Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34885815

RESUMO

The addition of 2-amino-1,3,4-thiadiazole derivatives with parallel iodination of differently protected glycals has been achieved using a double molar excess of molecular iodine under mild conditions. The corresponding thiadiazole derivatives of N-glycosides were obtained in good yields and anomeric selectivity. The usage of iodine as a catalyst makes this method easy, inexpensive, and successfully useable in reactions with sugars. Thiadiazole derivatives were tested in a panel of three tumor cell lines, MCF-7, HCT116, and HeLa. These compounds initiated biological response in investigated tumor models in a different rate. The MCF-7 is resistant to the tested compounds, and the cytometry assay indicated low increase in cell numbers in the sub- G1 phase. The most sensitive are HCT-116 and HeLa cells. The thiadiazole derivatives have a pro-apoptotic effect on HCT-116 cells. In the case of the HeLa cells, an increase in the number of cells in the sub-G1- phase and the induction of apoptosis was observed.


Assuntos
Antineoplásicos/farmacologia , Glicosídeos/síntese química , Glicosídeos/farmacologia , Tiadiazóis/síntese química , Tiadiazóis/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Glicosídeos/química , Glicosilação , Humanos , Estereoisomerismo , Tiadiazóis/química
2.
Pharmacol Res ; 172: 105776, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34450319

RESUMO

Obesity and associated metabolic disorders are heading up with an alarming rate in developing nations. One of highly sought solution for metabolic disorders is to identify natural molecule with an ability to reduce obesity and increase insulin sensitivity. Coelogin (CLN) is a phenanthrene derivative isolated from the ethanolic extract of Coelogyne cristata. In our constant efforts to identify novel anti-dyslipidemic and anti-adipogenic compounds using CFPMA (common feature pharmacophore model using known anti-adipogenic compounds) model, predicted possible anti-adipogenic activity of CLN. In vitro results showed significant inhibition of adipogenesis in 3T3-L1 and C3H10T1/2 cell by CLN. It arrests the cell cycle in G1 phase of interphase and inhibits mitotic clonal expansion to regulate adipogenesis. CLN elicits insulin sensitizing effect in mature adipocytes. During extracellular flux assessment studies, it increases oxidative respiration and energy expenditure in adipocytes. In vivo, CLN reversed HFD-induced dyslipidemia as well as insulin resistance in C57BL/6 mice. It promoted the expression of genes involved in improved mitochondrial function and fatty acid oxidation in eWAT. CLN restored energy expenditure and increased the capacity of energy utilization in HFD fed mice. Taken together, the study indicated beneficial effects of CLN in combating obesity-associated metabolic complications.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Doenças Metabólicas/tratamento farmacológico , Obesidade/tratamento farmacológico , Fenantrenos/uso terapêutico , Piranos/uso terapêutico , Adipogenia/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Fármacos Antiobesidade/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Glicerol/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/complicações , Obesidade/metabolismo , Oxigênio/metabolismo , Fenantrenos/farmacologia , Piranos/farmacologia
3.
J Vis Exp ; (170)2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33999036

RESUMO

The study of the DNA damage response (DDR) is a complex and essential field, which has only become more important due to the use of DDR-targeting drugs for cancer treatment. These targets are poly(ADP-ribose) polymerases (PARPs), which initiate various forms of DNA repair. Inhibiting these enzymes using PARP inhibitors (PARPi) achieves synthetic lethality by conferring a therapeutic vulnerability in homologous recombination (HR)-deficient cells due to mutations in breast cancer type 1 (BRCA1), BRCA2, or partner and localizer of BRCA2 (PALB2). Cells treated with PARPi accumulate DNA double-strand breaks (DSBs). These breaks are processed by the DNA end resection machinery, leading to the formation of single-stranded (ss) DNA and subsequent DNA repair. In a BRCA1-deficient context, reinvigorating DNA resection through mutations in DNA resection inhibitors, such as 53BP1 and DYNLL1, causes PARPi resistance. Therefore, being able to monitor DNA resection in cellulo is critical for a clearer understanding of the DNA repair pathways and the development of new strategies to overcome PARPi resistance. Immunofluorescence (IF)-based techniques allow for monitoring of global DNA resection after DNA damage. This strategy requires long-pulse genomic DNA labeling with 5-bromo-2'-deoxyuridine (BrdU). Following DNA damage and DNA end resection, the resulting single-stranded DNA is specifically detected by an anti-BrdU antibody under native conditions. Moreover, DNA resection can also be studied using cell cycle markers to differentiate between various phases of the cell cycle. Cells in the S/G2 phase allow the study of end resection within HR, whereas G1 cells can be used to study non-homologous end joining (NHEJ). A detailed protocol for this IF method coupled to cell cycle discrimination is described in this paper.


Assuntos
Bromodesoxiuridina/química , Ciclo Celular , DNA/genética , Ciclo Celular/efeitos dos fármacos , DNA/análise , DNA/química , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Recombinação Homóloga , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
4.
Nutrients ; 13(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33923895

RESUMO

Magnesium is an essential nutrient involved in many important processes in living organisms, including protein synthesis, cellular energy production and storage, cell growth and nucleic acid synthesis. In this study, we analysed the effect of magnesium deficiency on the proliferation of SaOS-2 osteosarcoma cells. When quiescent magnesium-starved cells were induced to proliferate by serum addition, the magnesium content was 2-3 times lower in cells maintained in a medium without magnesium compared with cells growing in the presence of the ion. Magnesium depletion inhibited cell cycle progression and caused the inhibition of cell proliferation, which was associated with mTOR hypophosphorylation at Serine 2448. In order to map the intracellular magnesium distribution, an analytical approach using synchrotron-based X-ray techniques was applied. When cell growth was stimulated, magnesium was mainly localized near the plasma membrane in cells maintained in a medium without magnesium. In non-proliferating cells growing in the presence of the ion, high concentration areas inside the cell were observed. These results support the role of magnesium in the control of cell proliferation, suggesting that mTOR may represent an important target for the antiproliferative effect of magnesium. Selective control of magnesium availability could be a useful strategy for inhibiting osteosarcoma cell growth.


Assuntos
Diagnóstico por Imagem , Espaço Intracelular/química , Magnésio/farmacologia , Osteossarcoma/diagnóstico por imagem , Osteossarcoma/patologia , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
5.
Regul Toxicol Pharmacol ; 122: 104892, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33592196

RESUMO

In 2019, the California Office of Environmental Health Hazard Assessment initiated a review of the carcinogenic hazard potential of acetaminophen, including an assessment of its genotoxicity. The objective of this analysis was to inform this review process with a weight-of-evidence assessment of more than 65 acetaminophen genetic toxicology studies that are of widely varying quality and conformance to accepted standards and relevance to humans. In these studies, acetaminophen showed no evidence of induction of point or gene mutations in bacterial and mammalian cell systems or in in vivo studies. In reliable, well-controlled test systems, clastogenic effects were only observed in unstable, p53-deficient cell systems or at toxic and/or excessively high concentrations that adversely affect cellular processes (e.g., mitochondrial respiration) and cause cytotoxicity. Across the studies, there was no clear evidence that acetaminophen causes DNA damage in the absence of toxicity. In well-controlled clinical studies, there was no meaningful evidence of chromosomal damage. Based on this weight-of-evidence assessment, acetaminophen overwhelmingly produces negative results (i.e., is not a genotoxic hazard) in reliable, robust high-weight studies. Its mode of action produces cytotoxic effects before it can induce the stable, genetic damage that would be indicative of a genotoxic or carcinogenic hazard.


Assuntos
Acetaminofen/análise , Animais , Carcinogênese , Ciclo Celular/efeitos dos fármacos , Aberrações Cromossômicas/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Humanos , Testes de Mutagenicidade , Mutagênicos
6.
Methods Mol Biol ; 2240: 243-261, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33423238

RESUMO

Chemical compounds induce cytotoxicity by various mechanisms, including interference in membrane integrity, metabolism, cellular component degradation or release, and cell division. Between the classic death pathways, namely, autophagy, apoptosis, and necrosis, apoptosis have been in the focus for the last several years as an important pathway for the toxicity of different types of xenobiotics. Because of that, having the tools to evaluate it is key for understanding and explaining the toxicodynamics of different classes of substances. Here, we describe a wide array of classic assays that can be easily implemented to evaluate apoptosis induction.


Assuntos
Apoptose/efeitos dos fármacos , Bioensaio , Mitocôndrias/efeitos dos fármacos , Testes de Toxicidade , Animais , Anexina A5/metabolismo , Biomarcadores/metabolismo , Western Blotting , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Fragmentação do DNA , Citometria de Fluxo , Humanos , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo
7.
PLoS One ; 15(11): e0241448, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33151949

RESUMO

Equine sarcoid (ES) is the most prevalent skin tumor in equids worldwide. Additionally, aging grey horses frequently suffer from equine malignant melanoma (EMM). Current local therapies targeting these skin tumors remain challenging. Therefore, more feasible topical treatment options should be considered. In order to develop a topical therapy against ES and EMM, betulinyl-bis-sulfamate and NVX-207, derivatives of the naturally occurring betulin and betulinic acid, respectively, were evaluated for their antiproliferative (crystal violet staining assay), cytotoxic (MTS assay) and apoptotic (AnnexinV staining, cell cycle investigations) effects on primary ES cells, EMM cells and equine dermal fibroblasts in vitro. The more potent derivative was assessed for its in vitro penetration and permeation on isolated equine skin within 30 min and 24 h using Franz-type diffusion cells and HPLC analysis. Betulinyl-bis-sulfamate and NVX-207 inhibited the proliferation and metabolism in ES cells, EMM cells and fibroblasts significantly (p < 0.001) in a time- and dose-dependent manner. NVX-207 had superior anticancer effects compared to betulinyl-bis-sulfamate. Both compounds led to the externalization of phosphatidylserines on the cell membrane and DNA fragmentation, demonstrating that the effective mode of action was apoptosis. After 48 h of treatment with NVX-207, the number of necrotic cells was less than 2% in all cell types. Detected amounts of NVX-207 in the different skin layers exceeded the half-maximal inhibitory concentrations calculated by far. Even though data obtained in vitro are auspicious, the results are not unconditionally applicable to the clinical situation. Consequently, in vivo studies are required to address the antitumoral effects of topically applied NVX-207 in ES and EMM patients.


Assuntos
Doenças dos Cavalos/tratamento farmacológico , Propanolaminas/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/veterinária , Ácidos Sulfônicos/uso terapêutico , Triterpenos/administração & dosagem , Triterpenos/uso terapêutico , Administração Tópica , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Derme/patologia , Difusão , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Cavalos , Concentração Inibidora 50 , Propanolaminas/farmacologia , Ácidos Sulfônicos/farmacologia , Triterpenos/farmacologia
8.
Int J Mol Sci ; 21(22)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198069

RESUMO

ATR, a DNA damage signaling kinase, is required for cell cycle checkpoint regulation and detecting DNA damage caused by genotoxic factors including Al3+ ions. We analyzed the function of the HvATR gene in response to chemical clastogen-maleic acid hydrazide (MH). For this purpose, the Al-tolerant barley TILLING mutant hvatr.g was used. We described the effects of MH on the nuclear genome of hvatr.g mutant and its WT parent cv. "Sebastian", showing that the genotoxic effect measured by TUNEL test and frequency of cells with micronuclei was much stronger in hvatr.g than in WT. MH caused a significant decrease in the mitotic activity of root cells in both genotypes, however this effect was significantly stronger in "Sebastian". The impact of MH on the roots cell cycle, analyzed using flow cytometry, showed no differences between the mutant and WT.


Assuntos
Alumínio/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA/efeitos dos fármacos , Hordeum/efeitos dos fármacos , Hidrazida Maleica/farmacologia , Proteínas de Arabidopsis/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Dano ao DNA/genética , Genoma de Planta/efeitos dos fármacos , Genoma de Planta/genética , Genótipo , Hordeum/genética , Micronúcleos com Defeito Cromossômico/efeitos dos fármacos , Mutagênicos/farmacologia , Mutação/efeitos dos fármacos , Mutação/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética
9.
Homeopathy ; 109(4): 198-206, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32610349

RESUMO

BACKGROUND: Breast cancer is the second leading cause of cancer-related deaths in women. Conventional treatment such as chemotherapy, hormonal therapy and radiotherapy has decreased the mortality rate among cancer patients but has also revealed long-term side effects. Drug resistance and toxicity to normal cells compound the problems associated with the use of modern medicines. Hence, complementary or alternative treatment options are being explored. The current study, using different homeopathic potencies of Hydrastis canadensis, was conducted to distinguish between any effects they might have on hormone-dependent and independent breast cancer. MATERIALS AND METHODS: The cytotoxic effect of homeopathic medicine Hydrastis on hormone-dependent (MCF 7) and hormone-independent (MDA-MB-468) breast cancer cells was assessed using viability and colony-forming assays after 48 or 72 hours of treatment. Flow cytometry-based Annexin V-PI (propidium iodide), caspase 3 and cell cycle analysis was performed following treatment of cells with mother tincture or various potencies of Hydrastis (1C, 2C, 30C, 200C). RESULTS: Different potencies of Hydrastis displayed selective cytotoxic effects against MCF 7 cells, but only marginal effects against MDA-MB-468. The maximum cytotoxicity was established in the case of 1C following 72 hours of treatment. Treatment of breast cancer cells revealed an increase in the G0/G1 cell population, along with an increase in the caspase 3 levels and induction of apoptosis. CONCLUSION: Hydrastis may have a selective cytotoxic effect against hormone-dependent breast cancer MCF 7 cells, leading to cell cycle arrest in the G0/G1 phase, which could be the plausible reason for the induction of apoptosis. The results need to be validated in vivo.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Homeopatia/métodos , Hydrastis , Extratos Vegetais/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citotoxinas/farmacologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Técnicas In Vitro , Células MCF-7
10.
J Toxicol Environ Health A ; 83(13-14): 495-508, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32568621

RESUMO

RUBUS ROSIFOLIUS: Sm. (Rosaceae) is a plant traditionally used in Brazil and some other countries to treat diarrhea, stomach diseases, and as an analgesic, antimicrobial, antihypertensive, and as well as other pharmacological properties. The aim of this study was to examine cytotoxic and genotoxic effects of R. rosifolius leaves extract on HepG2/C3A cells and correlate these findings with the expression of mRNA to underlying mechanisms of action. At concentrations between 0.01 and 100 µg/ml, cytotoxic effects were not detected by the MTT assay. This was confirmed by mRNA induction of the CYP3A4 gene (by RT-qPCR assay). However, genotoxic effects occurred at treatments from 1 µg/ml extract (comet and micronucleus test). An increase in the number of cells in S phase was observed at 100 µg/ml, and an elevation in apoptotic cell number was found for all tested concentrations (10, 20, or 100 µg/ml) (cell cycle and apoptosis analysis by flow cytometry). The genotoxicity induced by the extract was the main cause of the rise in the number of cells undergoing apoptosis, as indicated by rise in mRNA of CASP7 gene, and elevation of cells in the S phase of the cell cycle at the higher tested concentrations, as an attempt to repair genetic damage that occurred. These observations suggest that, despite its pharmacological potential, the use of R. rosifolius leaves extract may pose a risk to the integrity of the genetic material of human cells.


Assuntos
Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Dano ao DNA , Extratos Vegetais/toxicidade , Rubus/química , Brasil , Caspase 7/genética , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Testes de Mutagenicidade , Extratos Vegetais/química , Folhas de Planta/química , Folhas de Planta/toxicidade , Plantas Medicinais , Medição de Risco , Rubus/toxicidade
11.
Chemosphere ; 250: 126416, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32380589

RESUMO

The flavonoid metal-insecticide magnesium-hesperidin complex (MgHP) has recently been considered as a novel insecticide to replace some persistent pesticides. However, it is important to evaluate its action on non-target species, mainly those living in an aquatic environment, as these ecosystems are the final receptors of most chemicals. Reactive oxygen species, antioxidant and oxidative stress biomarkers, genotoxicity as well as cell cycle was evaluated in the liver cell line from zebrafish (Danio rerio; ZF-L) exposed to 0, 0.1, 1, 10, 100 and 1000 ng mL-1 MgHP. MgHP affected cell stability by increasing reactive oxygen species (ROS) in both exposure times (24 and 96 h) at high concentrations. Catalase (CAT) activity decreased after 24 h exposure, and glutathione and metallothionein values increased, avoiding the lipid peroxidation. Genotoxicity increased as MgHP concentration increased, after 24 h exposure, exhibiting nuclear abnormalities; it was recovered after 96 h exposure, evidencing possible stimulation of DNA repair mechanisms. The alteration in the cell cycle (increasing in the Sub-G1 phase and decreasing in the S-phase) was associated with chromosomal instability. In conclusion, the responses of ROS and the antioxidant defense system depended on MgHP concentration and time exposure, while DNA exhibited some instability after 24 h exposure, which was recovered after 96 h.


Assuntos
Ciclo Celular/efeitos dos fármacos , Inseticidas/toxicidade , Fígado/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Linhagem Celular , Dano ao DNA , Relação Dose-Resposta a Droga , Ecotoxicologia/métodos , Biomarcadores Ambientais/efeitos dos fármacos , Glutationa/metabolismo , Hesperidina/química , Hesperidina/toxicidade , Inseticidas/administração & dosagem , Inseticidas/química , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/citologia , Fígado/metabolismo , Magnésio/química , Testes de Mutagenicidade/métodos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/química , Peixe-Zebra
12.
J Biomed Mater Res A ; 108(7): 1520-1533, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32170903

RESUMO

Understanding the cellular and molecular toxicity of graphene and its derivatives is essential for their biomedical applications. Herein, gene expression profile of graphene-exposed cells was retrieved from the Gene expression omnibus database. Differentially expressed genes and their functional roles were then investigated through the pathway, protein-protein interaction (PPI) network, and module analysis. High degree (hub) and high betweenness centrality (bottleneck) nodes were subsequently identified. The functional analysis of central genes indicated that these graphene-gene interactions could be of great value for further investigation. Accordingly, we also followed the expression of five hub-bottleneck genes in graphene-treated murine peritoneal macrophages and human breast cancer cell line by real-time PCR. The five hub-bottleneck genes related to graphene cytotoxicity; CDK1, CCNB1, PLK1, TOP2A, and CCNA2 were identified through network analysis, which were highly correlated with regulation of cell cycle processes. The module analysis indicated the cell cycle pathway to be the predominant one. Gene expression evaluation showed downregulation of these genes in the macrophages and cancer cells treated with graphene. These results provided some new intuitions concerning the graphene-cell interactions and unveiled targeting critical cell cycle regulators. The present study indicated some toxic effects of graphene-based materials through systems toxicology assessment. Integrating gene expression and PPI network may help explaining biological responses of graphene and lead to beneficial impacts in nanomedicine.


Assuntos
Materiais Biocompatíveis/toxicidade , Ciclo Celular/efeitos dos fármacos , Grafite/toxicidade , Animais , Linhagem Celular Tumoral , Células Cultivadas , Biologia Computacional , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mapas de Interação de Proteínas/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
13.
PLoS One ; 15(1): e0228024, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31978092

RESUMO

Abnormal accumulation of acyl-CoA cholesterol acyltransferase-1 (ACAT-1) mediated cholesterol ester has been shown to contribute to cancer progression in various cancers including leukemia, glioma, breast, pancreatic and prostate cancers. However, the significance of ACAT-1 and cholesterol esters (CE) is relatively understudied in ovarian cancer. In this in vitro study, we assessed the expression and contribution of ACAT-1 in ovarian cancer progression. We observed a significant increase in the expression of ACAT-1 and CE levels in a panel of ovarian cancer cell lines (OC-314, SKOV-3 and IGROV-1) compared to primary ovarian epithelial cells (normal controls). To confirm the tumor promoting capacity of ACAT-1, we inhibited ACAT-1 expression and activity by treating our cell lines with an ACAT inhibitor, avasimibe, or by stable transfection with ACAT-1 specific short hairpin RNA (shRNA). We observed significant suppression of cell proliferation, migration and invasion in ACAT-1 knockdown ovarian cancer cell lines compared to their respective controls (cell lines transfected with scrambled shRNA). ACAT-1 inhibition enhanced apoptosis with a concurrent increase in caspases 3/7 activity and decreased mitochondrial membrane potential. Increased generation of reactive oxygen species (ROS) coupled with increased expression of p53 may be the mechanism(s) underlying pro-apoptotic action of ACAT-1 inhibition. Additionally, ACAT-1 inhibited ovarian cancer cell lines displayed enhanced chemosensitivity to cisplatin treatment. These results suggest ACAT-1 may be a potential new target for the treatment of ovarian cancer.


Assuntos
Progressão da Doença , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/patologia , Esterol O-Aciltransferase/metabolismo , Acetil-CoA C-Acetiltransferase , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 7/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ésteres do Colesterol/metabolismo , Cisplatino/farmacologia , Feminino , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Invasividade Neoplásica , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Esterol O-Aciltransferase/antagonistas & inibidores , Ensaio Tumoral de Célula-Tronco
14.
Toxicol Appl Pharmacol ; 388: 114872, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31881176

RESUMO

Acetamide (CAS 60-35-5) is detected in common foods. Chronic rodent bioassays led to its classification as a group 2B possible human carcinogen due to the induction of liver tumors in rats. We used a toxicogenomics approach in Wistar rats gavaged daily for 7 or 28 days at doses of 300 to 1500 mg/kg/day (mkd) to determine a point of departure (POD) and investigate its mode of action (MoA). Ki67 labeling was increased at doses ≥750 mkd up to 3.3-fold representing the most sensitive apical endpoint. Differential gene expression analysis by RNA-Seq identified 1110 and 1814 differentially expressed genes in male and female rats, respectively, following 28 days of treatment. Down-regulated genes were associated with lipid metabolism while up-regulated genes included cell signaling, immune response, and cell cycle functions. Benchmark dose (BMD) modeling of the Ki67 labeling index determined the BMD10 lower confidence limit (BMDL10) as 190 mkd. Transcriptional BMD modeling revealed excellent concordance between transcriptional POD and apical endpoints. Collectively, these results indicate that acetamide is most likely acting through a mitogenic MoA, though specific key initiating molecular events could not be elucidated. A POD value of 190 mkd determined for cell proliferation is suggested for risk assessment purposes.


Assuntos
Acetamidas/toxicidade , Carcinógenos/toxicidade , Contaminação de Alimentos , Neoplasias Hepáticas/genética , Modelos Biológicos , Animais , Carcinogênese/induzido quimicamente , Carcinogênese/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Simulação por Computador , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunidade/efeitos dos fármacos , Imunidade/genética , Antígeno Ki-67/análise , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/patologia , Masculino , RNA-Seq , Ratos , Ratos Wistar , Medição de Risco/métodos , Testes de Toxicidade Crônica/métodos , Regulação para Cima/efeitos dos fármacos
15.
Anticancer Res ; 39(12): 6673-6684, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31810932

RESUMO

BACKGROUND/AIM: The aim of the study was to evaluate the antitumor potential and combination effects of chemotherapeutic drugs. MATERIALS AND METHODS: The cytotoxicity of 20 drip-type classical and molecular-targeted anticancer drugs was examined against 4 human oral squamous cell carcinoma cell lines and 5 human oral normal mesenchymal and epithelial cells. Cell cycle progression was monitored by a cell sorter. Combination effect was evaluated by combination index. RESULTS: Most of the classical anticancer drugs showed much higher antitumor activity than molecular-targeted drugs, except bortezomib. Among 12 classical anticancer drugs, taxanes and gemsitabine showed the highest tumor-specificity (TS) and potency-selectivity expression (PSE) values, whereas platinum analogs showed the least TS value. Combination of two classical or a classical and a molecular-targeted drug showed mostly additive or antagonistic effect. 5-FU and cisplatin did not produce a subG1 population, but induced G2/M or G1/S arrest, regardless of the addition of cetuximab. Cetuximab, nibolumab and bortezomib showed potent keratinocyte toxicity. CONCLUSION: The present TS monitoring system may provide useful information for building up the treatment regimens of anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Células Epiteliais/efeitos dos fármacos , Terapia de Alvo Molecular , Neoplasias Bucais/tratamento farmacológico , Bortezomib/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cetuximab/farmacologia , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Fibroblastos/efeitos dos fármacos , Fluoruracila/farmacologia , Hormese , Humanos , Técnicas In Vitro , Queratinócitos/efeitos dos fármacos , Mucosa Bucal/citologia , Nivolumabe/farmacologia , Compostos de Platina/farmacologia , Taxoides/farmacologia , Gencitabina
16.
Mater Sci Eng C Mater Biol Appl ; 104: 109878, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31499994

RESUMO

Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) composites containing fish scales (FSs) were prepared and used in the fabrication of three-dimensional printing filaments. Maleic anhydride (MA)-grafted polyhydroxyalkanoate (PHBV-g-MA) and FS were used to improve the compatibility of FS within a PHBV matrix. Mechanical and morphological characterization indicated that improved adhesion between FS and PHBV-g-MA enhanced the tensile strength of the composite compared with that of PHBV/FS. The PHBV-g-MA/FS composites were also more water-resistant than the PHBV/FS composites. Human foreskin fibroblasts (FBs) were seeded on two series of these composites to assess cytocompatibility. FB proliferation was greater on PHBV/FS composites than on PHBV-g-MA/FS composites. Cell-cycle assays with FBs on PHBV/FS and PHBV-g-MA/FS series composites were unaffected. Moreover, FS enhanced the antioxidant and antimicrobial properties of PHBV-g-MA/FS and PHBV/FS composites, demonstrating the potential of PHBV-g-MA/FS and PHBV/FS composites for biomedical material applications.


Assuntos
Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Poliésteres/química , Anti-Infecciosos/química , Antioxidantes/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Prepúcio do Pênis/efeitos dos fármacos , Humanos , Masculino , Anidridos Maleicos/química , Teste de Materiais , Impressão Tridimensional , Resistência à Tração
17.
Int J Biol Macromol ; 137: 20-31, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31252010

RESUMO

The research was aimed to develop a liquisolid formulation of paclitaxel using novel, highly porous liquisolid carriers (modified polysaccharides) to enhance bioavailability of orally administered paclitaxel. Modified polysaccharides namely co-grinded treated guar gum (C-TGG), co-grinded treated tamarind kernel powder (C-TTKP) and co-grinded treated locust bean gum (C-TLBG) were developed by sequentially subjecting the corresponding polysaccharides to wetting, drying and co-grinding with mannitol (1:1). A total of 12 liquisolid systems of paclitaxel (LSP-1 to LSP-12) were formulated using non-volatile solvent (polysorbate 80/Solutol HS 15®), carrier material (C-TGG/C-TTKP/C-TLBG), and Aerosil® 200 as coating material, and evaluated for pre-compression parameters. The liquisolid systems were directly compressed to produce liquisolid tablets (LTP-1 to LTP-12) and assessed for post compression parameters, cytotoxic/cellular analysis and pharmacokinetics. The modified polysaccharides exhibited narrow symmetrical particle size distribution, high liquid absorption potential, diminutive swelling index, favorable in vitro biodegradability and compression amenability. Among the directly compressed liquisolid tabs, LTP-10 exhibited highest CDR of 98.70 ±â€¯2.68% and permeability of 61.59%. The IC50 of <20 mmol/L indicated remarkable cytotoxic potential on human gastro-enteric tumor cancerous cell lines (NCI-N87). Additionally, LTP-10 exhibited significantly high values for cell death 37.92 and 54.17% (P < 0.01) in early and late apoptosis and mitochondrial membrane potential regain (33%) in comparison to paclitaxel (P < 0.05) and 5-fluorouracil (P < 0.01). Pharmacokinetics revealed Cmax of 536.48 ±â€¯4.63 µg/L at 1.64 ±â€¯0.44 h for LTP-10 indicating enhancement in bioavailability (5.43 fold) of paclitaxel on oral administration.


Assuntos
Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Portadores de Fármacos/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Paclitaxel/química , Paclitaxel/farmacologia , Polissacarídeos/química , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Humanos , Paclitaxel/metabolismo , Paclitaxel/farmacocinética , Permeabilidade , Coelhos , Solubilidade , Distribuição Tecidual
18.
Arch Toxicol ; 93(6): 1491-1500, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30989313

RESUMO

Nanoparticles (NPs) are increasingly used in different consumer-related areas, for instance in food packaging or as additives, because of their enormous potential. Magnesium oxide (MgO) is an EU-approved food additive (E number 530). It is commonly used as a drying agent for powdered foods, for colour retention or as a food supplement. There are no consistent results regarding the effects of oral MgO NP uptake. Consequently, the aim of this study was to examine the effects of MgO NPs in the HT29 intestinal cell line. MgO NP concentrations ranged from 0.001 to 100 µg/ml and incubation times were up to 24 h. The cytotoxic and genotoxic potential were investigated. Apoptotic processes and cell cycle changes were analysed by flow cytometry. Finally, oxidative stress was examined. Transmission electron microscopy indicated that there was no cellular uptake. MgO NPs had no cytotoxic or genotoxic effects in HT29 cells and they did not induce apoptotic processes, cell cycle changes or oxidative stress.


Assuntos
Óxido de Magnésio/toxicidade , Nanopartículas Metálicas/toxicidade , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células HT29 , Humanos , Óxido de Magnésio/metabolismo , Mutagênicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos
19.
J Cancer Res Clin Oncol ; 145(7): 1835-1843, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31006846

RESUMO

INTRODUCTION: Based on the observation of beneficial effects on cancer metabolism, microenvironment, or VEGF-signaling, several non-anticancer drugs have been discussed as useful in renal cell carcinoma (RCC). In the present study, we investigated the prognostic impact of concomitant medication in RCC and correlated comedication with cell-cycle and proliferation activity in corresponding surgical specimen. METHODS: A total of 388 patients who underwent surgery for localized RCC were included. The individual medication was evaluated according to substance classes. Tissue microarrays from corresponding tumor specimen were immunohistochemically (IHC) stained for Cyclin D1 and Ki67 and semi-quantitatively evaluated. Uni- and multivariate analyses were used to compare survival outcomes. For the comparison of IHC expression according to medication subgroups, Kruskal-Wallis analysis was performed. RESULTS: Median follow-up was 57.93 months (95% CI 53.27-69.43) and median OS accounted for 181.12 months (129.72-237.17). Univariate analysis identified pathological standard variables (T-stage > T2, Grading > G2, L1, N1, M1, sarcomatoid subtype, necrosis) as significant determinants of OS. Moreover, statin use (p = 0.009) and sartan use (p = 0.032) were significantly associated with improved OS. Multivariate analysis identified M1-stage (p < 0.001), statin and sartan use (p = 0.003 and p = 0.033, respectively) as independent prognosticators of survival. Expression of Ki67 was significantly reduced in patients with statin use (p = 0.013), while Cyclin D1 expression showed no correlation with comedication. CONCLUSIONS: Concomitant intake of statins and sartans identifies as an independent predictor of OS in RCC, and reduced Ki67 expression was significantly associated with statin use. Further evaluation of drug repurposing approaches with these substances in RCC appear warranted.


Assuntos
Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/cirurgia , Neoplasias Renais/patologia , Neoplasias Renais/cirurgia , Preparações Farmacêuticas/administração & dosagem , Adolescente , Antagonistas Adrenérgicos beta/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticoagulantes/administração & dosagem , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diuréticos/administração & dosagem , Feminino , Humanos , Hipoglicemiantes/administração & dosagem , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Adulto Jovem
20.
Biol Trace Elem Res ; 187(2): 392-402, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29808275

RESUMO

The current experiment reveals the anticancer properties of silver nanoparticles (AgNPs) synthesized using aqueous leaf extract of Cichorium intybus, a significant medicinal plant. The characteristics of AgNPs were continuously studied by powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), zeta potential, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS) analysis. Current microscopic results show that produced AgNPs were spherical in shape with an average size of 17.17 nm. A strong peak between 2 and 4 keV showed the greatest ratio of the elemental silver signals, due to surface plasmon resonance (SPR). The AgNPs, fabricated by green method, had a negative zeta potential of - 9.76 mV, which indicates that the synthesized AgNPs is dispersed in the medium with high stability. The in vitro cytotoxicity effect of AgNPs showed promising anticancer activity against human breast cancer MCF-7 cells. Annexin V-FITC/propidium iodide assay, Hoechst 33258 staining, and upregulation of caspase 3 activity revealed significant apoptosis activities of AgNPs against MCF-7 cells. Moreover, the flow cytometric analyses of cell cycle distribution of MCF7 cells showed that AgNPs treatment has enhanced the sub-G1 peaks, which is an indicator of apoptosis pathway. Overall results in our study suggested that AgNPs fabricated by a biogreen approach could be useful in cancer therapy.


Assuntos
Cichorium intybus/química , Química Verde/métodos , Nanopartículas Metálicas/química , Prata/química , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA