Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
DNA Res ; 29(5)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35980175

RESUMO

Mucuna pruriens, commonly called velvet bean, is the main natural source of levodopa (L-DOPA), which has been marketed as a psychoactive drug for the clinical management of Parkinson's disease and dopamine-responsive dystonia. Although velvet bean is a very important plant species for food and pharmaceutical manufacturing, the lack of genetic and genomic information about this species severely hinders further molecular research thereon and biotechnological development. Here, we reported the first velvet bean genome, with a size of 500.49 Mb and 11 chromosomes encoding 28,010 proteins. Genomic comparison among legume species indicated that velvet bean speciated ∼29 Ma from soybean clade, without specific genome duplication. Importantly, we identified 21 polyphenol oxidase coding genes that catalyse l-tyrosine to L-DOPA in velvet bean, and two subfamilies showing tandem expansion on Chr3 and Chr7 after speciation. Interestingly, disease-resistant and anti-pathogen gene families were found contracted in velvet bean, which might be related to the expansion of polyphenol oxidase. Our study generated a high-quality genomic reference for velvet bean, an economically important agricultural and medicinal plant, and the newly reported L-DOPA biosynthetic genes could provide indispensable information for the biotechnological and sustainable development of an environment-friendly L-DOPA biosynthesis processing method.


Assuntos
Mucuna , Catecol Oxidase/genética , Catecol Oxidase/metabolismo , Cromossomos/metabolismo , Dopamina/metabolismo , Levodopa/genética , Levodopa/metabolismo , Mucuna/genética , Mucuna/metabolismo , Preparações Farmacêuticas/metabolismo , Pesquisa , Tirosina/genética , Tirosina/metabolismo
3.
Plant Biotechnol J ; 9(2): 136-50, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20497372

RESUMO

It is expected that the next generation of biotech crops displaying enhanced quality traits with benefits to both farmers and consumers will have a better acceptance than first generation biotech crops and will improve public perception of genetic engineering. This will only be true if they are proven to be as safe as traditionally bred crops. In contrast with the first generation of biotech crops where only a single trait is modified, the next generation of biotech crops will add a new level of complexity inherent to the mechanisms underlying their output traits. In this study, a comprehensive evaluation of the comparative safety approach on a quality-improved biotech crop with metabolic modifications is presented. Three genetically engineered potato lines with silenced polyphenol oxidase (Ppo) transcripts and reduced tuber browning were characterized at both physiological and molecular levels and showed to be equivalent to wild-type (WT) plants when yield-associated traits and photosynthesis were evaluated. Analysis of the primary metabolism revealed several unintended metabolic modifications in the engineered tubers, providing evidence for potential compositional inequivalence between transgenic lines and WT controls. The silencing construct sequence was in silico analysed for potential allergenic cross-reactivity, and no similarities to known allergenic proteins were identified. Moreover, in vivo intake safety evaluation showed no adverse effects in physiological parameters. Taken together, these results provide the first evidence supporting that the safety of next generation biotech crops can be properly assessed following the current evaluation criterion, even if the transgenic and WT crops are not substantially equivalent.


Assuntos
Inocuidade dos Alimentos , Engenharia Genética , Solanum tuberosum/genética , Alérgenos/análise , Animais , Catecol Oxidase/genética , Biologia Computacional , Feminino , Inativação Gênica , Camundongos , Camundongos Endogâmicos BALB C , Fotossíntese
4.
Arch Insect Biochem Physiol ; 67(4): 188-201, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18348246

RESUMO

Immune challenge in arthropods is frequently accompanied by melanization of the hemolymph, a reaction triggered by the activation of prophenoloxidase (PPO). Because their immature stages are spent inside the hemocoel of insect larvae, endoparasitoids have evolved strategies to escape or counter melanin formation. Very little molecular information is available on these endoparasitoid counterstrategies. We have sought to shed light on the inhibition of melanization in the spruce budworm, Choristoneura fumiferana, by the parasitic wasp Tranosema rostrale, by cloning two host PPO homologs and studying their transcriptional regulation after parasitization. The two polypeptides are encoded by transcripts of approximately 3.3 kb (for CfPPO1) and 3.0 kb (for CfPPO2) and possess structural features typical of other insect PPOs. While there appears to be a single CfPPO2 gene in the C. fumiferana genome, we detected three CfPPO1 mRNA variants displaying insertions/deletions in the 3' untranslated region, suggesting that there may be more than one CfPPO1 gene copy. Both CfPPO1 and CfPPO2 were expressed at high levels in C. fumiferana 6th instars, and parasitization by T. rostrale had no apparent impact on the level of their transcripts. Injection of a large dose (0.5 female-equivalent) of polydnavirus-laden calyx fluid extracted from T. rostrale, which is known to inhibit melanization in C. fumiferana, only caused a transient decrease in CfPPO1 and CfPPO2 transcript accumulation at 2-3 d post injection. It thus appears that transcriptional downregulation of C. fumiferana PPO by T. rostrale plays a minor role in the inhibition of hemolymph melanization in this host-parasitoid system.


Assuntos
Catecol Oxidase/genética , Precursores Enzimáticos/genética , Regulação da Expressão Gênica/imunologia , Mariposas/enzimologia , Mariposas/parasitologia , Filogenia , Polydnaviridae , Vespas/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Northern Blotting , Southern Blotting , Clonagem Molecular , Primers do DNA/genética , DNA Complementar/genética , Componentes do Gene , Dados de Sequência Molecular , Mariposas/imunologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA