/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA