Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Hematol ; 103(6): 2133-2144, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38634917

RESUMO

BACKGROUND: Empirical use of pharmacogenetic test(PGT) is advocated for many drugs, and resource-rich setting hospitals are using the same commonly. The clinical translation of pharmacogenetic tests in terms of cost and clinical utility is yet to be examined in hospitals of low middle income countries (LMICs). AIM: The present study assessed the clinical utility of PGT by comparing the pharmacogenetically(PGT) guided- versus standard of care(SOC)- warfarin therapy, including the health economics of the two warfarin therapies. METHODS: An open-label, randomized, controlled clinical trial recruited warfarin-receiving patients in pharmacogenetically(PGT) guided- versus standard of care(SOC)- study arms. Pharmacogenetic analysis of CYP2C9*2(rs1799853), CYP2C9*3(rs1057910) and VKORC1(rs9923231) was performed for patients recruited to the PGT-guided arm. PT(Prothrombin Time)-INR(international normalized ratio) testing and dose titrations were allowed as per routine clinical practice. The primary endpoint was the percent time spent in the therapeutic INR range(TTR) during the 90-day observation period. Secondary endpoints were time to reach therapeutic INR(TRT), the proportion of adverse events, and economic comparison between two modes of therapy in a Markov model built for the commonest warfarin indication- atrial fibrillation. RESULTS: The study enrolled 168 patients, 84 in each arm. Per-protocol analysis showed a significantly high median time spent in therapeutic INR in the genotype-guided arm(42.85%; CI 21.4-66.75) as compared to the SOC arm(8.8%; CI 0-27.2)(p < 0.00001). The TRT was less in the PG-guided warfarin dosing group than the standard-of-care dosing warfarin group (17.85 vs. 33.92 days) (p = 0.002). Bleeding and thromboembolic events were similar in the two study groups. Lifetime expenditure was ₹1,26,830 in the PGT arm compared to ₹1,17,907 in the SOC arm. The QALY gain did not differ in the two groups(3.9 vs. 3.65). Compared to SOC, the incremental cost-utility ratio was ₹35,962 per QALY gain with PGT test opting. In deterministic and probabilistic sensitivity analysis, the base case results were found to be insensitive to the variation in model parameters. In the cost-effectiveness-acceptability curve analysis, a 90% probability of cost-effectiveness was reached at a willingness-to-pay(WTP) of ₹ 71,630 well below one time GDP threshold of WTP used. CONCLUSION: Clinical efficacy and the cost-effectiveness of the warfarin pharmacogenetic test suggest its routine use as a point of care investigation for patient care in LMICs.


Assuntos
Anticoagulantes , Citocromo P-450 CYP2C9 , Farmacoeconomia , Coeficiente Internacional Normatizado , Vitamina K Epóxido Redutases , Varfarina , Humanos , Varfarina/economia , Varfarina/administração & dosagem , Varfarina/uso terapêutico , Feminino , Masculino , Pessoa de Meia-Idade , Citocromo P-450 CYP2C9/genética , Idoso , Vitamina K Epóxido Redutases/genética , Anticoagulantes/administração & dosagem , Anticoagulantes/economia , Anticoagulantes/uso terapêutico , Testes Farmacogenômicos/economia , Adulto , Farmacogenética/economia , Análise Custo-Benefício
2.
Front Endocrinol (Lausanne) ; 14: 1139805, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008923

RESUMO

Cytochrome P450 2C9 (CYP2C9) participates in about 15% of clinical drug metabolism, and its polymorphism is associated with individual drug metabolism differences, which may lead to the adverse drug reactions (ADRs). In this study, 1163 Chinese Han individuals were recruited to investigate their distribution pattern of CYP2C9 gene and find out the variants that may affect their drug metabolic activities. We successfully developed a multiplex PCR amplicon sequencing method and used it for the genetic screening of CYP2C9 in a large scale. Besides the wild type CYP2C9*1, totally 26 allelic variants of CYP2C9 were detected, which included 16 previously reported alleles and 10 new non-synonymous variants that had not been listed on the PharmVar website. The characteristics of these newly detected CYP2C9 variants were then evaluated after co-expressing them with CYPOR in S. cerevisiae microsomes. Immunoblot analysis revealed that except for Pro163Ser, Glu326Lys, Gly431Arg and Ile488Phe, most of newly detected variants showed comparable protein expression levels to wild type in yeast cells. Two typical CYP2C9 probe drugs, losartan and glimepiride, were then used for the evaluation of metabolic activities of variants. As a result, 3 variants Thr301Met, Glu326Lys, and Gly431Arg almost lost their catalytic activities and most of other variants exhibited significantly elevated activities for drug metabolism. Our data not only enriches the knowledge of naturally occurring CYP2C9 variants in the Chinese Han population, but also provides the fundamental evidence for its potential clinical usage for personalized medicine in the clinic.


Assuntos
Citocromo P-450 CYP2C9 , População do Leste Asiático , Humanos , Citocromo P-450 CYP2C9/genética , Polimorfismo Genético
3.
Drug Metab Pers Ther ; 38(3): 273-279, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37075481

RESUMO

OBJECTIVES: A study was conducted to develop and validate the warfarin pharmacogenetic dose optimization algorithm considering the clinical pharmacogenetic implementation consortium (CPIC) recommendations for the Asian ethnicity population. METHODS: The present prospective observational study recruited warfarin-receiving patients. We collected a three ml blood sample for VKORC1, CYP2C9*2, CYP2C9*3, and CYP4F2 polymorphism assessment during the follow-up visits. Clinical history, sociodemographic and warfarin dose details were noted. RESULTS: The study recruited 300 patients (250 in derivation and 50 in validation timed cohort) receiving warfarin therapy. The baseline characteristics were similar in both cohorts. BMI, presence of comorbidity, VKORC1, CYP2C9*2, and CYP2C9*3 were identified as covariates significantly affecting the warfarin weekly maintenance dose (p<0.001 for all) and the same were included in warfarin pharmacogenetic dose optimization algorithm building. The algorithm built-in the present study showed a good correlation with Gage (r=0.57, p<0.0001), and IWPC (r=0.51, p<0.0001) algorithms, widely accepted in western side of the globe. The receiver operating characteristic curve analysis showed a sensitivity of 73 %, a positive predictive value of 96 %, and a specificity of 89 %. The algorithm correctly identified the validation cohort's warfarin-sensitive, intermediate reacting, and resistant patient populations. CONCLUSIONS: Validation and comparisons of the warfarin pharmacogenetic dose optimization algorithm have made it ready for the clinical trial assessment.


Assuntos
Hidrocarboneto de Aril Hidroxilases , Varfarina , Humanos , Hidrocarboneto de Aril Hidroxilases/genética , Citocromo P-450 CYP2C9/genética , Vitamina K Epóxido Redutases/genética , Anticoagulantes , Genótipo , Algoritmos , Relação Dose-Resposta a Droga
4.
Toxicol Appl Pharmacol ; 461: 116401, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36706924

RESUMO

Chlorophenols (CPs) are widespread pollutants in nature. CPs have raised significant concern due to their potential hepatotoxic effects on humans. This research aimed to ascertain the inhibitory potential of eleven CPs (2-CP, 3-CP, 4-CP, 2,4-DCP, 2,3,4-TCP, 2,4,5-TCP, 2,4,6-TCP, 2,3,4,5-TeCP, 2,3,4,6-TeCP, 2,3,5,6-TeCP, and PCP) on nine human CYP isoforms (CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4). The CPs that inhibit the activity of CYP isoforms were detected with human liver microsomes (HLM) using a cocktail approach in vitro. The results demonstrated that trichlorophenols, tetrachlorophenols, and PCP strongly inhibited CYP2C8 and CYP2C9. The half inhibition concentration (IC50) value of 2,3,4,6-TeCP and PCP for CYP2C8 inhibition was 27.3 µM and 12.3 µM, respectively. The IC50 for the inhibition of 2,4,6-TCP, 2,3,4,6-TeCP and PCP towards CYP2C9 were calculated to be 30.3 µM, 5.8 µM and 2.2 µM, respectively. 2,3,4,6-TeCP, and PCP exhibited non-competitive inhibition towards CYP2C8. 2,4,6-TCP, 2,3,4,6-TeCP, and PCP exhibited competitive inhibition towards CYP2C9. The inhibition kinetics parameters (Ki) were 51.51 µM, 22.28 µM, 37.86 µM, 7.27 µM, 0.68 µM for 2,3,4,6-TeCP-CYP2C8, PCP-CYP2C8, 2,4,6-TCP-CYP2C9, 2,3,4,6-TeCP-CYP2C9, PCP-CYP2C9, respectively. This study also defined clear structure-activity relationships (SAR) of CPs on CYP2C8, supported by molecular docking studies. Overall, CPs were found to cause inhibitory effects on CYP isoforms in vitro, and this finding may provide a basis for CPs focused on CYP isoforms inhibition endpoints.


Assuntos
Clorofenóis , Inibidores das Enzimas do Citocromo P-450 , Humanos , Citocromo P-450 CYP2C8 , Citocromo P-450 CYP2C9/farmacologia , Simulação de Acoplamento Molecular , Inibidores das Enzimas do Citocromo P-450/toxicidade , Sistema Enzimático do Citocromo P-450 , Microssomos Hepáticos , Clorofenóis/toxicidade
5.
Eur J Drug Metab Pharmacokinet ; 47(3): 419-429, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35226304

RESUMO

BACKGROUND AND OBJECTIVE: Abrocitinib is a Janus kinase 1-selective inhibitor for the treatment of moderate-to-severe atopic dermatitis. Abrocitinib is eliminated primarily by metabolism involving cytochrome P450 (CYP) enzymes. Abrocitinib pharmacologic activity is attributable to the unbound concentrations of the parent molecule and 2 active metabolites, which are substrates of organic anion transporter 3 (OAT3). The sum of potency-adjusted unbound exposures of abrocitinib and its 2 active metabolites is termed the abrocitinib active moiety. We evaluated effects of CYP inhibition, CYP induction, and OAT3 inhibition on the pharmacokinetics of abrocitinib, its metabolites, and active moiety. METHODS: Three fixed-sequence, open-label, phase I studies in healthy adult volunteers examined the drug-drug interactions (DDIs) of oral abrocitinib with fluvoxamine and fluconazole, rifampin, and probenecid. RESULTS: Co-administration of abrocitinib with fluvoxamine or fluconazole increased the area under the plasma concentration-time curve from time 0 to infinity (AUCinf) of the unbound active moiety of abrocitinib by 91% and 155%, respectively. Co-administration with rifampin decreased the unbound active moiety AUCinf by 56%. The OAT3 inhibitor probenecid increased the AUCinf of the unbound active moiety by 66%. CONCLUSIONS: It is important to consider the effects of DDIs on the abrocitinib active moiety when making dosing recommendations. Co-administration of strong CYP2C19/2C9 inhibitors or CYP inducers impacted exposure to the abrocitinib active moiety. A dose reduction by half is recommended if abrocitinib is co-administered with strong CYP2C19 inhibitors, whereas co-administration with strong CYP2C19/2C9 inducers is not recommended. No dose adjustment is required when abrocitinib is administered with OAT3 inhibitors. CLINICAL TRIALS REGISTRATION IDS: NCT03634345, NCT03637790, NCT03937258.


Assuntos
Fluconazol , Rifampina , Adulto , Área Sob a Curva , Ensaios Clínicos Fase I como Assunto , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Fluconazol/farmacologia , Fluvoxamina , Humanos , Probenecid , Pirimidinas , Sulfonamidas
6.
Eur J Clin Pharmacol ; 78(1): 43-51, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34453556

RESUMO

PURPOSE: The purpose of this paper is to study the correlation between demographic and clinical factors and warfarin dose of patients in Chinese Han population taking warfarin and study gene polymorphisms impact of related gene loci (CYP2C9*3, VKORC1-1639G > A) on warfarin doses, to establish a model to predict initial standard dose and maintenance dose based on CYP2C9*3, VKORC1-1639G > A genotype. METHODS: The study collects the data of patients in our hospital and other subcenters which incorporates 2160 patients to establish the initial dose model and 1698 patients for the stable dose model, and sequences 26 multigene sites in 451 patients. Based on the patient's dosage, clinical data, and demographic characteristics, the genetic and non-genetic effects on the initial dose and stable dose of warfarin are calculated by using statistical methods, and the prediction model of initial standard dose and maintenance dose can be established via multiple linear regression. RESULTS: The initial dose of warfarin (mg/day) was calculated as (1.346 + 0.350 × (VKORC1-1639G > A) - 0.273 × (CYP2C9*3) + 0.245 × (body surface area) - 0.003 × (age) - 0.036 × (amine-iodine) + 0.021 × (sex))2. This model incorporated seven factors and explained 55.3% of the individualization differences of the warfarin drug dose. The maintenance dose of warfarin (mg/day) was calculated as (1.336 + 0.299 × (VKORC1-1639G > A) + 0.480 × (body surface area) - 0.214 × (CYP2C9*3) - 0.074 × (amine-iodine) - 0.003 × (age) - 0.077 × (statins) - 0.002 × (height))2. This model incorporated six factors and explained 42.4% of the individualization differences in the warfarin drug dose. CONCLUSION: The genetic and non-genetic factors affecting warfarin dose in Chinese Han population were studied systematically in this study. The pharmacogenomic dose prediction model constructed in this study can predict anticoagulant efficacy of warfarin and has potential application value in clinical practice.


Assuntos
Anticoagulantes/administração & dosagem , Anticoagulantes/farmacocinética , Citocromo P-450 CYP2C9/genética , Varfarina/administração & dosagem , Varfarina/farmacocinética , Adulto , Fatores Etários , Idoso , Povo Asiático , Superfície Corporal , China , Comorbidade , Relação Dose-Resposta a Droga , Etnicidade , Feminino , Genótipo , Comportamentos Relacionados com a Saúde , Humanos , Coeficiente Internacional Normatizado , Masculino , Pessoa de Meia-Idade , Farmacogenética , Variantes Farmacogenômicos , Polimorfismo Genético , Fatores Sexuais , Fatores Sociodemográficos
7.
Eur J Drug Metab Pharmacokinet ; 47(2): 177-185, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34881402

RESUMO

BACKGROUND AND OBJECTIVES: Atemoya (Annona atemoya) is increasingly being consumed worldwide because of its pleasant taste. However, only limited information is available concerning possible atemoya-drug interactions. In the present study, the issue of whether atemoya shows food-drug interactions with substrate drugs of the major drug-metabolizing cytochrome P450s (i.e., CYP1A2, CYP2C9, and CYP3A) is addressed. METHODS: The ability of atemoya juice to inhibit the activities of phenacetin O-deethylase (CYP1A2), diclofenac 4'-hydroxylase (CYP2C9), and midazolam 1'-hydroxylase (CYP3A) was examined in vitro using human and rat liver microsomes. The in vivo pharmacokinetics of phenacetin and metabolites derived from it in rats when atemoya juice or fluvoxamine (a CYP1A2 inhibitor) was preadministered were also investigated. RESULTS: Atemoya juice significantly inhibited CYP1A2 activity in human liver microsomes, but not the activities of CYP2C9 and CYP3A. In spite of this inhibition, preadministration of atemoya had no effect on the pharmacokinetics of phenacetin, a CYP1A2 substrate, in rats. Meanwhile, preadministration of fluvoxamine significantly extended the time needed for the elimination of phenacetin, possibly due to the inhibition of CYP1A2. This suggests that the intake of an excess amount of atemoya juice is necessary to cause a change in the pharmacokinetics of phenacetin when the IC50 values for CYP1A2 inhibition by atemoya and fluvoxamine are taken into account. CONCLUSION: The results indicate that a daily intake of atemoya would not change the pharmacokinetics of CYP1A2 substrates such as phenacetin as well as CYP2C9- and CYP3A-substrate drugs.


Assuntos
Annona , Animais , Annona/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Interações Alimento-Droga , Frutas , Microssomos Hepáticos/metabolismo , Fenacetina , Ratos
8.
Pharmacogenomics J ; 21(5): 559-565, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33731883

RESUMO

The demonstration of the link between certain genetic variations and drug response has allowed the emergence of pharmacogenetics, which offers many opportunities to improve patient care. Type-2 diabetes mellitus is a disease for which several gene polymorphisms have been reported to be associated with drug response. Sulfonylureas are commonly used for the management of this disease. Genetic polymorphisms of CYP2C9, the main enzyme involved in the metabolism of sulfonylureas, have been associated with the risk of severe hypoglycaemia, particularly in poor metabolizers carrying CYP2C9 *3/*3 genotype, and especially in the case of patients treated with glimepiride. The objectives of the present study were to evaluate the potential clinical and economic outcomes of using CYP2C9 genotype data to guide the management of SU regimen in patients initiating glimepiride therapy, and to identify factors affecting the cost-effectiveness of this treatment scheme. The analysis was conducted using a decision tree, considering a 1-year time horizon, and taking as perspective that of the French national health insurance system. With pharmacogenetic-guided therapy, the cost to avoid an episode of severe hypoglycaemia event per 100 000 patients treated was €421 834. Genotyping cost was the most influential factor on the incremental cost-effectiveness ratio. In conclusion, the potential cost of CYP2C9 genotype-guided dosing for glimepiride therapy is relatively high, and associated with modest improvements with respect to the number of hypoglycaemia avoided, as compared with standard dosing. Additional economic studies are required to better specify the usefulness of CYP2C9 genotyping prior to glimepiride regimen initiation.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Compostos de Sulfonilureia/uso terapêutico , Análise Custo-Benefício , Citocromo P-450 CYP2C9/genética , Diabetes Mellitus Tipo 2/economia , Diabetes Mellitus Tipo 2/genética , Técnicas de Genotipagem/economia , Técnicas de Genotipagem/métodos , Custos de Cuidados de Saúde , Humanos , Hipoglicemiantes/economia , Polimorfismo Genético , Compostos de Sulfonilureia/economia , Resultado do Tratamento
9.
Eur J Pharm Sci ; 162: 105810, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33753217

RESUMO

We developed an in vitro high-throughput cocktail assay with nine major drug-metabolizing CYP enzymes, optimized for screening of time-dependent inhibition. The method was applied to determine the selectivity of the time-dependent CYP2C8 inhibitors gemfibrozil 1-O-ß-glucuronide and clopidogrel acyl-ß-D-glucuronide. In vitro incubations with CYP selective probe substrates and pooled human liver microsomes were conducted in 96-well plates with automated liquid handler techniques and metabolite concentrations were measured with quantitative UHPLC-MS/MS analysis. After determination of inter-substrate interactions and Km values for each reaction, probe substrates were divided into cocktails I (tacrine/CYP1A2, bupropion/CYP2B6, amodiaquine/CYP2C8, tolbutamide/CYP2C9 and midazolam/CYP3A4/5) and II (coumarin/CYP2A6, S-mephenytoin/CYP2C19, dextromethorphan/CYP2D6 and astemizole/CYP2J2). Time-dependent inhibitors (furafylline/CYP1A2, selegiline/CYP2A6, clopidogrel/CYP2B6, gemfibrozil 1-O-ß-glucuronide/CYP2C8, tienilic acid/CYP2C9, ticlopidine/CYP2C19, paroxetine/CYP2D6 and ritonavir/CYP3A) and direct inhibitor (terfenadine/CYP2J2) showed similar inhibition with single substrate and cocktail methods. Established time-dependent inhibitors caused IC50 fold shifts ranging from 2.2 to 30 with the cocktail method. Under time-dependent inhibition conditions, gemfibrozil 1-O-ß-glucuronide was a strong (>90% inhibition) and selective (<< 20% inhibition of other CYPs) inhibitor of CYP2C8 at concentrations ranging from 60 to 300 µM, while the selectivity of clopidogrel acyl-ß-D-glucuronide was limited at concentrations above its IC80 for CYP2C8. The time-dependent IC50 values of these glucuronides for CYP2C8 were 8.1 and 38 µM, respectively. In conclusion, a reliable cocktail method including the nine most important drug-metabolizing CYP enzymes was developed, optimized and validated for detecting time-dependent inhibition. Moreover, gemfibrozil 1-O-ß-glucuronide was established as a selective inhibitor of CYP2C8 for use as a diagnostic inhibitor in in vitro studies.


Assuntos
Inibidores das Enzimas do Citocromo P-450 , Espectrometria de Massas em Tandem , Citocromo P-450 CYP2C8 , Inibidores do Citocromo P-450 CYP2C8 , Citocromo P-450 CYP2C9 , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450 , Interações Medicamentosas , Humanos , Microssomos Hepáticos
10.
ChemMedChem ; 16(11): 1754-1763, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33600055

RESUMO

Structure-based prediction of a compound's potential sites of metabolism (SOMs) mediated by cytochromes P450 (CYPs) is highly advantageous in the early stage of drug discovery. However, the accuracy of the SOMs prediction can be influenced by several factors. CYP2C9 is one of the major drug-metabolizing enzymes in humans and is responsible for the metabolism of ∼13 % of clinically used drugs. In this study, we systematically evaluated the effects of protein crystal structure models, scoring functions, heme forms, conserved active-site water molecules, and protein flexibility on SOMs prediction of CYP2C9 substrates. Our results demonstrated that, on average, ChemScore and GlideScore outperformed four other scoring functions: Vina, GoldScore, ChemPLP, and ASP. The performance of the crystal structure models with pentacoordinated heme was generally superior to that of the hexacoordinated iron-oxo heme (referred to as Compound I) models. Inclusion of the conserved active-site water molecule improved the prediction accuracy of GlideScore, but reduced the accuracy of ChemScore. In addition, the effect of the conserved water on SOMs prediction was found to be dependent on the receptor model and the substrate. We further found that one of snapshots from molecular dynamics simulations on the apo form can improve the prediction accuracy when compared to the crystal structural model.


Assuntos
Citocromo P-450 CYP2C9/metabolismo , Simulação de Dinâmica Molecular , Citocromo P-450 CYP2C9/química , Humanos , Conformação Proteica
11.
Phytomedicine ; 81: 153416, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33321412

RESUMO

BACKGROUND: Bulbine natalensis is an African-folk medicinal plant used as a dietary supplement for enhancing sexual function and muscle strength in males by presumably boosting testosterone levels, but no scientific information is available about the possible herb-drug interaction (HDI) risk when bulbine-containing supplements are concomitantly taken with prescription drugs. PURPOSE: This study was aimed to investigate the HDI potential of B. natalensis in terms of the pregnane X receptor (PXR)-mediated induction of major drug-metabolizing cytochrome P450 enzyme isoforms (i.e., CYP3A4 and CYP2C9) as well as inhibition of their catalytic activity. RESULTS: We found that a methanolic extract of B. natalensis activated PXR (EC50 6.2 ± 0.6 µg/ml) in HepG2 cells resulting in increased mRNA expression of CYP3A4 (2.40 ± 0.01 fold) and CYP2C9 (3.37 ± 0.3 fold) at 30 µg/ml which was reflected in increased activites of the two enzymes. Among the constituents of B. natalensis, knipholone was the most potent PXR activator (EC50 0.3 ± 0.1 µM) followed by bulbine-knipholone (EC50 2.0 ± 0.5 µM), and 6'-methylknipholone (EC50 4.0 ± 0.5 µM). Knipholone was also the most effective in increasing the expression of CYP3A4 (8.47 ± 2.5 fold) and CYP2C9 (2.64 ± 0.3 fold) at 10 µM. Docking studies further confirmed the unique structural features associated with knipholones for their superior inductive potentials in the activation of PXR compared to other anthraquinones. In a CYP inhibition assay, the methanolic extract as well as the anthraquinones strongly inhibited the catalytic activity of CYP2C9 while, inhibition of CYP3A4 was weak. CONCLUSIONS: These results suggest that consumption of B. natalensis may pose a potential risk for HDI if taken with conventional medications that are substrates of CYP3A4 and CYP2C9 and may contribute to unanticipated adverse reactions or therapeutic failures. Further studies are warranted to validate these findings and establish their clinical relevancy.


Assuntos
Asphodelaceae/química , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP3A/metabolismo , Suplementos Nutricionais , Interações Ervas-Drogas , Inibidores do Citocromo P-450 CYP2C9/química , Inibidores do Citocromo P-450 CYP2C9/farmacologia , Inibidores do Citocromo P-450 CYP3A/química , Inibidores do Citocromo P-450 CYP3A/farmacologia , Suplementos Nutricionais/efeitos adversos , Células Hep G2 , Humanos , Masculino , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Receptor de Pregnano X/química , Receptor de Pregnano X/genética , Receptor de Pregnano X/metabolismo
12.
J Clin Pharmacol ; 61(3): 307-318, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32960975

RESUMO

Elevated cytokine levels in inflammatory diseases are associated with downregulation of certain cytochrome P450 (CYP) enzymes. Upon treatment with some cytokine-targeting therapeutic proteins, the CYP enzymes levels may be restored resulting in therapeutic protein-mediated drug interactions (TP-DI). These analyses characterized the worst-case scenario for CYP1A2, 2C9, and 3A-based TP-DI potential in patients with psoriasis by comparing the pharmacokinetics of probe substrates between healthy volunteers and subjects with moderate to severe psoriasis. Data for the CYP probe substrates midazolam (CYP3A), caffeine (CYP1A2), and S-warfarin (CYP2C9) from 7 drug interaction studies (1 in patients with psoriasis and 6 in healthy subjects) were pooled to develop a population pharmacokinetics model for each substrate. A 2-compartment model with absorption lag time for midazolam, a 1-compartment model with 5 transit absorption compartments for caffeine, and a 3-compartment model with absorption lag time for S-warfarin best described the observed data. Apparent oral clearance and relative bioavailability for caffeine and S-warfarin were not significantly different between the subject populations. Psoriasis patients were estimated to have 17% lower midazolam oral bioavailability than healthy volunteers. Compounded with other covariate effects, the ratio of median post hoc area under the plasma concentration-time estimates in subjects with psoriasis relative to healthy subjects was 0.96, 1.13, and 0.65 for midazolam, caffeine, and S-warfarin, respectively. Therefore, inflammation in psoriasis had no relevant effect on reducing CYP1A2, 2C9, and 3A activities in vivo and no significant TP-DIs mediated through these enzymes are expected in patients with psoriasis. This approach can potentially be used in lieu of dedicated TP-DI studies to identify TP-DI risks within a disease area.


Assuntos
Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP3A/metabolismo , Modelos Biológicos , Psoríase/fisiopatologia , Adulto , Disponibilidade Biológica , Cafeína/farmacocinética , Estudos de Casos e Controles , Citocinas/metabolismo , Interações Medicamentosas , Feminino , Humanos , Masculino , Midazolam/farmacocinética , Pessoa de Meia-Idade , Gravidade do Paciente , Varfarina/farmacocinética , Adulto Jovem
13.
Toxicol Lett ; 337: 111-120, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33232775

RESUMO

Quantifying variability in pharmacokinetics (PK) and toxicokinetics (TK) provides a science-based approach to refine uncertainty factors (UFs) for chemical risk assessment. In this context, genetic polymorphisms in cytochromes P450 (CYPs) drive inter-phenotypic differences and may result in reduction or increase in metabolism of drugs or other xenobiotics. Here, an extensive literature search was performed to identify PK data for probe substrates of the human polymorphic isoforms CYP2C9 and CYP2C19. Relevant data from 158 publications were extracted for markers of chronic exposure (clearance and area under the plasma concentration-time curve) and analysed using a Bayesian meta-regression model. Enzyme function (EF), driven by inter-phenotypic differences across a range of allozymes present in extensive and poor metabolisers (EMs and PMs), and fraction metabolised (Fm), were identified as exhibiting the highest impact on the metabolism. The Bayesian meta-regression model provided good predictions for such inter-phenotypic differences. Integration of population distributions for inter-phenotypic differences and estimates for EF and Fm allowed the derivation of CYP2C9- and CYP2C19-related UFs which ranged from 2.7 to 12.7, and were above the default factor for human variability in TK (3.16) for PMs and major substrates (Fm >60%). These results provide population distributions and pathway-related UFs as conservative in silico options to integrate variability in CYP2C9 and CYP2C19 metabolism using in vitro kinetic evidence and in the absence of human data. The future development of quantitative extrapolation models is discussed with particular attention to integrating human in vitro and in vivo PK or TK data with pathway-related variability for chemical risk assessment.


Assuntos
Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Toxicocinética , Algoritmos , Área Sob a Curva , Teorema de Bayes , Simulação por Computador , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C9/genética , Variação Genética , Humanos , Cinética , Fenótipo , Polimorfismo Genético , Medição de Risco , Xenobióticos/metabolismo
14.
J Pharmacol Exp Ther ; 374(2): 233-240, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32423989

RESUMO

CYP2C9 is a major form of human liver cytochrome P450 that is responsible for the oxidative metabolism of several widely used low-therapeutic index drugs, including (S)-warfarin and phenytoin. In a cohort of Alaska Native people, ultrarare or novel CYP2C9 protein variants, M1L (rs114071557), N218I (rs780801862), and P279T (rs182132442, CYP2C9*29), are expressed with higher frequencies than the well characterized CYP2C9*2 and CYP2C9*3 alleles. We report here on their relative expression in lentivirus-infected HepG2 cells and the functional characterization of purified reconstituted enzyme variants expressed in Escherichia coli toward (S)-warfarin, phenytoin, flurbiprofen, and (S)-naproxen. In the infected HepG2 cells, robust mRNA and protein expression were obtained for wild-type, N218I, and P279T variants, but as expected, the M1L variant protein was not translated in this liver-derived cell line. His-tagged wild-type protein and the N218I and P279T variants, but not M1L, expressed well in E. coli and were highly purified after affinity chromatography. Upon reconstitution with cytochrome P450 oxidoreductase and cytochrome b5, the N218I and P279T protein variants metabolized (S)-warfarin, phenytoin, flurbiprofen, and (S)-naproxen to the expected monohydroxylated or O-demethylated metabolites. Steady-state kinetic analyses revealed that the relative catalytic efficiency ratios of (S)-warfarin metabolism by the P279T and N218I variants were 87% and 24%, respectively, of wild-type CYP2C9 protein. A similar rank ordering was observed for metabolism of phenytoin, flurbiprofen, and (S)-naproxen. We conclude that carriers of the variant N218I and, especially, the M1L alleles would be at risk of exacerbated therapeutic effects from drugs that rely on CYP2C9 for their metabolic clearance. SIGNIFICANCE STATEMENT: Novel gene variants of CYP2C9-M1L, and N218I, along with P279T (CYP2C9*29)-are expressed in Alaska Native people at relatively high frequencies. In vitro characterization of their functional effects revealed that each variant confers reduced catalytic efficiency toward several substrates, including the low-therapeutic index drugs (S)-warfarin and phenytoin. These data provide the first functional information for new, common CYP2C9 variants in this understudied population. The data may help guide dose adjustments in allele carriers, thus mitigating potential healthcare disparities.


Assuntos
Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2C9/metabolismo , Povos Indígenas/genética , Alaska/etnologia , Escherichia coli/genética , Expressão Gênica , Células HEK293 , Humanos , Proteólise , Tripsina/metabolismo
15.
J Appl Lab Med ; 5(3): 454-466, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32445367

RESUMO

BACKGROUND: Laboratorians have the opportunity to help minimize the frequency of adverse drug reactions by implementing pharmacogenomic testing and alerting care providers to possible patient/drug incompatibilities before drug treatment is initiated. Methods combining PCR with MALDI-ToF MS have allowed for sensitive, economical, and multiplexed pharmacogenomic testing results to be delivered in a timely fashion. METHOD: This study evaluated the analytical performance of the Agena Biosciences iPLEX® PGx 74 panel and a custom iPLEX panel on a MassARRAY MALDI-TOF MS instrument in a clinical laboratory setting. Collectively, these panels evaluate 112 SNVs across 34 genes implicated in drug response. Using commercially available samples (Coriell Biorepository) and in-house extracted DNA, we determined ideal reaction conditions and assessed accuracy, precision, and robustness. RESULTS: Following protocol optimization, the Agena PGx74 and custom panels demonstrated 100% concordance with the 1000 Genomes Project Database and clinically validated hydrolysis probe genotyping assays. 100% concordance was also observed in all assessments of assay precision when appropriate QC metrics were applied. CONCLUSIONS: Significant development time was required to optimize sample preparation and instrumental analysis and 3 assays were removed due to inconsistent performance. Following modification of the manufacturer's protocol and instituting manual review of each assay plate, the Agena PGx74 and custom panel constitute a cost-effective, robust, and accurate method for clinical identification of 106 SNVs involved in drug response.


Assuntos
Farmacogenética/métodos , Polimorfismo de Nucleotídeo Único , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Alelos , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C9/genética , Humanos , Técnicas de Diagnóstico Molecular/economia , Técnicas de Diagnóstico Molecular/instrumentação , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Farmacogenética/economia , Farmacogenética/instrumentação , Farmacogenética/normas , Reação em Cadeia da Polimerase/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
PLoS One ; 15(5): e0233316, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32428022

RESUMO

Oral anticoagulant (OAC) therapy has been the main treatment approach for stroke prevention for decades. Warfarin is the most widely prescribed OAC in the United States, but is difficult to manage due to variability in dose requirements across individuals. Pharmacogenomics may mitigate risk concerns related to warfarin use by fostering the opportunity to facilitate individualized medicine approaches to warfarin treatment (e.g., genome-guided dosing). While various economic evaluations exist examining the cost-effectiveness of pharmacogenomics testing for warfarin, few observational studies exist to support these studies, with even fewer using genotype as the main exposure of interest. We examined a cohort of individuals initiating warfarin therapy between 2004 and 2017 and examined bleeding and cost outcomes for the year following initiation using Mayo Clinic's billing and administrative data, as well the Mayo Clinic Rochester Cost Data Warehouse. Analyses included descriptive summaries, comparison of characteristics across exposure groups, reporting of crude outcomes, and multivariate analyses. We included N = 1,143 patients for analyses. Just over a third of our study population (34.9%) carried a warfarin-sensitive phenotype. Sensitive individuals differed in their baseline characteristics by being of older age and having a higher number of comorbid conditions; myocardial infarction, diabetes, and cancer in particular. The occurrence of bleeding events was not significantly different across exposure groups. No significant differences across exposure groups existed in either the likelihood of incurring all-cause healthcare costs or in the magnitude of those costs. Warfarin-sensitive individuals were no more likely to utilize cardiovascular-related healthcare services; however, they had lower total and inpatient cardiovascular-related costs compared to warfarin-insensitive patients. No significant differences existed in any other categories of costs. We found limited evidence that warfarin-sensitive individuals have different healthcare spending than warfarin-insensitive individuals. Additional real-world studies are needed to support the traditional economic evaluations currently existing in the literature.


Assuntos
Farmacogenética/métodos , Varfarina/economia , Varfarina/uso terapêutico , Idoso , Anticoagulantes/uso terapêutico , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/genética , Biomarcadores Farmacológicos/análise , Biomarcadores Farmacológicos/sangue , Estudos de Coortes , Análise Custo-Benefício , Citocromo P-450 CYP2C9/genética , Atenção à Saúde , Feminino , Genômica , Custos de Cuidados de Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/genética , Medicina de Precisão/métodos , Acidente Vascular Cerebral/epidemiologia , Estados Unidos , Vitamina K Epóxido Redutases/genética , Varfarina/metabolismo
17.
Value Health ; 23(1): 61-73, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31952675

RESUMO

OBJECTIVE: To evaluate the cost-effectiveness of multigene testing (CYP2C19, SLCO1B1, CYP2C9, VKORC1) compared with single-gene testing (CYP2C19) and standard of care (no genotyping) in acute coronary syndrome (ACS) patients undergoing percutaneous coronary intervention (PCI) from Medicare's perspective. METHODS: A hybrid decision tree/Markov model was developed to simulate patients post-PCI for ACS requiring antiplatelet therapy (CYP2C19 to guide antiplatelet selection), statin therapy (SLCO1B1 to guide statin selection), and anticoagulant therapy in those that develop atrial fibrillation (CYP2C9/VKORC1 to guide warfarin dose) over 12 months, 24 months, and lifetime. The primary outcome was cost (2016 US dollar) per quality-adjusted life years (QALYs) gained. Costs and QALYs were discounted at 3% per year. Probabilistic sensitivity analysis (PSA) varied input parameters (event probabilities, prescription costs, event costs, health-state utilities) to estimate changes in the cost per QALY gained. RESULTS: Base-case-discounted results indicated that the cost per QALY gained was $59 876, $33 512, and $3780 at 12 months, 24 months, and lifetime, respectively, for multigene testing compared with standard of care. Single-gene testing was dominated by multigene testing at all time horizons. PSA-discounted results indicated that, at the $50 000/QALY gained willingness-to-pay threshold, multigene testing had the highest probability of cost-effectiveness in the majority of simulations at 24 months (61%) and over the lifetime (81%). CONCLUSIONS: On the basis of projected simulations, multigene testing for Medicare patients post-PCI for ACS has a higher probability of being cost-effective over 24 months and the lifetime compared with single-gene testing and standard of care and could help optimize medication prescribing to improve patient outcomes.


Assuntos
Síndrome Coronariana Aguda/economia , Síndrome Coronariana Aguda/terapia , Anticoagulantes/economia , Anticoagulantes/uso terapêutico , Custos de Medicamentos , Inibidores de Hidroximetilglutaril-CoA Redutases/economia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Intervenção Coronária Percutânea/economia , Testes Farmacogenômicos/economia , Variantes Farmacogenômicos , Inibidores da Agregação Plaquetária/economia , Inibidores da Agregação Plaquetária/uso terapêutico , Síndrome Coronariana Aguda/diagnóstico , Síndrome Coronariana Aguda/mortalidade , Idoso , Anticoagulantes/efeitos adversos , Análise Custo-Benefício , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C9/genética , Árvores de Decisões , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Masculino , Cadeias de Markov , Medicare/economia , Intervenção Coronária Percutânea/efeitos adversos , Intervenção Coronária Percutânea/mortalidade , Inibidores da Agregação Plaquetária/efeitos adversos , Medicina de Precisão/economia , Valor Preditivo dos Testes , Anos de Vida Ajustados por Qualidade de Vida , Reprodutibilidade dos Testes , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento , Estados Unidos , Vitamina K Epóxido Redutases/genética
18.
Genet Med ; 22(3): 475-486, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31591509

RESUMO

PURPOSE: To examine the evidence on the cost-effectiveness of implementing pharmacogenomics (PGx) in cardiovascular disease (CVD) care. METHODS: We conducted a systematic review using multiple databases from inception to 2018. The titles and abstracts of cost-effectiveness studies on PGx-guided treatment in CVD care were screened, and full texts were extracted. RESULTS: We screened 909 studies and included 46 to synthesize. Acute coronary syndrome and atrial fibrillation were the predominantly studied conditions (59%). Most studies (78%) examined warfarin-CYP2C9/VKORC1 or clopidogrel-CYP2C19. A payer's perspective was commonly used (39%) for cost calculations, and most studies (46%) were US-based. The majority (67%) of the studies found PGx testing to be cost-effective in CVD care, but cost-effectiveness varied across drugs and conditions. Two studies examined PGx panel testing, of which one examined pre-emptive testing strategies. CONCLUSION: We found mixed evidence on the cost-effectiveness of PGx in CVD care. Supportive evidence exists for clopidogrel-CYP2C19 and warfarin-CYP2C9/VKORC1, but evidence is limited in other drug-gene combinations. Gaps persist, including unclear explanation of perspective and cost inputs, underreporting of study design elements critical to economic evaluations, and limited examination of PGx panel and pre-emptive testing for their cost-effectiveness. This review identifies the need for further research on economic evaluations of PGx implementation.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Análise Custo-Benefício , Farmacogenética , Testes Farmacogenômicos , Doenças Cardiovasculares/economia , Doenças Cardiovasculares/genética , Clopidogrel/uso terapêutico , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C9/genética , Humanos , Medicina de Precisão/economia , Vitamina K Epóxido Redutases/genética , Varfarina/uso terapêutico
19.
Int Arch Allergy Immunol ; 179(3): 173-186, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30943525

RESUMO

BACKGROUND: Self-reported chemical sensitivity (SCS) is characterized by adverse effects due to exposure to low levels of chemical substances. The clinical manifestations of SCS are similar to the allergy, and a high percentage of individuals with both diseases have been found. Various genes, especially genes of importance to the metabolism of xenobiotic compounds, have been associated with SCS. OBJECTIVES: The purpose of this study was to investigate whether allergic individuals with chemical sensitivity differed from allergic patients without chemical sensitivity with regard to the distribution of genotype and phenotype of CYP2C9, CYP2C19, and CYP2D6 polymorphisms. METHODS: A total of 180 patients were enrolled for this study. A questionnaire was employed to collect information on individual chemical sensitivity, while the Skin prick test and the PATCH test were used to verify the presence of an allergic condition against inhalants or contact allergens, respectively. For the evaluation of the CYP2C9, CYP2C19, and CYP2D6 polymorphisms, we used a strategy based on the amplification of the entire gene coupled to direct genomic DNA sequencing analysis. RESULTS: Overall, a total of 15 different CYP2C9, CYP2C19, and CYP2D6 haplotypes were identified in our population. If the 5 CYP2C9 and the 2 CYP2C19 identified alleles correspond to the previously described ones, 4 of the 8 CYP2D6 haplotypes, detected in the study group, present new SNPs combinations. These new suballeles were categorized as CYP2D6*2M Sa-lento Variant 1, CYP2D6*35B Salento Variant 2, CYP2D6*41 Salento Variant 3, and CYP2D6*4P Salento Variant 4 due to the presence of the key SNPs 2,850 C>T, 31G>A, 2,988 G>A, and 1,846 G>A, respectively. When the allergic individuals are divided into 2 groups according to their SCS score, we observed that the distribution of the CYP2D6 phenotypes was significantly different between the 2 groups. CONCLUSIONS: Our idea is that the application of the questionnaire that we have adopted has enabled us to diagnose a degree of chemical sensitivity, which results as comorbid of the allergic disease and in which a condition of poor or intermediate metabolizes for the detrimental CYP2D6 alleles, could represent a discriminant between the chemical sensitivity and the health state.


Assuntos
Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2D6/genética , Hipersensibilidade/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único , Inquéritos e Questionários , Adulto Jovem
20.
J Oncol Pharm Pract ; 25(7): 1599-1607, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30253730

RESUMO

BACKGROUND: Elevation of the international normalized ratio and bleeding complications has been reported in patients taking warfarin concomitantly with tyrosine kinase inhibitors such as gefitinib and erlotinib. OBJECTIVE: To assess the frequency, degree, and onset of international normalized ratio elevation in patients receiving warfarin with gefitinib or erlotinib, and changes in vitro cytochrome P450 2C9 activity. METHODS: This retrospective, single-center, observational study compared international normalized ratio values during the treatment with warfarin in the absence and presence of the tyrosine kinase inhibitors, gefitinib, and erlotinib. In addition, the inhibitory effect of tyrosine kinase inhibitors on cytochrome P450 2C9 activity was screened in an in vitro study. RESULTS: Compared with international normalized ratio at the baseline significant (P < 0.05) international normalized ratio elevations were observed in the majority of the patients (5/6 patients with gefitinib, 83.3%; 6/7 patients with erlotinib, 85.7%) during concurrent therapy. The international normalized ratio was increased 1.8- and 1.6-fold relative to the baseline value, on median, in the presence of gefitinib and erlotinib, respectively, and the onset of international normalized ratio elevation was observed at a median of seven days and nine days, respectively. In vitro (S)-warfarin 7-hydroxylation activity was inhibited by 36% in the presence of 1 µM gefitinib and 27% by 10 µM erlotinib, which are comparable to the steady-state plasma levels of these tyrosine kinase inhibitors after standard dosing. CONCLUSION: In most patients, international normalized ratio elevation was observed within two weeks of the start of concomitant therapy with warfarin and gefitinib or erlotinib. To avoid excessive anticoagulant response by warfarin, international normalized ratio should be carefully monitored weekly and dosage adjustment of warfarin might be recommended during the first month after the start of concurrent tyrosine kinase inhibitor therapy.


Assuntos
Anticoagulantes/uso terapêutico , Citocromo P-450 CYP2C9/metabolismo , Cloridrato de Erlotinib/uso terapêutico , Gefitinibe/uso terapêutico , Coeficiente Internacional Normatizado , Proteínas Tirosina Quinases/antagonistas & inibidores , Varfarina/uso terapêutico , Adulto , Idoso , Interações Medicamentosas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA