Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Biopolymers ; 115(4): e23577, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38526043

RESUMO

Bacterial nanocellulose (BNC) has various unique qualities, including high mechanical strength, crystallinity, and high water-holding capacity, which makes it appropriate for a wide range of industrial applications. But its lower yield coupled with its high production cost creates a barrier to its usage. In this study, we have demonstrated the better yield of BNC from an indigenous strain Komagataeibacter rhaeticus MCC-0157 using a rotary disc bioreactor (RDB) having a wooden disc. The RDB was optimized based on the type of disc material, distance between the disc, and rotation speed to get the highest yield of 13.0 g/L dry material using Hestrin-Schramm (H-S) medium. Further, the bioreactor was compared for the BNC production using reported medium, which is used for static condition; the RDB showed up to fivefold increase in comparison with the static condition reported. Komagataeibacter rhaeticus MCC-0157 was previously reported to be one of the highest BNC producing stains, with 8.37 g/L of dry yield in static condition in 15 days incubation. The designed RDB demonstrated 13.0 g/L dry yield of BNC in just 5 days. Other characteristics of BNC remain same as compared with static BNC production, although the difference in the crystallinity index was observed in RDB (84.44%) in comparison with static (89.74%). For the first time, wooden disc was used for rotary bioreactor approach, which demonstrated higher yield of BNC in lesser time and can be further used for sustainable production of BNC at the industrial level.


Assuntos
Acetobacteraceae , Reatores Biológicos , Celulose , Celulose/química , Celulose/biossíntese , Acetobacteraceae/metabolismo , Acetobacteraceae/química , Madeira/química , Biopolímeros/química , Biopolímeros/biossíntese , Nanoestruturas/química , Fermentação
2.
Sci Rep ; 12(1): 2181, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140278

RESUMO

Bacterial cellulose (BC) is an ecofriendly biopolymer with diverse commercial applications. Its use is limited by the capacity of bacterial production strains and cost of the medium. Mining for novel organisms with well-optimized growth conditions will be important for the adoption of BC. In this study, a novel BC-producing strain was isolated from rotten fruit samples and identified as Lactiplantibacillus plantarum from 16S rRNA sequencing. Culture conditions were optimized for supporting maximal BC production using one variable at a time, Plackett-Burman design, and Box Behnken design approaches. Results indicated that a modified Yamanaka medium supported the highest BC yield (2.7 g/l), and that yeast extract, MgSO4, and pH were the most significant variables influencing BC production. After optimizing the levels of these variables through Box Behnken design, BC yield was increased to 4.51 g/l. The drug delivery capacity of the produced BC membrane was evaluated through fabrication with sodium alginate and gentamycin antibiotic at four different concentrations. All membranes (normal and fabricated) were characterized by scanning electron microscope, Fourier transform-infrared spectroscopy, X-ray diffraction, and mechanical properties. The antimicrobial activity of prepared composites was evaluated by using six human pathogens and revealed potent antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, and Streptococcus mutans, with no detected activity against Pseudomonas aeruginosa and Candida albicans.


Assuntos
Anti-Infecciosos/farmacologia , Técnicas de Cultura de Células/métodos , Celulose/biossíntese , Lactobacillaceae/química , Lactobacillaceae/genética , Membranas/química , Alginatos/farmacologia , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Celulose/química , Celulose/isolamento & purificação , Meios de Cultura , Gentamicinas/farmacologia , Lactobacillaceae/isolamento & purificação , Lactobacillaceae/metabolismo , Microscopia Eletrônica de Varredura , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Difração de Raios X
3.
Int J Biol Macromol ; 196: 172-179, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-34914912

RESUMO

Bacterial cellulose (BC) is an emerging biological material with unique properties and structure, which has attracted more and more attention. In this study, Gluconacetobacter xylinus was used to convert sweet potato residues (SPR) hydrolysate to BC. SPR was directly used without pretreatment, and almost no inhibitors were generated, which was beneficial to subsequent glucan conversion and SPR-BC synthesis. SPR-BC production was 11.35 g/L under the optimized condition. The comprehensive structural characterization and mechanical analysis demonstrated that the crystallinity, maximum thermal degradation temperature, and tensile strength of SPR-BC were 87.39%, 263 °C, and 6.87 MPa, respectively, which were superior to those of BC produced with the synthetic medium. SPR-BC was added to rice straw pulp to enhance the bonding force between fibers and the indices of tensile, burst, and tear of rice straw paper. The indices were increased by 83.18%, 301.27%, and 169.58%, respectively. This research not only expanded the carbon source of BC synthesis, reduced BC production cost, but also improved the quality of rice straw paper.


Assuntos
Bactérias/metabolismo , Celulose/biossíntese , Fermentação , Ipomoea batatas/química , Metabolismo dos Carboidratos , Hidrólise , Análise Espectral , Termogravimetria
4.
Int J Mol Sci ; 22(19)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34639147

RESUMO

In this work, we verified the possibility of valorizing a major waste product of the potato starch industry, potato tuber juice (PJ). We obtained a cost-effective, ecological-friendly microbiological medium that yielded bacterial cellulose (BC) with properties equivalent to those from conventional commercial Hestrin-Schramm medium. The BC yield from the PJ medium (>4 g/L) was comparable, despite the lack of any pre-treatment. Likewise, the macro- and microstructure, physicochemical parameters, and chemical composition showed no significant differences between PJ and control BC. Importantly, the BC obtained from PJ was not cytotoxic against fibroblast cell line L929 in vitro and did not contain any hard-to-remove impurities. The PJ-BC soaked with antiseptic exerted a similar antimicrobial effect against Staphylococcus aureus and Pseudomonas aeruginosa as to BC obtained in the conventional medium and supplemented with antiseptic. These are very important aspects from an application standpoint, particularly in biomedicine. Therefore, we conclude that using PJ for BC biosynthesis is a path toward significant valorization of an environmentally problematic waste product of the starch industry, but also toward a significant drop in BC production costs, enabling wider application of this biopolymer in biomedicine.


Assuntos
Bactérias/metabolismo , Celulose/biossíntese , Análise Custo-Benefício , Fibroblastos/metabolismo , Resíduos Industriais/economia , Solanum tuberosum/química , Animais , Celulose/economia , Meios de Cultura , Sucos de Frutas e Vegetais/análise , Camundongos , Amido/química
5.
Sci Rep ; 10(1): 3491, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32103077

RESUMO

Bacterial nanocellulose (BNC) has been drawing enormous attention because of its versatile properties. Herein, we shed light on the BNC production by a novel bacterial isolate (MD1) utilizing various agro-industrial wastes. Using 16S rRNA nucleotide sequences, the isolate was identified as Komagataeibacter saccharivorans MD1. For the first time, BNC synthesis by K. saccharivorans MD1 was investigated utilizing wastes of palm date, fig, and sugarcane molasses along with glucose on the Hestrin-Schramm (HS) medium as a control. After incubation for 168 h, the highest BNC yield was perceived on the molasses medium recording 3.9 g/L with an initial concentration of (v/v) 10%. The physicochemical characteristics of the BNC sheets were inspected adopting field-emission scanning electron microscope (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) analysis. The FESEM characterization revealed no impact of the wastes on either fiber diameter or the branching scheme, whereas the AFM depicted a BNC film with minimal roughness was generated using date wastes. Furthermore, a high crystallinity index was estimated by XRD up to 94% for the date wastes-derived BNC, while the FTIR analyses exhibited very similar profiles for all BNC films. Additionally, mechanical characteristics and water holding capacity of the produced BNCs were studied. Our findings substantiated that expensive substrates could be exchanged by agro-industrial wastes for BNC production conserving its remarkable physical and microstructural properties.


Assuntos
Acetobacteraceae/metabolismo , Celulose/biossíntese , Resíduos Industriais , Nanoestruturas/química , Acetobacteraceae/classificação , Acetobacteraceae/genética , Acetobacteraceae/isolamento & purificação , Técnicas de Cultura Celular por Lotes , Celulose/química , Meios de Cultura/química , Módulo de Elasticidade , Microscopia de Força Atômica , Filogenia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Água/química
6.
Int J Biol Macromol ; 150: 1113-1120, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31739023

RESUMO

Bacterial nanocellulose (BNC) is a renewable and biodegradable biopolymer which has currently received considerable attention due to the rapid increase in environmental issues. In this study, a cost-effective strategy for BNC production was successfully improved in the adapted strain, C30, which was obtained from Komagataeibacter xylinus MSKU 12 by a repetitive cultivation in a low-cost coconut water containing acetic acid and ethanol (CW-AE medium) at 37 °C. The adaptive procedure allowed the strain C30 to be adapted to grow and produce BNC with a higher yield in a limiting nutrient CW-AE medium, than that in a standard HS-AE medium. This strain could produce a high yield of BNC (9.69 g/L dry weight) in a low-cost medium, a modified CW-AE medium supplemented with sucrose and ammonium sulfate. Moreover, SEM images showed that BNC pellicle produced by the strain C30 in the modified CW-AE medium exhibited finer nanofibrils with a narrower range of width compared with those of MSKU 12 while no significant differences in their physicochemical characteristics were detected among these BNCs produced. Therefore, this finding demonstrates, not only the potential strain for the cost-effective BNC production at high temperature, but also the superior ultrafine nanofibrils production useful for further applications.


Assuntos
Acetobacteraceae/crescimento & desenvolvimento , Celulose/biossíntese , Nanofibras , Meios de Cultura/química , Meios de Cultura/farmacologia
7.
Int J Biol Macromol ; 136: 1188-1195, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31252013

RESUMO

In the present study, vinasse was used to produce bacterial cellulose (BC) by Komagatacibacter xylinus PTCC 1734. Central composite design (CCD) was utilized to evaluate the effects of vinasse concentration (%) and incubation time (Day) on different responses such as thickness as well as wet and dry weights of the produced BC membrane. The increase of vinasse concentration and incubation time caused an increase in the wet weight of BC; however, thickness decreased by increasing incubation time. The BC produced at the optimized conditions (40% vinasse and 10 days) was characterized and compared with the BC produced in Hestrin-Schramm medium as a control medium. Scanning electron microscopy (SEM) confirmed 3D network structure of BC. The average diameter of fibrils was in the range of 30-120 nm. In addition, the Fourier transform infrared spectroscopy (FT-IR) showed completely similar spectrum for both optimal and control samples. The X-ray diffraction (XRD) analysis approved the crystalline structure of the produced BC. Furthermore, the thermogravimetric analysis (TGA) test revealed no difference in the thermal stability of the optimum and control sample. According to the results, the vinasse, as a by-product, could be used as a cheap and suitable carbon source for the production of BC.


Assuntos
Acetobacteraceae/crescimento & desenvolvimento , Acetobacteraceae/metabolismo , Biotecnologia/economia , Biotecnologia/métodos , Celulose/biossíntese , Custos e Análise de Custo , Meios de Cultura/química , Celulose/química , Peso Molecular , Temperatura , Resíduos
8.
Mater Sci Eng C Mater Biol Appl ; 97: 302-312, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30678915

RESUMO

Bionanocellulose (BNC) is a clear polymer produced by the bacterium Gluconacetobacter xylinus. In our current study, "Research on the use of bacterial nanocellulose (BNC) in regenerative medicine as a function of the biological implants in cardiac and vascular surgery", we carried out material analysis, biochemical analysis, in vitro tests and in vivo animal model testing. In stage 1 of the project, we carried out physical and biological tests of BNC. This allowed us to modify subsequent samples of bacterial bionanocellulose. Finally, we obtained a sample that was accepted for testing on an animal model. That sample we define BNC1. Patches of BNC1 were then implanted into pigs' vessel walls. During the surgical procedures, we evaluated the technical aspects of sewing in the bioimplant, paying special attention to bleeding control and tightness of the suture line and the BNC1 bioimplant itself. We carried out studies evaluating the reaction of an animal body to an implantation of BNC1 into the circulatory system, including the general and local inflammatory reaction to the bioimplant. These studies allowed us to document the potential usefulness of BNC as a biological implant of the circulatory system and allowed for additional modifications of the BNC to improve the properties of this new implantable biological material.


Assuntos
Celulose/biossíntese , Celulose/química , Gluconacetobacter xylinus/metabolismo , Implantes Experimentais , Animais , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Procedimentos Cirúrgicos Cardíacos/instrumentação , Celulose/farmacologia , Hemólise/efeitos dos fármacos , Ácido Hialurônico/metabolismo , Implantes Experimentais/efeitos adversos , Inflamação/etiologia , Teste de Materiais , Suínos , Resistência à Tração
9.
J Mater Sci Mater Med ; 29(7): 90, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29938364

RESUMO

Recent research was conducted to evaluate the healing efficiency of bacterial cellulose (BC) as a wound dressing in different pHs and its possibility of being a smart wound dressing that can indicate pHs. BC was produced by environmentally isolated bacterial strains. After washing the best achieved BC, it was floated in normal saline with different pHs with phenol red used as a pH indicator. Finally the wound healing effects of the acidic, neutral and alkaline BC membranes were evaluated in rat cutaneous wounds. Results showed that one of the isolates which its partial 16srRNA genome had 95% similarity with Gluconacetobacter intermedius, had the thickest layer. The microscopic and macroscopic evaluations showed that the acidic BC had the best healing activity. Although the color of the films remained unchanged during the experiments because they were transparent and thin, these changes could not be easily seen. This suggests the use of thicker films such as the ones which are cross linked with some materials (e.g., sterile gauze). In conclusion the pH can affect the healing ability of natural BC and acidic pH had the best wound healing efficiency. In future it is better to use the acidic BC instead of natural one for different wound healing purposes.


Assuntos
Bandagens , Celulose/química , Cicatrização , Animais , Materiais Biocompatíveis/química , Celulose/biossíntese , Celulose/genética , Reagentes de Ligações Cruzadas , Feminino , Gluconacetobacter/genética , Gluconacetobacter/isolamento & purificação , Gluconacetobacter/metabolismo , Concentração de Íons de Hidrogênio , Teste de Materiais , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Ratos , Ratos Wistar , Pele/lesões , Pele/patologia
10.
Braz J Microbiol ; 49 Suppl 1: 151-159, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29703527

RESUMO

To reduce the cost of obtaining bacterial cellulose, acidic by-products of the alcohol and dairy industries were used without any pretreatment or addition of other nitrogen sources. Studies have shown that the greatest accumulation of bacterial cellulose (6.19g/L) occurs on wheat thin stillage for 3 days of cultivation under dynamic conditions, which is almost 3 times higher than on standard Hestrin and Schramm medium (2.14g/L). The use of whey as a nutrient medium makes it possible to obtain 5.45g/L bacterial cellulose under similar conditions of cultivation. It is established that the pH of the medium during the growth of Gluconacetobacter sucrofermentans B-11267 depends on the feedstock used and its initial value. By culturing the bacterium on thin stillage and whey, there is a decrease in the acidity of the waste. It is shown that the infrared spectra of bacterial cellulose obtained in a variety of environments have a similar character, but we found differences in the micromorphology and crystallinity of the resulting biopolymer.


Assuntos
Celulose/biossíntese , Gluconacetobacter/metabolismo , Microbiologia Industrial/métodos , Resíduos/análise , Meios de Cultura/economia , Meios de Cultura/metabolismo , Etanol/metabolismo , Indústria Alimentícia , Gluconacetobacter/crescimento & desenvolvimento , Microbiologia Industrial/economia , Triticum/metabolismo , Triticum/microbiologia , Resíduos/economia
11.
Braz. j. microbiol ; 49(supl.1): 151-159, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-974324

RESUMO

Abstract To reduce the cost of obtaining bacterial cellulose, acidic by-products of the alcohol and dairy industries were used without any pretreatment or addition of other nitrogen sources. Studies have shown that the greatest accumulation of bacterial cellulose (6.19 g/L) occurs on wheat thin stillage for 3 days of cultivation under dynamic conditions, which is almost 3 times higher than on standard Hestrin and Schramm medium (2.14 g/L). The use of whey as a nutrient medium makes it possible to obtain 5.45 g/L bacterial cellulose under similar conditions of cultivation. It is established that the pH of the medium during the growth of Gluconacetobacter sucrofermentans B-11267 depends on the feedstock used and its initial value. By culturing the bacterium on thin stillage and whey, there is a decrease in the acidity of the waste. It is shown that the infrared spectra of bacterial cellulose obtained in a variety of environments have a similar character, but we found differences in the micromorphology and crystallinity of the resulting biopolymer.


Assuntos
Resíduos/análise , Microbiologia Industrial/métodos , Celulose/biossíntese , Gluconacetobacter/metabolismo , Resíduos/economia , Triticum/metabolismo , Triticum/microbiologia , Microbiologia Industrial/economia , Indústria Alimentícia , Meios de Cultura/economia , Meios de Cultura/metabolismo , Gluconacetobacter/crescimento & desenvolvimento , Etanol/metabolismo
12.
Int J Biol Macromol ; 102: 1166-1173, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28487196

RESUMO

Bacterial cellulose (BC) has received substantial attention because of its high purity, mechanical strength, crystallinity, liquid-absorbing capabilities, biocompatibility, and biodegradability etc. These properties allow BC to be used in various fields, especially in industries producing medical, electronic, and food products etc. A major discrepancy associated with BC is its high production cost, usually much higher than the plant cellulose. To address this limitations, researchers have developed several strategies for enhanced production of BC including the designing of advanced reactors and utilization of various carbon sources. Another promising approach is the production of BC from waste materials such as food, industrial, agricultural, and brewery wastes etc. which not only reduces the overall BC production cost but is also environment-friendly. Besides, exploration of novel and efficient BC producing microbial strains provides impressive boost to the BC production processes. To this end, development of genetically engineered microbial strains has proven useful for enhanced BC production. In this review, we have summarized major efforts to enhance BC production in order to make it a cost-effective biopolymer. This review can be of interest to researchers investigating strategies for enhanced BC production, as well as companies exploring pilot projects to scale up BC production for industrial applications.


Assuntos
Biotecnologia/economia , Celulose/biossíntese , Análise Custo-Benefício , Reatores Biológicos/microbiologia , Biotecnologia/instrumentação
13.
Dokl Biochem Biophys ; 477(1): 357-359, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29297121

RESUMO

The concept of manufacturing valuable bacterial nanocellulose (BNC) from plant raw materials having a zero prime cost is substantiated. The process flowsheet involves the chemical transformation of the feedstock to obtain a pulp; enzymatic hydrolysis of the pulp to furnish a solution of reducing sugars, chiefly glucose; preparation of a nutrient broth based on the enzymatic hydrolysate; biosynthesis of nanocellulose microfibrils by the symbiotic Medusomyces gisevii Sa-12 culture; and purification of BNC. BNC has for the first time been synthesized from oat hulls and has a high degree of crystallinity of 88 ± 5% and is composed of 99% Iα-allomorph.


Assuntos
Bactérias/metabolismo , Celulose/biossíntese , Nanopartículas/química , Nanotecnologia/métodos , Avena/química , Celulose/química , Celulose/economia , Nanotecnologia/economia , Plantas/química
14.
Int J Biol Macromol ; 96: 52-60, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27939511

RESUMO

Bacterial nanocellulose (BNC), being ultrapure and unique in its properties, is a booming and ageless precursor of several breakthrough technologies of materials sciences; however, its low yield and high cost has created a challenge for its usage at industrial level. Herein, we report a novel, high yielding bacterial cell factory Komagataeibacter europaeus SGP37, isolated from rotten grapes, for the production of high quality and value added BNC. The strain was kinetically analyzed to evaluate BNC production under different physiological conditions and had demonstrated the production of 9.98±0.24gL-1 BNC at the expense of 12.08±1.94gL-1 sugar following 2 weeks of cultivation, thus having the conversion yield of 0.82g BNC/g sugar which seems to be the maximum reported yield so far. The analysis of produced pellicle using FTIR, 13C CP MAS NMR, FE-SEM, XRD and TGA had shown similar structural, morphological and chemical characteristics with that of bacterial nanocellulose. Thus, K. europaeus SGP37 appears to be a potential strain and may offer a promising platform for industrial scale production of nanocelluloses.


Assuntos
Acetobacteraceae/metabolismo , Biotecnologia/métodos , Celulose/biossíntese , Celulose/química , Indústrias , Nanoestruturas , Vitis/química , Biotecnologia/economia , Fenômenos Químicos , Indústrias/economia
15.
Bioresour Technol ; 211: 636-44, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27054881

RESUMO

Vine shoots were subjected to non-isothermal aqueous processing. A range of severities (S0) from 3.20 to 4.65 was assayed and their effects in terms of solubilization, composition, molar mass distribution, structural characterization and thermal stability of the liquors were studied using HPLC, HPSEC, TGA and FTIR. The spent solids were characterized by HPLC and FTIR. When autohydrolysis was carried out at S0=4.01, the substrate solubilization achieved a 38.7% of the raw material and 83.1% of the initial xylan was converted into xylooligosaccharides (XOS). The amount of TOS (total oligosaccharides) in the hydrolysates was 28.4g/L while the other non volatile compounds (ONVC) were 0.08g/g NVC. The spent solid from the treatment at S0=4.01 was composed about 90% of cellulose and lignin. Therefore, it can be concluded that autohydrolysis is a suitable pretreatment of vine shoots such as a first stage of a biomass refinery.


Assuntos
Celulose/biossíntese , Oligossacarídeos/biossíntese , Vitis/metabolismo , Celulose/química , Hidrólise
16.
Appl Biochem Biotechnol ; 172(8): 3748-60, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24569910

RESUMO

Search for efficient low-cost substrate/additives are gaining significant impetus in bacterial cellulose (BC) production. Makgeolli sludge (a traditional Korean wine distillery waste) is enriched with organic acid, alcohol, and sugar. Using makgeolli sludge filtrate (MSF) and Hestrin-Schramm (HS) medium (g/l of distilled water: glucose, 10.0; peptone, 5.0; yeast extract, 5.0; disodium phosphate, 2.7; citric acid, 1.15; pH 5.0), two different media-namely the modified HS media (ingredients of HS media except glucose dissolved in MSF) and mixed modified HS media (equal volume mixture of original and modified HS media)-were formulated. BC production with Gluconacetobacter xylinus was studied using the two above referred medium. Keeping HS medium as reference, effect of initial pH, glucose, ethanol, and organic acid concentration on BC production was also studied. It suggests that increasing initial glucose (up to 25 g/l) though improves BC production but results in poor BC yield above 15 g/l of glucose. However, addition of alcohol (up to 1%v/v) or citric acid (up to 20 mM) escalate productivity up to four and two times, respectively. In both modified HS media and mixed modified HS medium, BC production was four to five times higher than that of original HS medium. Even MSF alone surpassed HS medium in BC production. Scanning electron microscopy showed that BC microfibrils from MSF based media were several micrometers long and about 25-60 nm widths. X-ray diffraction patterns suggested the produced BC were of cellulose I polymorph.


Assuntos
Biotecnologia/economia , Biotecnologia/métodos , Celulose/biossíntese , Gluconacetobacter xylinus/metabolismo , Resíduos Industriais , Esgotos , Carbono/metabolismo , Ácido Cítrico/metabolismo , Meios de Cultura/química , Etanol/metabolismo , Gluconacetobacter xylinus/crescimento & desenvolvimento , Glucose/metabolismo , Concentração de Íons de Hidrogênio
17.
J Biosci Bioeng ; 115(3): 284-90, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23102658

RESUMO

Thin stillage (TS), wastewater from rice wine distillery, was used as a cost-free feedstock to replace the costly traditional Hestrin and Schramm (HS) medium for BC production by Gluconacetobacter xylinus. Due to the rich organic acids and amino acids content in TS, BC production was significantly enhanced as 50 (v/v) % of HS medium was replaced with TS. In the 50/50 TS-HS medium, BC concentration of 6.26 g/l could be obtained after 7 days static cultivation which is approximately 50% higher than that could be produced in HS-only medium. The BC produced by TS containing medium had slightly denser reticulated structures and higher crystallinity index values but with lower water holding capacities than that obtained from HS medium. Based on the 50% cost-free TS, the 50/50 TS-HS medium had a BC production feedstock cost about 67% lower than that of traditional HS medium. The employment of cost-free TS to replace a portion of HS medium to achieve a higher BC production not only can reduce the BC production cost but also solve the wastewater disposal problem of winery industry.


Assuntos
Celulose/biossíntese , Gluconacetobacter xylinus/metabolismo , Águas Residuárias/economia , Celulose/economia , Celulose/ultraestrutura , Análise Custo-Benefício , Vinho/economia
18.
Biotechnol Bioeng ; 105(4): 740-7, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19816981

RESUMO

A variety of approaches are available for generation of bacteria-produced nanocellulose (BNC) in different forms. BNC production under static cultivation conditions usually results in fleeces or foils, characterized by a homogeneous, three-dimensional network of nanofibers and a uniform surface. However, under static cultivation conditions in batch vessels, the widths and the lengths of the BNC sheets cultured are determined by the dimensions of the culture vessel. In this contribution, a novel, efficient process for a (semi-)continuous cultivation of planar BNC fleeces and foils with a freely selectable length and an adjustable height is presented. By means of comprehensive investigations, the comparability of the BNC harvested to that gained from static cultivation under batch conditions is demonstrated. A first estimation of the production costs further shows that this type of processing allows for significant cost reductions compared to static cultivation of BNC in Erlenmeyer flasks.


Assuntos
Biotecnologia/métodos , Celulose/análise , Celulose/biossíntese , Gluconacetobacter xylinus/metabolismo , Reatores Biológicos , Biotecnologia/economia , Biotecnologia/instrumentação , Celulose/ultraestrutura , Desenho de Equipamento , Nanoestruturas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA