Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioresour Technol ; 397: 130481, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395233

RESUMO

Brown algae are rich in biostimulants that not only stimulate the overall development and growth of plants but also have great beneficial effects on the whole soil-plant system. However, alginate, the major component of brown algae, is comparatively difficult to degrade. The cost of preparing alginate oligosaccharides (AOSs) is still too high to produce seaweed fertilizer. In this work, the marine bacterium Vibrio sp. B1Z05 is found to be capable of efficient alginate depolymerization and harbors an extended pathway for alginate metabolism. The B1Z05 extracellular cell-free supernatant exhibited great potential for AOS production at low cost, which, together with cellulase, can efficiently hydrolyze seaweed. The brown algal hydrolysis rates were significantly greater than those of the commercial alginate lyase product CE201, and the obtained seaweed extracts were rich in phytohormones. This work provides a low-cost but efficient strategy for the sustainable production of desirable AOSs and seaweed fertilizer.


Assuntos
Celulase , Phaeophyceae , Alga Marinha , Celulase/metabolismo , Hidrólise , Fertilizantes , Polissacarídeo-Liases/metabolismo , Alga Marinha/metabolismo , Alginatos/metabolismo , Oligossacarídeos/metabolismo
2.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37834464

RESUMO

Although Pichia pastoris was successfully used for heterologous gene expression for more than twenty years, many factors influencing protein expression remain unclear. Here, we optimized the expression of a thermophilic endoglucanase from Thermothielavioides terrestris (TtCel45A) for cost-effective production in Pichia pastoris. To achieve this, we established a multifactorial regulation strategy that involved selecting a genome-editing system, utilizing neutral loci, incorporating multiple copies of the heterologous expression cassette, and optimizing high-density fermentation for the co-production of single-cell protein (SCP). Notably, even though all neutral sites were used, there was still a slight difference in the enzymatic activity of heterologously expressed TtCel45A. Interestingly, the optimal gene copy number for the chromosomal expression of TtCel45A was found to be three, indicating limitations in translational capacity, post-translational processing, and secretion, ultimately impacting protein yields in P. pastoris. We suggest that multiple parameters might influence a kinetic competition between protein elongation and mRNA degradation. During high-density fermentation, the highest protein concentration and endoglucanase activity of TtCel45A with three copies reached 15.8 g/L and 9640 IU/mL, respectively. At the same time, the remaining SCP of P. pastoris exhibited a crude protein and amino acid content of up to 59.32% and 46.98%, respectively. These findings suggested that SCP from P. pastoris holds great promise as a sustainable and cost-effective alternative for meeting the global protein demand, while also enabling the production of thermophilic TtCel45A in a single industrial process.


Assuntos
Celulase , Saccharomycetales , Pichia/genética , Pichia/metabolismo , Celulase/genética , Celulase/metabolismo , Análise Custo-Benefício , Saccharomycetales/metabolismo , Fermentação , Proteínas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Sci Rep ; 13(1): 446, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624114

RESUMO

Application of cost-effective pretreatment of wheat straw is an important stage for massive bioethanol production. A new approach is aimed to enhance the pretreatment of wheat straw by using low-cost ionic liquid [TEA][HSO4] coupled with ultrasound irradiation. The pretreatment was conducted both at room temperature and at 130 °C with a high biomass loading rate of 20% and 20% wt water assisted by ultrasound at 100 W-24 kHz for 15 and 30 min. Wheat straw pretreated at 130 °C for 15 and 30 min had high delignification rates of 67.8% and 74.9%, respectively, and hemicellulose removal rates of 47.0% and 52.2%. Moreover, this pretreatment resulted in producing total reducing sugars of 24.5 and 32.1 mg/mL in enzymatic saccharification, respectively, which corresponds to saccharification yields of 67.7% and 79.8% with commercial cellulase enzyme CelluMax for 72 h. The ethanol generation rates of 38.9 and 42.0 g/L were attained for pretreated samples for 15 and 30 min, equivalent to the yields of 76.1% and 82.2% of the maximum theoretical yield following 48 h of fermentation. This demonstration provided a cheap and promising pretreatment technology in terms of efficiency and shortening the pretreatment time based on applying low-cost ionic liquid and efficient ultrasound pretreatment techniques, which facilitated the feasibility of this approach and could further develop the future of biorefinery.


Assuntos
Celulase , Líquidos Iônicos , Triticum/metabolismo , Análise Custo-Benefício , Fermentação , Hidrólise , Celulase/metabolismo
4.
Bioresour Technol ; 364: 128019, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36162784

RESUMO

Despite decades of research and industrial applications of Trichoderma reesei, the development of industrially relevant strains for enzyme production including a low-cost and scalable bioprocess remains elusive. Herein, bioprocess optimization, pilot plant scale-up, techno-economic analysis and life-cycle assessment for enzyme production by an engineered T. reesei strain are reported. The developed bioprocess increased in âˆ¼ 2-fold protein productivity (0.39 g.L-1.h-1) and 1.6-fold FPase activity (196 FPU.L-1.h-1), reducing the fermentation in 4 days. Cultivation in a 65-L pilot plant bioreactor resulted in 54 g.L-1 protein in 7 days, highlighting the robustness and scalability of this bioprocess. Techno-economic analysis indicates an enzyme cost of âˆ¼ 3.2 USD.kg-1, which is below to the target proposed (4.24 USD.kg-1) in the NREL/TP-5100-47764 report, while life-cycle assessment shows a carbon footprint reduction of approximately 50% compared to a typical commercial enzyme. This study provides the fundamental knowledge for the design of economically competitive Trichoderma technologies for industrial use.


Assuntos
Celulase , Trichoderma , Animais , Trichoderma/metabolismo , Celulase/metabolismo , Reatores Biológicos , Fermentação , Estágios do Ciclo de Vida
5.
Bioresour Technol ; 360: 127493, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35777645

RESUMO

Aiming towards zero waste management of Paddy straw (PS), the study offers a novel route for production of cellulase-free xylanase, using consortia of Trichoderma spp. under Solid State Fermentation (SSF) of PS valorized using nitrogen rich de-oiled neem cake (NC). Life Cycle Assessment (LCA) for enzyme production, performed using SimaPro software, depicted adverse impacts due to electricity consumption (92.84%) and use of ammonium sulphate salt (6.17%). Nonetheless, employing renewable energy and reducing salt consumption could help minimize these impacts. OHR-LCMS study of the partially purified enzyme revealed the presence of ß-xylanase and α-L-Arabinofuranosidase. Enzymatic saccharification of various substrates enhanced the release of reducing sugars (mg/g) from corn cob (137.54 ± 0.96), pine needle (41.43 ± 1), sugarcane bagasse (105.17 ± 0.7), and PS (76.66 ± 1.29), demonstrating its applicability in the biofuel domain. LC-MS, ICMPS, and EDX profiling of the residual spent unravelled the manifestation of bioactives, minerals, and silica, playing an essential role as biopesticide and biofertilizer.


Assuntos
Celulase , Saccharum , Animais , Celulase/metabolismo , Celulose , Fermentação , Estágios do Ciclo de Vida , Saccharum/metabolismo
6.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35743111

RESUMO

For the industrial-scale production of useful enzymes by microorganisms, technological development is required for overcoming a technical bottleneck represented by poor efficiency in the induction of enzyme gene expression and secretion. In this study, we evaluated the potential of a non-thermal atmospheric pressure plasma jet to improve the production efficiency of cellulolytic enzymes in Neurospora crassa, a filamentous fungus. The total activity of cellulolytic enzymes and protein concentration were significantly increased (1.1~1.2 times) in media containing Avicel 24-72 h after 2 and 5 min of plasma treatment. The mRNA levels of four cellulolytic enzymes in fungal hyphae grown in media with Avicel were significantly increased (1.3~17 times) 2-4 h after a 5 min of plasma treatment. The levels of intracellular NO and Ca2+ were increased in plasma-treated fungal hyphae grown in Avicel media after 48 h, and the removal of intracellular NO decreased the activity of cellulolytic enzymes in media and the level of vesicles in fungal hyphae. Our data suggest that plasma treatment can promote the transcription and secretion of cellulolytic enzymes into the culture media in the presence of Avicel (induction condition) by enhancing the intracellular level of NO and Ca2+.


Assuntos
Celulase , Neurospora crassa , Celulase/metabolismo , Celulose/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Neurospora crassa/genética
7.
Biochemistry (Mosc) ; 86(Suppl 1): S166-S195, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33827407

RESUMO

The review discusses various aspects of renewable plant biomass conversion and production of the second-generation biofuels, including the types of plant biomass, its composition and reaction ability in the enzymatic hydrolysis, and various pretreatment methods for increasing the biomass reactivity. Conversion of plant biomass into sugars requires the use of a complex of enzymes, the composition of which should be adapted to the biomass type and the pretreatment method. The efficiency of enzymatic hydrolysis can be increased by optimizing the composition of the enzymatic complex and by increasing the catalytic activity and operational stability of its constituent enzymes. The availability of active enzyme producers also plays an important role. Examples of practical implementation and scaling of processes for the production of second-generation biofuels are presented together with the cost analysis of bioethanol production.


Assuntos
Biocombustíveis , Biomassa , Custos e Análise de Custo , Celulase/metabolismo
8.
Int J Mol Sci ; 21(2)2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31936000

RESUMO

Fermentable sugars are important intermediate products in the conversion of lignocellulosic biomass to biofuels and other value-added bio-products. The main bottlenecks limiting the production of fermentable sugars from lignocellulosic biomass are the high cost and the low saccharification efficiency of degradation enzymes. Herein, we report the secretome of Trichoderma harzianum EM0925 under induction of lignocellulose. Numerously and quantitatively balanced cellulases and hemicellulases, especially high levels of glycosidases, could be secreted by T. harzianum EM0925. Compared with the commercial enzyme preparations, the T. harzianum EM0925 enzyme cocktail presented significantly higher lignocellulolytic enzyme activities and hydrolysis efficiency against lignocellulosic biomass. Moreover, 100% yields of glucose and xylose were obtained simultaneously from ultrafine grinding and alkali pretreated corn stover. These findings demonstrate a natural cellulases and hemicellulases mixture for complete conversion of biomass polysaccharide, suggesting T. harzianum EM0925 enzymes have great potential for industrial applications.


Assuntos
Celulase/metabolismo , Glicosídeo Hidrolases/metabolismo , Lignina/metabolismo , Trichoderma/enzimologia , Biocombustíveis/microbiologia , Fermentação , Glucose/metabolismo , Hidrólise , Trichoderma/metabolismo , Xilose/metabolismo , Zea mays/metabolismo
9.
Sci Rep ; 9(1): 10137, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300677

RESUMO

The identification of glycoside hydrolases (GHs) for efficient polysaccharide deconstruction is essential for the development of biofuels. Here, we investigate the potential of sequential HMM-profile identification for the rapid and precise identification of the multi-domain architecture of GHs from various datasets. First, as a validation, we successfully reannotated >98% of the biochemically characterized enzymes listed on the CAZy database. Next, we analyzed the 43 million non-redundant sequences from the M5nr data and identified 322,068 unique GHs. Finally, we searched 129 assembled metagenomes retrieved from MG-RAST for environmental GHs and identified 160,790 additional enzymes. Although most identified sequences corresponded to single domain enzymes, many contained several domains, including known accessory domains and some domains never identified in association with GH. Several sequences displayed multiple catalytic domains and few of these potential multi-activity proteins combined potentially synergistic domains. Finally, we produced and confirmed the biochemical activities of a GH5-GH10 cellulase-xylanase and a GH11-CE4 xylanase-esterase. Globally, this "gene to enzyme pipeline" provides a rationale for mining large datasets in order to identify new catalysts combining unique properties for the efficient deconstruction of polysaccharides.


Assuntos
Biologia Computacional/métodos , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Catálise , Domínio Catalítico , Celulase/química , Celulase/metabolismo , Bases de Dados de Proteínas , Glicosídeo Hidrolases/genética , Cadeias de Markov , Metagenoma
10.
J Environ Sci Health B ; 53(1): 12-17, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29035636

RESUMO

Soybean meal (SBM) is a product generated from the manufacture of soybean oil and has the potential for use as a source of fermentable sugars for ethanol production or as a protein source for animal feeds. Knowing the levels of nitrogen available from ammonium is a necessary element of the ethanolic fermentation process while identifying the levels of essential amino acids such as lysine is important in determining usage as a feed source. As such the purpose of this study was to quantify total nitrogen and ammonium in the liquid fraction of hydrolyzed SBM and to evaluate total and bioavailable lysine in the solid fraction of the hydrolyzed SBM. The effects of acid concentration, cellulase and ß-glucosidase on total and ammonium nitrogen were studied with analysis indicating that higher acid concentrations increased nitrogen compounds with ammonium concentrations ranging from 0.20 to 1.24 g L-1 while enzymatic treatments did not significantly increase nitrogen levels. Total and bioavailable lysine was quantified by use of an auxotrophic gfpmut3 E.coli whole-cell bioassay organism incapable of lysine biosynthesis. Acid and enzymatic treatments were applied with lysine bioavailability increasing from a base of 82% for untreated SBM to up to 97%. Our results demonstrated that SBM has the potential to serve in ethanolic fermentation and as an optimal source essential amino acid lysine.


Assuntos
Manipulação de Alimentos , Glycine max/química , Lisina/farmacocinética , Nitrogênio/análise , Amônia/análise , Ração Animal , Animais , Disponibilidade Biológica , Celulase/metabolismo , Escherichia coli/metabolismo , Etanol/metabolismo , Fermentação , Hidrólise , Lisina/análise , beta-Glucosidase/metabolismo
11.
Prep Biochem Biotechnol ; 47(6): 578-588, 2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28102768

RESUMO

For any fermentation process, the production cost depends on several factors, such as the genetics of the microorganism, the process condition, and the culture medium composition. In this work, a guideline for the design of cost-efficient culture media using a sequential approach based on response surface methodology is described. The procedure was applied to analyze and optimize a culture medium of registered trademark and a base culture medium obtained as a result of the screening analysis from different culture media used to grow the same strain according to the literature. During the experiments, the procedure quantitatively identified an appropriate array of micronutrients to obtain a significant yield and find a minimum number of culture medium ingredients without limiting the process efficiency. The resultant culture medium showed an efficiency that compares favorably with the registered trademark medium at a 95% lower cost as well as reduced the number of ingredients in the base culture medium by 60% without limiting the process efficiency. These results demonstrated that, aside from satisfying the qualitative requirements, an optimum quantity of each constituent is needed to obtain a cost-effective culture medium. Study process variables for optimized culture medium and scaling-up production for the optimal values are desirable.


Assuntos
Meios de Cultura/metabolismo , Microbiologia Industrial/economia , Microbiologia Industrial/métodos , Rhizopus/enzimologia , Vibrio alginolyticus/enzimologia , Algoritmos , Celulase/isolamento & purificação , Celulase/metabolismo , Quitinases/isolamento & purificação , Quitinases/metabolismo , Fermentação , Rhizopus/metabolismo , Vibrio alginolyticus/metabolismo
12.
Bioresour Technol ; 229: 33-38, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28092734

RESUMO

To decrease d-Lactate production cost, wheat bran, a low-cost waste of milling industry, was selected as the sole feedstock. First, the nutrients were recovered from wheat bran by acid protease hydrolysis. Then, cellulosic hydrolysates were prepared from protease-treated samples after acid pretreatment and enzymatic saccharification. The combined use of nutrients and hydrolysates as nitrogen and carbon sources for fermentation by S. inulinus YB1-5 resulted in d-Lactate levels of 99.5g/L, with an average production efficiency of 1.94g/L/h and a yield of 0.89g/g glucose. Moreover, fed-batch simultaneous saccharification and fermentation process at 40°C, 20% (w/v) solid loading and 20FPU/g solid cellulase concentration was obtained. d-Lactate concentrations, yield, productivity, and optical purity were 87.3g/L, 0.65g/g glucose, 0.81g/L/h and 99.1%, respectively. This study provided a feasible procedure that can help produce cellulosic d-Lactate using agricultural waste without external nutrient supplementation.


Assuntos
Bacillales/metabolismo , Carboidratos/química , Fibras na Dieta/análise , Ácido Láctico/metabolismo , Técnicas de Cultura Celular por Lotes , Metabolismo dos Carboidratos , Celulase/metabolismo , Custos e Análise de Custo , Fermentação , Hidrólise , Peptídeo Hidrolases/metabolismo , Fatores de Tempo
13.
Bioresour Technol ; 222: 431-438, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27750196

RESUMO

The main barriers to cost-effective lactic acid production from lignocellulose are the high cost of enzymes and the ineffective utilization of the xylose within the hydrolysate. In the present study, the thermophilic Bacillus coagulans strain CC17 was used for the simultaneous saccharification and fermentation (SSF) of bagasse sulfite pulp (BSP) to produce l-lactic acid. Unexpectedly, SSF by CC17 required approximately 33.33% less fungal cellulase than did separate hydrolysis and fermentation (SHF). More interestingly, CC17 can co-ferment cellobiose and xylose without any exogenous ß-glucosidase in SSF. Moreover, adding xylanase could increase the concentration of lactic acid produced via SSF. Up to 110g/L of l-lactic acid was obtained using fed-batch SSF, resulting in a lactic acid yield of 0.72g/g cellulose. These results suggest that SSF using CC17 has a remarkable advantage over SHF and that a potentially low-cost and highly-efficient fermentation process can be established using this protocol.


Assuntos
Bacillus coagulans/metabolismo , Biotecnologia/economia , Biotecnologia/métodos , Celulose/metabolismo , Ácido Láctico/biossíntese , Celobiose/metabolismo , Celulase/economia , Celulase/metabolismo , Celulose/química , Análise Custo-Benefício , Fermentação , Hidrólise , Ácido Láctico/metabolismo , Lignina/química , Lignina/metabolismo , Sulfitos/química , Sulfitos/metabolismo , Xilose/metabolismo , beta-Glucosidase/metabolismo
14.
Sci Rep ; 6: 32451, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27585861

RESUMO

In many areas of science and technology, patterned films and surfaces play a key role in engineering and development of advanced materials. Here, we introduce a new generic technique for the fabrication of polysaccharide nano-structures via focused electron beam induced conversion (FEBIC). For the proof of principle, organosoluble trimethylsilyl-cellulose (TMSC) thin films have been deposited by spin coating on SiO2 / Si and exposed to a nano-sized electron beam. It turns out that in the exposed areas an electron induced desilylation reaction takes place converting soluble TMSC to rather insoluble cellulose. After removal of the unexposed TMSC areas, structured cellulose patterns remain on the surface with FWHM line widths down to 70 nm. Systematic FEBIC parameter sweeps reveal a generally electron dose dependent behavior with three working regimes: incomplete conversion, ideal doses and over exposure. Direct (FT-IR) and indirect chemical analyses (enzymatic degradation) confirmed the cellulosic character of ideally converted areas. These investigations are complemented by a theoretical model which suggests a two-step reaction process by means of TMSC → cellulose and cellulose → non-cellulose material conversion in excellent agreement with experimental data. The extracted, individual reaction rates allowed the derivation of design rules for FEBIC parameters towards highest conversion efficiencies and highest lateral resolution.


Assuntos
Celulose/química , Elétrons , Nanoestruturas/química , Nanotecnologia/métodos , Celulase/metabolismo , Simulação por Computador , Microscopia de Força Atômica , Método de Monte Carlo , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos de Trimetilsilil/química
15.
Bioresour Technol ; 216: 503-10, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27268435

RESUMO

Cellulase is a prerequisite for the bioconversion of lignocellulosic biomass, but its high cost presents the biggest challenge. In this article, low-cost mixture was produced from glucose through the transglycosylation reaction catalyzed by ß-glucosidase for cellulase overproduction by Trichodema reesei RUT C30. As a result, cellulase titer of 90.3FPU/mL, which was more than 10 folds of that achieved with lactose as inducer, was achieved at 144h. Meanwhile, cellulase productivity was drastically increased to 627.1FPU/L/h, at least 3-5 folds higher than previously reported by the fungal species. The crude enzyme was further tested by hydrolyzing NaOH-pretreated corn stover with 15% solid loading, and 96.6g/L glucose was released with 92.6% sugar yield at 96h and 44.8g/L ethanol was obtained.


Assuntos
Celulase/biossíntese , Glucanos/metabolismo , Microbiologia Industrial/métodos , Trichoderma/enzimologia , Técnicas de Cultura Celular por Lotes , Biomassa , Celulase/metabolismo , Custos e Análise de Custo , Etanol/metabolismo , Glucanos/química , Glucanos/economia , Glucose/economia , Glucose/metabolismo , Glicosilação , Hidrólise , Microbiologia Industrial/economia , Lactose/metabolismo , Brotos de Planta/química , Brotos de Planta/metabolismo , Hidróxido de Sódio/química , Trichoderma/metabolismo , Zea mays/química , Zea mays/metabolismo , beta-Glucosidase/metabolismo
16.
J Sci Food Agric ; 96(13): 4484-91, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26858003

RESUMO

BACKGROUND: Tricholoma mongolicum Imai is a well-known edible and medicinal mushroom which in recent years has attracted increasing attention because of its bioactivities. In this study, water-soluble polysaccharides were extracted from T. mongolicum Imai by cellulase-assisted extraction and their antioxidant activities were investigated. RESULTS: In order to improve the yield of polysaccharides, four variables, cellulase amount (X1 ), pH (X2 ), temperature (X3 ) and extraction time (X4 ), were investigated with a Box-Behnken design. The optimal conditions were predicted to be cellulase amount of 20 g kg(-1) , pH of 4.0, temperature of 50 °C and extraction time of 127 min, with a predicted polysaccharide yield of 190.1 g kg(-1) . The actual yield of polysaccharides under these conditions was 189.6 g kg(-1) , which matched the predicted value well. The crude polysaccharides were purified to obtain four fractions, and characterization of each was carried out. In addition, antioxidant properties of four polysaccharides assessed by 1,1-diphenyl-2-picryldydrazyl (DPPH) and hydroxyl radical-scavenging assays indicated that polysaccharides from T. mongolicum Imai (TMIPs) possessed antioxidant activity in a dose-dependent manner. CONCLUSION: TMIPs show moderate antioxidant activities in vitro. Therefore it is suggested that TMIPs are potential natural antioxidants for use in functional foods. © 2016 Society of Chemical Industry.


Assuntos
Antioxidantes/isolamento & purificação , Celulase/metabolismo , Misturas Complexas/isolamento & purificação , Aditivos Alimentares/isolamento & purificação , Carpóforos/química , Polissacarídeos Fúngicos/isolamento & purificação , Tricholoma/química , Algoritmos , Antioxidantes/análise , Antioxidantes/química , Antioxidantes/metabolismo , Sequência de Carboidratos , China , Misturas Complexas/biossíntese , Misturas Complexas/química , Aditivos Alimentares/análise , Aditivos Alimentares/química , Aditivos Alimentares/metabolismo , Alimentos em Conserva/análise , Alimentos em Conserva/economia , Sequestradores de Radicais Livres/análise , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/isolamento & purificação , Sequestradores de Radicais Livres/metabolismo , Carpóforos/metabolismo , Polissacarídeos Fúngicos/análise , Polissacarídeos Fúngicos/biossíntese , Polissacarídeos Fúngicos/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Modelos Químicos , Peso Molecular , Estatística como Assunto , Fatores de Tempo , Tricholoma/metabolismo
17.
Bioresour Technol ; 200: 961-70, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26602145

RESUMO

Ionic liquids (ILs) have been considered as a class of promising solvents that can dissolve lignocellulosic biomass and then provide enzymatic hydrolyzable holocellulose. However, most of available cellulases are completely or partially inactivated in the presence of even low concentrations of ILs. To more fully exploit the benefits of ILs to lignocellulose biorefinery, it is critical to improve the compatibility between cellulase and ILs. Various attempts have been made to screen natural IL-tolerant cellulases from different microhabitats. Several physical and chemical methods for stabilizing cellulases in ILs were also developed. Moreover, recent advances in protein engineering have greatly facilitated the rational engineering of cellulases by site-directed mutagenesis for the IL stability. This review is aimed to provide the first detailed overview of the current advances in improving the performance of cellulase in non-natural IL environments. New ideas from the most representative progresses and technical challenges will be summarized and discussed.


Assuntos
Celulase/química , Celulases/química , Líquidos Iônicos/química , Lignina/química , Engenharia de Proteínas/métodos , Biomassa , Biotecnologia/economia , Biotecnologia/métodos , Celulase/metabolismo , Celulases/genética , Celulases/metabolismo , Ativação Enzimática , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Hidrólise , Lignina/metabolismo , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Estabilidade Proteica
18.
J Biosci Bioeng ; 121(1): 27-35, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26073313

RESUMO

Trichoderma reesei is a filamentous organism that secretes enzymes capable of degrading cellulose to cellobiose. The culture supernatant of T. reesei, however, lacks sufficient activity to convert cellobiose to glucose using ß-glucosidase (BGL1). In this study, we identified a BGL (Cel3B) from T. reesei (TrCel3B) and compared it with the active ß-glucosidases from Aspergillus aculeatus (AaBGL1). AaBGL1 showed higher stability and conversion of sugars to ethanol compared to TrCel3B, and therefore we chose to express this recombinant protein for use in fermentation processes. We expressed the recombinant protein in the yeast Saccharomyces cerevisiae, combined it with the superb T. reesei cellulase machinery and used the combination in a simultaneous saccharification and fermentation (SSF) process, with the hope that the recombinant would supplement the BGL activity. As the sugars were processed, the yeast immediately converted them to ethanol, thereby eliminating the problem posed by end product inhibition. Recombinant AaBGL1 activity was compared with Novozyme 188, a commercially available supplement for BGL activity. Our results show that the recombinant protein is as effective as the commercial supplement and can process sugars with equal efficiency. Expression of AaBGL1 in S. cerevisiae increased ethanol production effectively. Thus, heterologous expression of AaBGL1 in S. cerevisiae is a cost-effective and efficient process for the bioconversion of ethanol from lignocellulosic biomass.


Assuntos
Aspergillus/enzimologia , Celulase/metabolismo , Etanol/economia , Etanol/metabolismo , Saccharomyces cerevisiae/genética , Trichoderma/enzimologia , beta-Glucosidase/metabolismo , Aspergillus/genética , Biomassa , Celobiose/metabolismo , Fermentação , Lignina/metabolismo , Proteínas Recombinantes/economia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , beta-Glucosidase/economia , beta-Glucosidase/genética
19.
J Biosci Bioeng ; 120(6): 657-65, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26026380

RESUMO

The capacity of Trichoderma reesei cellulase to degrade lignocellulosic biomass has been enhanced by the construction of a recombinant T. reesei strain expressing Aspergillus aculeatus ß-glucosidase I. We have confirmed highly efficient ethanol production from converge-milled Japanese cedar by recombinant T. reesei expressing A. aculeatus ß-glucosidase I (JN11). We investigated the ethanol productivity of JN11 and compared it with the cocktail enzyme T. reesei PC-3-7 with reinforced cellobiase activity by the commercial Novozyme 188. Results showed that the ethanol production efficiency under enzymatic hydrolysis of JN11 was comparable to the cocktail enzyme both on simultaneous saccharification and fermentation (SSF) or separate hydrolysis and fermentation (SHF) processes. Moreover, the cocktail enzyme required more protein loading for attaining similar levels of ethanol conversion as JN11. We propose that JN11 is an intrinsically economical enzyme that can eliminate the supplementation of BGL for PC-3-7, thereby reducing the cost of industrial ethanol production from lignocellulosic biomass.


Assuntos
Aspergillus/enzimologia , Etanol/metabolismo , Lignina/metabolismo , Trichoderma/genética , Trichoderma/metabolismo , beta-Glucosidase/genética , beta-Glucosidase/metabolismo , Aspergillus/genética , Biomassa , Celulase/metabolismo , Cryptomeria/química , Etanol/análise , Etanol/economia , Fermentação , Hidrólise , beta-Glucosidase/economia
20.
Bioresour Technol ; 175: 473-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25459857

RESUMO

In this study, sweet sorghum stem was subjected to hydrothermal pretreatment (HTP) and alkaline post-treatment to enhance its saccharification ratio by reducing its recalcitrance. The results showed that the HTP (110-210°C, 0.5-2.0h) significantly degraded hemicelluloses, and the pretreatment at the temperature higher than 190°C led to the partial degradation of the cellulose. As compared to the sole HTP, the integrated process removed most of lignin and hemicelluloses, which incurred a higher cellulose saccharification ratio. Under an optimum condition evaluated (HTP at 170°C for 0.5h and subsequent 2% NaOH treatment), 77.5% saccharification ratio was achieved, which was 1.8, 2.0 and 5.5 times as compared to the only HTP pretreated substrates, alkaline treated substrates alone and the raw material without pretreatment, respectively. Clearly, the integrated process can be considered as a promising approach to achieve an efficient conversion of lignocellulose to fermentable glucose.


Assuntos
Antiácidos/farmacologia , Metabolismo dos Carboidratos , Celulase/metabolismo , Caules de Planta/metabolismo , Sorghum/metabolismo , Temperatura , Reatores Biológicos , Metabolismo dos Carboidratos/efeitos dos fármacos , Celulose/metabolismo , Fermentação/efeitos dos fármacos , Glucose/metabolismo , Hidrólise/efeitos dos fármacos , Lignina/metabolismo , Polissacarídeos/metabolismo , Água/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA