Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Rep ; 12(1): 2181, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140278

RESUMO

Bacterial cellulose (BC) is an ecofriendly biopolymer with diverse commercial applications. Its use is limited by the capacity of bacterial production strains and cost of the medium. Mining for novel organisms with well-optimized growth conditions will be important for the adoption of BC. In this study, a novel BC-producing strain was isolated from rotten fruit samples and identified as Lactiplantibacillus plantarum from 16S rRNA sequencing. Culture conditions were optimized for supporting maximal BC production using one variable at a time, Plackett-Burman design, and Box Behnken design approaches. Results indicated that a modified Yamanaka medium supported the highest BC yield (2.7 g/l), and that yeast extract, MgSO4, and pH were the most significant variables influencing BC production. After optimizing the levels of these variables through Box Behnken design, BC yield was increased to 4.51 g/l. The drug delivery capacity of the produced BC membrane was evaluated through fabrication with sodium alginate and gentamycin antibiotic at four different concentrations. All membranes (normal and fabricated) were characterized by scanning electron microscope, Fourier transform-infrared spectroscopy, X-ray diffraction, and mechanical properties. The antimicrobial activity of prepared composites was evaluated by using six human pathogens and revealed potent antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, and Streptococcus mutans, with no detected activity against Pseudomonas aeruginosa and Candida albicans.


Assuntos
Anti-Infecciosos/farmacologia , Técnicas de Cultura de Células/métodos , Celulose/biossíntese , Lactobacillaceae/química , Lactobacillaceae/genética , Membranas/química , Alginatos/farmacologia , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Celulose/química , Celulose/isolamento & purificação , Meios de Cultura , Gentamicinas/farmacologia , Lactobacillaceae/isolamento & purificação , Lactobacillaceae/metabolismo , Microscopia Eletrônica de Varredura , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Difração de Raios X
2.
Int J Biol Macromol ; 140: 225-233, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31437495

RESUMO

Wheat bran is an abundant source of cellulose and is still going to waste because of the lack of knowledge about its further exploitation and comprehensive utilisation. Here, cellulose nanocrystals (CNC) were prepared from wheat bran via sulfuric acid hydrolysis. The effects of hydrolysis time on the morphology, surface charge, yield, structure, thermal stability, physicochemical properties, and cytotoxicity of CNC were investigated. Results showed that non-cellulosic components were extensively removed by the purification process. Transmission electron microscopy confirmed that the obtained CNC displayed a needle-like shape with various dimensions. Zeta potential values of the CNC suspensions ranged from -36.5 to -39.8 mV. A hydrolysis time of 60 min resulted in CNC with the highest crystallinity (70.32%). The thermal stability of CNC shifted to lower temperature with increasing hydrolysis time. In addition, the obtained CNC exhibited interesting physicochemical properties (the water/oil retention capacities and the adsorption capacities to heavy metals) and good biocompatibility, suggesting their great potential as reinforcement for the manufacture of nanocomposites.


Assuntos
Celulose/química , Fibras na Dieta , Nanocompostos/química , Nanopartículas/química , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Celulose/isolamento & purificação , Celulose/farmacologia , Temperatura Baixa , Química Verde , Humanos , Hidrólise , Nanocompostos/ultraestrutura , Ácidos Sulfúricos , Triticum
3.
Int J Biol Macromol ; 138: 950-957, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31351957

RESUMO

Bacterial Cellulose (BC), a valuable biopolymer gaining importance over the past few decades due to its remarkable properties and applications. In this study, crude distillery effluent having a high COD value of 87,433 mg/L was used to produce Bacterial Cellulose under static fermentation by Komagataeibacter saccharivorans, a novel isolated bacterial strain. 1.24 g/L of cellulose production was noted after eight days along with 23.6% reduction in COD value. The BC pellicle was purified, lyophilized and stored. Further, the lyophilized BC pellicle was subjected to characterization techniques such as SEM, ATR-FTIR, XRD, NMR and TLC. Morphological analysis revealed that cellulose fibers were dense with higher porosity and an average fiber width of 60 nm. FTIR depicted similar functional groups as that of BC-HS medium. TLC of the biopolymer was performed to evaluate its purity. X-ray diffraction and 13C NMR studies gave more insights about the crystalline and the amorphous regions; the synthesized polymer exhibited 80.2% as crystallinity and crystallite size of 8.36. Hence, the present study demonstrates that distillery effluent waters could be effectively reused as production medium fulfilling two objectives namely one reducing COD and making the effluent safe for disposal and two to produce a value-added product.


Assuntos
Celulose/química , Nutrientes/química , Polissacarídeos Bacterianos/química , Celulose/isolamento & purificação , Celulose/ultraestrutura , Destilação , Nutrientes/isolamento & purificação , Polissacarídeos Bacterianos/isolamento & purificação , Polissacarídeos Bacterianos/ultraestrutura , Análise Espectral
4.
Bioresour Technol ; 275: 430-433, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30579775

RESUMO

In the present investigation, several residues from agro-forestry industries such as rice straw acid hydrolysate, corn cob acid hydrolysate, tomato juice, cane molasses and orange pulp were evaluated as the economical source for the production of bacterial cellulose. The bacterial cellulose attained the significant yield of 7.8 g/L using tomato juice, followed by 3.6 g/L using cane molasses and 2.8 g/L using orange pulp after 7 days of incubation. Furthermore, the optimum pH and temperature of fermentation for maximum production of bacterial cellulose was 4.5 and 30 ±â€¯1 °C. The identified bacterium Acetobacter pasteurianus RSV-4 has been deposited at repository under the accession number MTCC 25117. The produced bacterial cellulose was characterized through FTIR, SEM, TGA and DSC and found to be of very good quality. The bacterial cellulose produced by identified strain on these various agro-waste residues could be a cost effective technology for commercial its production.


Assuntos
Acetobacter/metabolismo , Celulose/isolamento & purificação , Celulose/economia , Fermentação , Melaço
5.
Carbohydr Polym ; 93(1): 9-21, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23465896

RESUMO

The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where large scale competition can be expected and already is observed for the traditional industries such as the paper industry. Cellulose and lignocellulosic raw materials (like wood and non-wood fibre crops) are being utilised in many industrial sectors. Due to the initiated transition towards biobased economy, these raw materials are intensively investigated also for new applications such as 2nd generation biofuels and 'green' chemicals and materials production (Clark, 2007; Lange, 2007; Petrus & Noordermeer, 2006; Ragauskas et al., 2006; Regalbuto, 2009). As lignocellulosic raw materials are available in variable quantities and qualities, unnecessary competition can be avoided via the choice of suitable raw materials for a target application. For example, utilisation of cellulose as carbohydrate source for ethanol production (Kabir Kazi et al., 2010) avoids the discussed competition with easier digestible carbohydrates (sugars, starch) deprived from the food supply chain. Also for cellulose use as a biopolymer several different competing markets can be distinguished. It is clear that these applications and markets will be influenced by large volume shifts. The world will have to reckon with the increase of competition and feedstock shortage (land use/biodiversity) (van Dam, de Klerk-Engels, Struik, & Rabbinge, 2005). It is of interest - in the context of sustainable development of the bioeconomy - to categorize the already available and emerging lignocellulosic resources in a matrix structure. When composing such "cellulose resource matrix" attention should be given to the quality aspects as well as to the available quantities and practical possibilities of processing the feedstock and the performance in the end-application. The cellulose resource matrix should become a practical tool for stakeholders to make choices regarding raw materials, process or market. Although there is a vast amount of scientific and economic information available on cellulose and lignocellulosic resources, the accessibility for the interested layman or entrepreneur is very difficult and the relevance of the numerous details in the larger context is limited. Translation of science to practical accessible information with modern data management and data integration tools is a challenge. Therefore, a detailed matrix structure was composed in which the different elements or entries of the matrix were identified and a tentative rough set up was made. The inventory includes current commodities and new cellulose containing and raw materials as well as exotic sources and specialties. Important chemical and physical properties of the different raw materials were identified for the use in processes and products. When available, the market data such as price and availability were recorded. Established and innovative cellulose extraction and refining processes were reviewed. The demands on the raw material for suitable processing were collected. Processing parameters known to affect the cellulose properties were listed. Current and expected emerging markets were surveyed as well as their different demands on cellulose raw materials and processes. The setting up of the cellulose matrix as a practical tool requires two steps. Firstly, the reduction of the needed data by clustering of the characteristics of raw materials, processes and markets and secondly, the building of a database that can provide the answers to the questions from stakeholders with an indicative character. This paper describes the steps taken to achieve the defined clusters of most relevant and characteristic properties. These data can be expanded where required. More detailed specification can be obtained from the background literature and handbooks. Where gaps of information are identified, the research questions can be defined that will require further investigation.


Assuntos
Celulose/química , Conservação dos Recursos Naturais/métodos , Madeira/química , Parede Celular/química , Celulose/economia , Celulose/isolamento & purificação , Conservação dos Recursos Naturais/economia , Bases de Dados Factuais , Linho/química , Marketing/economia , Marketing/métodos , Microfibrilas/química , Polimerização , Polímeros/química , Solubilidade
6.
Appl Biochem Biotechnol ; 91-93: 297-309, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11963858

RESUMO

A combined sedimentation and membrane filtration process was investigated for recycling cellulase enzymes in the biomass-to-ethanol process. In the first stage, lignocellulose particles longer than approx 50 microm were removed by means of sedimentation in an inclined settler. Microfiltration was then utilized to remove the remaining suspended solids. Finally, the soluble cellulase enzymes were recovered by ultrafiltration. The permeate fluxes obtained in microfiltration and ultrafiltration were approx 400 and 80 L/(m2 x h), respectively. A preliminary economic analysis shows that the cost benefit of enzyme recycling may be as much as 18 cents/gal of ethanol produced, provided that 75% of the enzyme is recycled in active form.


Assuntos
Celulase/isolamento & purificação , Biomassa , Biotecnologia , Celulase/metabolismo , Celulose/isolamento & purificação , Custos e Análise de Custo , Etanol/metabolismo , Filtração/instrumentação , Filtração/métodos , Lignina/isolamento & purificação , Filtros Microporos , Ultrafiltração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA