Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacogenomics J ; 24(3): 14, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750044

RESUMO

The objective of this study was to estimate the cost-effectiveness of CYP3A5 genotype-guided tacrolimus dosing in kidney, liver, heart, and lung transplant recipients relative to standard of care (SOC) tacrolimus dosing, from a US healthcare payer perspective. We developed decision-tree models to compare economic and clinical outcomes between CYP3A5 genotype-guided and SOC tacrolimus therapy in the first six months post-transplant. We derived inputs for CYP3A5 phenotype frequencies and physician use of genotype test results to inform clinical care from literature; tacrolimus exposure [high vs low tacrolimus time in therapeutic range using the Rosendaal algorithm (TAC TTR-Rosendaal)] and outcomes (incidences of acute tacrolimus nephrotoxicity, acute cellular rejection, and death) from real-world data; and costs from the Medicare Fee Schedule and literature. We calculated cost per avoided event and performed sensitivity analyses to evaluate the robustness of the results to changes in inputs. Incremental costs per avoided event for CYP3A5 genotype-guided vs SOC tacrolimus dosing were $176,667 for kidney recipients, $364,000 for liver recipients, $12,982 for heart recipients, and $93,333 for lung recipients. The likelihood of CYP3A5 genotype-guided tacrolimus dosing leading to cost-savings was 19.8% in kidney, 32.3% in liver, 51.8% in heart, and 54.1% in lung transplant recipients. Physician use of genotype results to guide clinical care and the proportion of patients with a high TAC TTR-Rosendaal were key parameters driving the cost-effectiveness of CYP3A5 genotype-guided tacrolimus therapy. Relative to SOC, CYP3A5 genotype-guided tacrolimus dosing resulted in a slightly greater benefit at a higher cost. Further economic evaluations examining intermediary outcomes (e.g., dose modifications) are needed, particularly in populations with higher frequencies of CYP3A5 expressers.


Assuntos
Análise Custo-Benefício , Citocromo P-450 CYP3A , Genótipo , Imunossupressores , Transplante de Órgãos , Tacrolimo , Humanos , Tacrolimo/economia , Tacrolimo/administração & dosagem , Citocromo P-450 CYP3A/genética , Imunossupressores/economia , Imunossupressores/administração & dosagem , Imunossupressores/efeitos adversos , Transplante de Órgãos/economia , Rejeição de Enxerto/genética , Rejeição de Enxerto/prevenção & controle , Rejeição de Enxerto/economia , Estados Unidos , Análise de Custo-Efetividade
2.
Drug Metab Dispos ; 52(8): 765-774, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38811156

RESUMO

Physiologically based pharmacokinetic (PBPK) modeling was used to predict the human pharmacokinetics and drug-drug interaction (DDI) of GDC-2394. PBPK models were developed using in vitro and in vivo data to reflect the oral and intravenous PK profiles of mouse, rat, dog, and monkey. The learnings from preclinical PBPK models were applied to a human PBPK model for prospective human PK predictions. The prospective human PK predictions were within 3-fold of the clinical data from the first-in-human study, which was used to optimize and validate the PBPK model and subsequently used for DDI prediction. Based on the majority of PBPK modeling scenarios using the in vitro CYP3A induction data (mRNA and activity), GDC-2394 was predicted to have no-to-weak induction potential at 900 mg twice daily (BID). Calibration of the induction mRNA and activity data allowed for the convergence of DDI predictions to a narrower range. The plasma concentrations of the 4ß-hydroxycholesterol (4ß-HC) were measured in the multiple ascending dose study to assess the hepatic CYP3A induction risk. There was no change in plasma 4ß-HC concentrations after 7 days of GDC-2394 at 900 mg BID. A dedicated DDI study found that GDC-2394 has no induction effect on midazolam in humans, which was reflected by the totality of predicted DDI scenarios. This work demonstrates the prospective utilization of PBPK for human PK and DDI prediction in early drug development of GDC-2394. PBPK modeling accompanied with CYP3A biomarkers can serve as a strategy to support clinical pharmacology development plans. SIGNIFICANCE STATEMENT: This work presents the application of physiologically based pharmacokinetic modeling for prospective human pharmacokinetic (PK) and drug-drug interaction (DDI) prediction in early drug development. The strategy taken in this report represents a framework to incorporate various approaches including calibration of in vitro induction data and consideration of CYP3A biomarkers to inform on the overall CYP3A-related DDI risk of GDC-2394.


Assuntos
Citocromo P-450 CYP3A , Interações Medicamentosas , Modelos Biológicos , Humanos , Interações Medicamentosas/fisiologia , Citocromo P-450 CYP3A/metabolismo , Animais , Cães , Ratos , Masculino , Camundongos , Biomarcadores/sangue , Biomarcadores/metabolismo , Hidroxicolesteróis/farmacocinética , Hidroxicolesteróis/sangue , Adulto , Feminino , Indutores do Citocromo P-450 CYP3A/farmacocinética , Adulto Jovem , Midazolam/farmacocinética , Midazolam/administração & dosagem , Haplorrinos , Pessoa de Meia-Idade , Estudos Prospectivos
3.
Clin Transl Sci ; 17(4): e13799, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38634429

RESUMO

Momelotinib-approved for treatment of myelofibrosis in adults with anemia-and its major active metabolite, M21, were assessed as drug-drug interaction (DDI) victims with a strong cytochrome P450 (CYP) 3A4 inhibitor (multiple-dose ritonavir), an organic anion transporting polypeptide (OATP) 1B1/1B3 inhibitor (single-dose rifampin), and a strong CYP3A4 inducer (multiple-dose rifampin). Momelotinib DDI perpetrator potential (multiple-dose) was evaluated with CYP3A4 and breast cancer resistance protein (BCRP) substrates (midazolam and rosuvastatin, respectively). DDI was assessed from changes in maximum plasma concentration (Cmax), area under the concentration-time curve (AUC), time to reach Cmax, and half-life. The increase in momelotinib (23% Cmax, 14% AUC) or M21 (30% Cmax, 24% AUC) exposure with ritonavir coadministration was not clinically relevant. A moderate increase in momelotinib (40% Cmax, 57% AUC) and minimal change in M21 was observed with single-dose rifampin. A moderate decrease in momelotinib (29% Cmax, 46% AUC) and increase in M21 (31% Cmax, 15% AUC) were observed with multiple-dose rifampin compared with single-dose rifampin. Due to potentially counteracting effects of OATP1B1/1B3 inhibition and CYP3A4 induction, multiple-dose rifampin did not significantly change momelotinib pharmacokinetics compared with momelotinib alone (Cmax no change, 15% AUC decrease). Momelotinib did not alter the pharmacokinetics of midazolam (8% Cmax, 16% AUC decreases) or 1'-hydroxymidazolam (14% Cmax, 16% AUC decreases) but increased rosuvastatin Cmax by 220% and AUC by 170%. Safety findings were mild in this short-term study in healthy volunteers. This analysis suggests that momelotinib interactions with OATP1B1/1B3 inhibitors and BCRP substrates may warrant monitoring for adverse reactions or dose adjustments.


Assuntos
Benzamidas , Citocromo P-450 CYP3A , Pirimidinas , Ritonavir , Adulto , Humanos , Citocromo P-450 CYP3A/metabolismo , Rifampina/farmacologia , Midazolam/farmacocinética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Rosuvastatina Cálcica/farmacocinética , Proteínas de Neoplasias/metabolismo , Interações Medicamentosas , Proteínas de Membrana Transportadoras/metabolismo
4.
Cancer Chemother Pharmacol ; 94(1): 79-87, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38456955

RESUMO

PURPOSE: An oral docetaxel formulation boosted by the Cytochrome P450 (CYP) 3 A inhibitor ritonavir, ModraDoc006/r, is currently under clinical investigation. Based on clinical data, the incidence of grade 1-2 diarrhea is increased with this oral docetaxel formulation compared to the conventional intravenous administration. Loperamide, a frequently used diarrhea inhibitor, could be added to the regimen as symptomatic treatment. However, loperamide is also a substrate of the CYP3A enzyme, which could result in competition between ritonavir and loperamide for this protein. Therefore, we were interested in the impact of coadministered loperamide on the pharmacokinetics of ritonavir-boosted oral docetaxel. METHODS: We administered loperamide simultaneously or with an 8-hour delay to humanized CYP3A4 mice (with expression in liver and intestine) receiving oral ritonavir and docetaxel. Concentrations of docetaxel, ritonavir, loperamide and two of its active metabolites were measured. RESULTS: The plasma exposure (AUC and Cmax) of docetaxel was not altered during loperamide treatment, nor were the ritonavir plasma pharmacokinetics. However, the hepatic and intestinal dispositions of ritonavir were somewhat changed in the simultaneous, but not 8-hour loperamide treatment groups, possibly due to loperamide-induced delayed drug absorption. The pharmacokinetics of loperamide itself did not seem to be influenced by ritonavir. CONCLUSION: These results suggest that delayed loperamide administration can be added to ritonavir-boosted oral docetaxel treatment, without affecting the overall systemic exposure of docetaxel.


Assuntos
Citocromo P-450 CYP3A , Docetaxel , Interações Medicamentosas , Loperamida , Ritonavir , Taxoides , Ritonavir/administração & dosagem , Ritonavir/farmacocinética , Docetaxel/administração & dosagem , Docetaxel/farmacocinética , Loperamida/administração & dosagem , Loperamida/farmacocinética , Animais , Camundongos , Citocromo P-450 CYP3A/metabolismo , Administração Oral , Taxoides/farmacocinética , Taxoides/administração & dosagem , Humanos , Distribuição Tecidual , Antineoplásicos/farmacocinética , Antineoplásicos/administração & dosagem , Inibidores do Citocromo P-450 CYP3A/farmacologia , Área Sob a Curva , Antidiarreicos/administração & dosagem , Antidiarreicos/farmacocinética , Camundongos Transgênicos
5.
Cancer Chemother Pharmacol ; 93(5): 439-453, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38270613

RESUMO

PURPOSE: Midostaurin, approved for treating FLT-3-mutated acute myeloid leukemia and advanced systemic mastocytosis, is metabolized by cytochrome P450 (CYP) 3A4 to two major metabolites, and may inhibit and/or induce CYP3A, CYP2B6, and CYP2C8. Two studies investigated the impact of midostaurin on CYP substrate drugs and oral contraceptives in healthy participants. METHODS: Using sentinel dosing for participants' safety, the effects of midostaurin at steady state following 25-day (Study 1) or 24-day (Study 2) dosing with 50 mg twice daily were evaluated on CYP substrates, midazolam (CYP3A4), bupropion (CYP2B6), and pioglitazone (CYP2C8) in Study 1; and monophasic oral contraceptives (containing ethinylestradiol [EES] and levonorgestrel [LVG]) in Study 2. RESULTS: In Study 1, midostaurin resulted in a 10% increase in midazolam peak plasma concentrations (Cmax), and 3-4% decrease in total exposures (AUC). Bupropion showed a 55% decrease in Cmax and 48-49% decrease in AUCs. Pioglitazone showed a 10% decrease in Cmax and 6% decrease in AUC. In Study 2, midostaurin resulted in a 26% increase in Cmax and 7-10% increase in AUC of EES; and a 19% increase in Cmax and 29-42% increase in AUC of LVG. Midostaurin 50 mg twice daily for 28 days ensured that steady-state concentrations of midostaurin and the active metabolites were achieved by the time of CYP substrate drugs or oral contraceptive dosing. No safety concerns were reported. CONCLUSION: Midostaurin neither inhibits nor induces CYP3A4 and CYP2C8, and weakly induces CYP2B6. Midostaurin at steady state has no clinically relevant PK interaction on hormonal contraceptives. All treatments were well tolerated.


Assuntos
Bupropiona , Citocromo P-450 CYP2B6 , Citocromo P-450 CYP2C8 , Citocromo P-450 CYP3A , Interações Medicamentosas , Midazolam , Estaurosporina , Humanos , Área Sob a Curva , Bupropiona/farmacocinética , Bupropiona/administração & dosagem , Anticoncepcionais Orais/administração & dosagem , Anticoncepcionais Orais/farmacologia , Anticoncepcionais Orais/farmacocinética , Citocromo P-450 CYP2B6/metabolismo , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2C8/metabolismo , Citocromo P-450 CYP3A/metabolismo , Combinação de Medicamentos , Etinilestradiol/farmacocinética , Etinilestradiol/administração & dosagem , Etinilestradiol/farmacologia , Voluntários Saudáveis , Levanogestrel/farmacocinética , Levanogestrel/administração & dosagem , Levanogestrel/farmacologia , Midazolam/farmacocinética , Midazolam/administração & dosagem , Pioglitazona/farmacologia , Pioglitazona/administração & dosagem , Pioglitazona/farmacocinética , Estaurosporina/análogos & derivados , Estaurosporina/farmacologia , Estaurosporina/farmacocinética , Estaurosporina/administração & dosagem , Masculino , Feminino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade
6.
Drug Metab Dispos ; 52(3): 218-227, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38195522

RESUMO

Cytochrome P450 3A4 (CYP3A4), a key enzyme, is pivotal in metabolizing approximately half of the drugs used clinically. The genetic polymorphism of the CYP3A4 gene significantly influences individual variations in drug metabolism, potentially leading to severe adverse drug reactions (ADRs). In this study, we conducted a genetic analysis on CYP3A4 gene in 1163 Chinese Han individuals to identify the genetic variations that might affect their drug metabolism capabilities. For this purpose, a multiplex polymerase chain reaction (PCR) amplicon sequencing technique was developed, enabling us to perform the genotyping of CYP3A4 gene efficiently and economically on a large scale. As a result, a total of 14 CYP3A4 allelic variants were identified, comprising six previously reported alleles and eight new nonsynonymous variants that were nominated as new allelic variants *39-*46 by the PharmVar Association. Further, functional assessments of these novel CYP3A4 variants were undertaken by coexpressing them with cytochromes P450 oxidoreductase (CYPOR) in Saccharomyces cerevisiae microsomes. Immunoblot analysis indicated that with the exception of CYP3A4.40 and CYP3A4.45, the protein expression levels of most new variants were similar to that of the wild-type CYP3A4.1 in yeast cells. To evaluate their catalytic activities, midazolam was used as a probe drug. The results showed that variant CYP3A4.45 had almost no catalytic activity, whereas the other variants exhibited significantly reduced drug metabolism abilities. This suggests that the majority of the CYP3A4 variants identified in the Chinese population possess markedly altered capacities for drug metabolism. SIGNIFICANCE STATEMENT: In this study, we established a multiplex polymerase chain reaction (PCR) amplicon sequencing method and detected the maximum number of new CYP3A4 variants in a single ethnic population. Additionally, we performed the functional characterizations of these eight novel CYP3A4 allele variants in vitro. This study not only contributes to the understanding of CYP3A4 genetic polymorphism in the Chinese Han population but also holds substantial reference value for their potential clinical applications in personalized medicine.


Assuntos
Citocromo P-450 CYP3A , Polimorfismo Genético , Humanos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Alelos , Polimorfismo Genético/genética , Microssomos/metabolismo , China
7.
CPT Pharmacometrics Syst Pharmacol ; 13(2): 234-246, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38050329

RESUMO

Mosunetuzumab is a CD3/CD20 bispecific antibody. As an on-target effect, transient elevation of interleukin-6 (IL-6) occurs in early treatment cycles. A physiologically-based pharmacokinetic (PBPK) model was developed to assess potential drug interaction caused by IL-6 enzyme suppression on cytochrome P450 3A (CYP3A) during mosunetuzumab treatment. The model's performance in predicting IL-6 CYP3A suppression and subsequent drug-drug interactions (DDIs) was verified using existing clinical data of DDIs caused by chronic and transient IL-6 elevation. Sensitivity analyses were performed for a complete DDI risk assessment. The IL-6 concentration- and time-dependent CYP3A suppression during mosunetuzumab treatment was simulated using PBPK model with incorporation of in vitro IL-6 inhibition data. At clinically approved doses/regimens, the DDI at maximum CYP3A suppression was predicted to be a midazolam maximum drug concentration in plasma (Cmax ) and area under the plasma drug concentration-time curve (AUC) ratio of 1.17 and 1.37, respectively. At the 95th percentile of IL-6 concentration level or when gut CYP3A suppression was considered, the predicted DDI risk for mosunetuzumab remained low (<2-fold). The PBPK-based DDI predictions informed the mosunetuzumab product label to monitor, in early cycles, the concentrations and toxicities for sensitive CYP3A substrates with narrow therapeutic windows.


Assuntos
Antineoplásicos , Citocromo P-450 CYP3A , Humanos , Citocromo P-450 CYP3A/metabolismo , Interleucina-6 , Citocinas , Interações Medicamentosas , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Modelos Biológicos
8.
Clin Pharmacol Ther ; 115(5): 1025-1032, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105467

RESUMO

In the past, rifampicin was well-established as strong index CYP3A inducer in clinical drug-drug interaction (DDI) studies. However, due to identified potentially genotoxic nitrosamine impurities, it should not any longer be used in healthy volunteer studies. Available clinical data suggest carbamazepine as an alternative to rifampicin as strong index CYP3A4 inducer in clinical DDI studies. Further, physiologically-based pharmacokinetic (PBPK) modeling is a tool with increasing importance to support the DDI risk assessment of drugs during drug development. CYP3A4 induction properties and the safety profile of carbamazepine were investigated in two open-label, fixed sequence, crossover clinical pharmacology studies in healthy volunteers using midazolam as a sensitive index CYP3A4 substrate. Carbamazepine was up-titrated from 100 mg twice daily (b.i.d.) to 200 mg b.i.d., and to a final dose of 300 mg b.i.d. for 10 consecutive days. Mean area under plasma concentration-time curve from zero to infinity (AUC(0-∞)) of midazolam consistently decreased by 71.8% (ratio: 0.282, 90% confidence interval (CI): 0.235-0.340) and 67.7% (ratio: 0.323, 90% CI: 0.256-0.407) in study 1 and study 2, respectively. The effect was adequately described by an internally developed PBPK model for carbamazepine which has been made freely available to the scientific community. Further, carbamazepine was safe and well-tolerated in the investigated dosing regimen in healthy participants. The results demonstrated that the presented design is appropriate for the use of carbamazepine as alternative inducer to rifampicin in DDI studies acknowledging its CYP3A4 inductive potency and safety profile.


Assuntos
Midazolam , Rifampina , Humanos , Rifampina/efeitos adversos , Midazolam/farmacocinética , Citocromo P-450 CYP3A , Interações Medicamentosas , Modelos Biológicos , Carbamazepina/efeitos adversos , Inibidores do Citocromo P-450 CYP3A/farmacologia
9.
Sci Rep ; 13(1): 21982, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081857

RESUMO

Sinapic acid is a hydroxycinnamic acid widespread in the plant kingdom, known to be a potent anti-oxidant used for the treatment of cancer, infections, oxidative stress, and inflammation. However, the mode of action for its chemotherapeutic properties has yet not been unleashed. Hence, we aimed to identify potential targets to propose a possible molecular mechanism for sinapic acid against breast cancer. We utilized multiple system biology tools and databases like DisGeNET, DIGEP-Pred, Cytoscape, STRING, AutoDock 4.2, AutoDock vina, Schrodinger, and gromacs to predict a probable molecular mechanism for sinapic acid against breast cancer. Targets for the disease breast cancer, were identified via DisGeNET database which were further matched with proteins predicted to be modulated by sinapic acid. In addition, KEGG pathway analysis was used to identify pathways; a protein-pathway network was constructed via Cytoscape. Molecular docking was performed using three different algorithms followed by molecular dynamic simulations and MMPBSA analysis. Moreover, cluster analysis and gene ontology (GO) analysis were performed. A total of 6776 targets were identified for breast cancer; 95.38% of genes predicted to be modulated by sinapic acid were common with genes of breast cancer. The 'Pathways in cancer' was predicted to be modulated by most umber of proteins. Further, PRKCA, CASP8, and CTNNB1 were predicted to be the top 3 hub genes. In addition, molecular docking studies revealed CYP3A4, CYP1A1, and SIRT1 to be the lead proteins identified from AutoDock 4.2, AutoDock Vina, and Schrodinger suite Glide respectively. Molecular dynamic simulation and MMPBSA were performed for the complex of sinapic acid with above mentioned proteins which revealed a stable complex throughout simulation. The predictions revealed that the mechanism of sinapic acid in breast cancer may be due to regulation of multiple proteins like CTNNB1, PRKCA, CASP8, SIRT1, and cytochrome enzymes (CYP1A1 & CYP3A4); the majorly regulated pathway was predicted to be 'Pathways in cancer'. This indicates the rationale for sinapic acid to be used in the treatment of breast cancer. However, these are predictions and need to be validated and looked upon in-depth to confirm the exact mechanism of sinapic acid in the treatment of breast cancer; this is future scope as well as a drawback of the current study.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias , Simulação de Dinâmica Molecular , Ácidos Cumáricos/farmacologia , Sirtuína 1 , Farmacologia em Rede , Citocromo P-450 CYP1A1 , Citocromo P-450 CYP3A , Simulação de Acoplamento Molecular , Biologia
10.
Nutrients ; 15(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37764844

RESUMO

In natural products, the content and quality of the marker components differ depending on the part, production area, collection period, and extraction method; therefore, a standardized analysis method is required to obtain consistent results. This study developed a simultaneous analysis method for three marker components (7-methoxylutolin-5-O-glucoseide, pilloin 5-O-ß-d-glucopyranoside, rutarensin) isolated and purified from Wikstroemia ganpi (W. ganpi). Simultaneous analysis was performed using high-performance liquid chromatography with photodiode array detection (HPLC-PDA) method that was validated according to the International Council for Harmonisation (ICH) guidelines. The developed analytical method exhibited linearity (r2 > 0.999), detection limits (0.72-3.34 µg/mL), and quantification limits (2.19-10.22 µg/mL). The relative standard deviation (RSD) value of intra- and inter-day precisions was less than 1.68%, and analyte recoveries (93.42-117.55%; RSD < 1.86%) were validated according to the analytical procedures, and all parameters were within the allowable range. Quantitative analysis of the three marker components from W. ganpi MeOH extract (WGM) showed 7-methoxylutolin-5-O-glucoseide with the highest content (51.81 mg/g). The inhibitory effects of WGM on cytochrome P450 (CYP) substrate drugs were further investigated. The in vitro study revealed that WGM inhibited the CYP3A-mediated metabolism of buspirone and that 7-methoxylutolin-5-O-glucoseide and pilloin 5-O-ß-d-glucopyranoside inhibited the metabolism of buspirone with IC50 values of 2.73 and 18.7 µM, respectively. However, a single oral dose of WGM did not have significant effects on the pharmacokinetics of buspirone in rats, suggesting that WGM cannot function as an inhibitor of CYP3A-mediated metabolism in vivo.


Assuntos
Wikstroemia , Animais , Ratos , Cromatografia Líquida de Alta Pressão , Buspirona , Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450
11.
Invest New Drugs ; 41(4): 596-605, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37415001

RESUMO

Tepotinib is a highly selective, potent, mesenchymal-epithelial transition factor (MET) inhibitor, approved for the treatment of non-small cell lung cancer harboring MET exon 14 skipping alterations. The aims of this work were to investigate the potential for drug-drug interactions via cytochrome P450 (CYP) 3A4/5 or P-glycoprotein (P-gp) inhibition. In vitro studies were conducted in human liver microsomes, human hepatocyte cultures and Caco-2 cell monolayers to investigate whether tepotinib or its major metabolite (MSC2571109A) inhibited or induced CYP3A4/5 or inhibited P-gp. Two clinical studies were conducted to investigate the effect of multiple dose tepotinib (500 mg once daily orally) on the single dose pharmacokinetics of a sensitive CYP3A4 substrate (midazolam 7.5 mg orally) and a P-gp substrate (dabigatran etexilate 75 mg orally) in healthy participants. Tepotinib and MSC2571109A showed little evidence of direct or time-dependent CYP3A4/5 inhibition (IC50 > 15 µM) in vitro, although MSC2571109A did show mechanism-based CYP3A4/5 inhibition. Tepotinib did not induce CYP3A4/5 activity in vitro, although both tepotinib and MSC2571109A increased CYP3A4 mRNA. In clinical studies, tepotinib had no effect on the pharmacokinetics of midazolam or its metabolite 1'-hydroxymidazolam. Tepotinib increased dabigatran maximum concentration and area under the curve extrapolated to infinity by 38% and 51%, respectively. These changes were not considered to be clinically relevant. Tepotinib was considered safe and well tolerated in both studies. The potential of tepotinib to cause clinically relevant DDI with CYP3A4- or P-gp-dependent drugs at the clinical dose is considered low. Study 1 (midazolam): NCT03628339 (registered 14 August 2018). Study 2 (dabigatran): NCT03492437 (registered 10 April 2018).


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Citocromo P-450 CYP3A/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Midazolam/farmacocinética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Dabigatrana/farmacocinética , Células CACO-2 , Subfamília B de Transportador de Cassetes de Ligação de ATP , Interações Medicamentosas
12.
Food Chem Toxicol ; 175: 113711, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36893891

RESUMO

As a promiscuous xenobiotic receptor, pregnane X receptor (PXR) has been confirmed to participate in numerous physiological process. In addition to the conventional estrogen/androgen receptor, PXR also serves as an alternative target for environmental chemical contaminants. In this work, the PXR-mediated endocrine disrupting effects of typical food contaminants were explored. Firstly, the time-resolved fluorescence resonance energy transfer assays confirmed the PXR binding affinities of 2,2',4,4',5,5'-hexachlorobiphenyl, bis(2-ethylhexyl) phthalate, dibutyl phthalate, chlorpyrifos, bisphenol A, and zearalenone, with IC50 values ranging from 1.88 to 4284.00 nM. Then their PXR agonist activities were assessed by PXR-mediated CYP3A4 reporter gene assays. Subsequently, the regulation of gene expressions of PXR and its targets CYP3A4, UGT1A1, and MDR1 by these compounds was further investigated. Intriguingly, all the tested compounds interfered with these gene expressions, confirming their endocrine disrupting effects via PXR-mediated signaling. The compound-PXR-LBD binding interactions were explored by molecular docking and molecular dynamics simulations to unravel the structural basis of their PXR binding capacities. The weak intermolecular interactions are key players in stabilizing these compound-PXR-LBD complexes. During the simulation process, 2,2',4,4',5,5'-hexachlorobiphenyl remained stable while the other 5 compounds underwent relatively severe disturbances. In conclusion, these food contaminants might exhibit endocrine disrupting effects via PXR.


Assuntos
Receptores de Esteroides , Receptor de Pregnano X , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Simulação de Acoplamento Molecular
13.
Clin Pharmacol Ther ; 113(6): 1315-1325, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36924284

RESUMO

Oral formulations prepared from the leaves of the kratom (Mitragyna speciosa) plant are increasingly used for their opioid-like effects to self-manage opioid withdrawal and pain. Calls to US poison centers involving kratom exposures increased >50-fold from 2011-2017, one-third of which reported concomitant use of kratom with drugs of abuse. Many of these drugs are eliminated primarily via cytochrome P450 (CYP) 3A and CYP2D6, raising concerns for potential adverse pharmacokinetic kratom-drug interactions. The impact of a single low dose of kratom tea (2 g) on the pharmacokinetics of the CYP3A probe midazolam (2.5 mg) and CYP2D6 probe dextromethorphan (30 mg) were assessed in 12 healthy adult participants after oral administration. Kratom showed no effect on dextromethorphan area under the plasma concentration time-curve (AUC) and maximum concentration (Cmax ; geometric mean ratio (90% confidence interval) 0.99 (0.83-1.19) and 0.96 (0.78-1.19), respectively) but a modest increase in midazolam AUC and Cmax (1.39 (1.23-1.57) and 1.50 (1.32-1.70), respectively). Lack of change in midazolam half-life (1.07 (0.98-1.17)) suggested that kratom primarily inhibited intestinal CYP3A. This inference was further supported by a physiologically based pharmacokinetic drug interaction model using the abundant alkaloid mitragynine, a relatively potent CYP3A time-dependent inhibitor in vitro (KI , ~4 µM; kinact , ~0.07 min-1 ). This work is the first to clinically evaluate the pharmacokinetic drug interaction potential of kratom. Co-consuming kratom with certain drugs extensively metabolized by CYP3A may precipitate serious interactions. These data fill critical knowledge gaps about the safe use of this increasingly popular natural product, thereby addressing ongoing public health concerns.


Assuntos
Produtos Biológicos , Mitragyna , Adulto , Humanos , Analgésicos Opioides/efeitos adversos , Midazolam/efeitos adversos , Citocromo P-450 CYP2D6 , Citocromo P-450 CYP3A , Dextrometorfano , Psicotrópicos/efeitos adversos , Interações Medicamentosas , Inibidores do Citocromo P-450 CYP3A
14.
Clin Transl Sci ; 16(4): 647-661, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36642822

RESUMO

Gepotidacin is a novel triazaacenaphthylene antibiotic in phase III development. Based on nonclinical in vitro characterization of gepotidacin metabolism, two phase I studies were conducted in healthy participants to investigate clinical drug-drug interactions (DDIs). We assessed gepotidacin as a DDI victim with a potent cytochrome P450 (CYP) 3A4/P-glycoprotein (P-gp) inhibitor (itraconazole), potent CYP3A4 inducer (rifampicin), and nonspecific organic cation transporter (OCT)/multidrug and toxic extrusion transporter (MATE) renal transport inhibitor (cimetidine) via single doses of gepotidacin before and after co-administration with multiple doses of the modulator drugs. Gepotidacin DDI perpetrator potential for P-gp inhibition (digoxin) and CYP3A4 inhibition (midazolam) was evaluated via single doses of the two-drug cocktail without and with gepotidacin. The DDI magnitudes were interpreted based on area under the concentration-time curve (AUC). A weak DDI (AUC increase 48%-50%) was observed for gepotidacin co-administered with itraconazole. A clinically significant decrease in gepotidacin plasma AUC (52%) was observed with rifampicin coadministration, indicating a moderate DDI. There was no DDI for gepotidacin with cimetidine; a unique biomarker approach showed increased serum creatinine (24%), decreased renal clearance of creatinine (21%), and N1-methylnicotinamide (39%), which confirmed extensive MATE inhibition and partial OCT2 inhibition. Gepotidacin was not a P-gp DDI perpetrator, although the maximum plasma concentration of digoxin increased (53%) and is potentially clinically relevant given its narrow therapeutic index. Gepotidacin demonstrated weak CYP3A4 inhibition with midazolam (<2-fold AUC increase). There were no new safety-risk profile findings. These results will inform the safe and efficacious clinical use of gepotidacin when co-administered with other drugs.


Assuntos
Citocromo P-450 CYP3A , Itraconazol , Humanos , Citocromo P-450 CYP3A/metabolismo , Itraconazol/farmacologia , Rifampina/farmacologia , Midazolam , Cimetidina , Interações Medicamentosas , Preparações Farmacêuticas , Proteínas de Membrana Transportadoras , Digoxina , Modelos Biológicos
15.
Br J Clin Pharmacol ; 89(2): 898-902, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36354135

RESUMO

The inhibition of cytochrome P450 (CYP) enzymes is the most frequent cause of drug-drug interactions. Many safe, inexpensive and widely available therapeutic drugs can inhibit CYP enzymes (e.g., azoles). Also, the specific potency of inhibition and the targeted CYP enzyme have been well described (e.g., itraconazole strongly inhibits CYP enzyme 3A4 and, in turn, CYP3A4 metabolizes venetoclax and ibrutinib). CYP enzyme inhibitors increase the plasma concentration of other drugs via shared metabolic pathways. We herein present the effects of inhibiting CYP enzymes with itraconazole-venetoclax for the treatment of refractory acute myeloid leukaemia, as well as itraconazole-ibrutinib to treat steroid-refractory acute graft vs. host disease in the same patient. Both of the patient's conditions responded completely. This appears to be a feasible strategy that decreases treatment costs by 75%. Previous Food and Drug Administration recommendations and clinical data support these subsequent dose reductions. Eleven months after the transplant, the patient remains in complete response and with no minimal residual disease. Another patient had been effectively treated before with CYP enzyme inhibition prior to venetoclax-itraconazole administration for orbital myeloid sarcoma. Thus, this case study furthers information on the CYP enzyme inhibition strategy when associated with another costly drug, ibrutinib. The CYP enzyme inhibition strategy could be applied to many more anticancer drugs (e.g., ruxolitinib and ponatinib) and facilitate the availability of expensive oncological treatments in low- and middle-income countries. Also, this strategy could be further generalized by using different CYP enzyme inhibitors with varied pharmacokinetic and pharmacodynamic properties (i.e., grapefruit, azoles and clarithromycin).


Assuntos
Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450 , Interações Medicamentosas , Humanos , Citocromo P-450 CYP3A/metabolismo , Inibidores das Enzimas do Citocromo P-450/uso terapêutico , Sistema Enzimático do Citocromo P-450/metabolismo , Itraconazol/farmacologia
16.
J Diet Suppl ; 20(4): 582-601, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35302913

RESUMO

The dried roots and rhizomes of Glycyrrhiza species (G. glabra, G. uralensis and G. inflata), commonly known as licorice, have long been used in traditional medicine. In addition, two other species, G. echinata and G. lepidota are also considered "licorice" in select markets. Currently, licorice is an integral part of several botanical drugs and dietary supplements. To probe the botanicals' safety, herb-drug interaction potential of the hydroethanolic extracts of five Glycyrrhiza species and their key constituents was investigated by determining their effects on pregnane X receptor, aryl hydrocarbon receptor, two major cytochrome P450 isoforms (CYP3A4 and CYP1A2), and the metabolic clearance of antiviral drugs. All extracts enhanced transcriptional activity of PXR and AhR (>2-fold) and increased the enzyme activity of CYP3A4 and CYP1A2. The highest increase in CYP3A4 was seen with G. echinata (4-fold), and the highest increase in CYP1A2 was seen with G. uralensis (18-fold) and G. inflata (16-fold). Among the constituents, glabridin, licoisoflavone A, glyasperin C, and glycycoumarin activated PXR and AhR, glabridin being the most effective (6- and 27-fold increase, respectively). Licoisoflavone A, glyasperin C, and glycycoumarin increased CYP3A4 activity while glabridin, glyasperin C, glycycoumarin, and formononetin increased CYP1A2 activity (>2-fold). The metabolism of antiretroviral drugs (rilpivirine and dolutegravir) was increased by G. uralensis (2.0 and 2.5-fold) and its marker compound glycycoumarin (2.3 and 1.6-fold). The metabolism of dolutegravir was also increased by G. glabra (2.8-fold) but not by its marker compound, glabridin. These results suggest that licorice and its phytochemicals could affect the metabolism and clearance of certain drugs that are substrates of CYP3A4 and CYP1A2.Supplemental data for this article is available online at https://doi.org/10.1080/19390211.2022.2050875 .


Assuntos
Citocromo P-450 CYP1A2 , Glycyrrhiza , Citocromo P-450 CYP3A , Interações Ervas-Drogas , Glycyrrhiza/química , Extratos Vegetais/química , Compostos Fitoquímicos/farmacologia
17.
Br J Clin Pharmacol ; 89(7): 2076-2087, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35502121

RESUMO

AIMS: The aim of this study was to describe the 1-year direct and indirect transition probabilities to premature discontinuation of statin therapy after concurrently initiating statins and CYP3A4-inhibitor drugs. METHODS: A retrospective new-user cohort study design was used to identify (N = 160 828) patients who concurrently initiated CYP3A4 inhibitors (diltiazem, ketoconazole, clarithromycin, others) and CYP3A4-metabolized statins (statin DDI exposed, n = 104 774) vs. other statins (unexposed to statin DDI, n = 56 054) from the MarketScan commercial claims database (2012-2017). The statin DDI exposed and unexposed groups were matched (2:1) through propensity score matching techniques. We applied a multistate transition model to compare the 1-year transition probabilities involving four distinct states (start, adverse drug events [ADEs], discontinuation of CYP3A4-inhibitor drugs, and discontinuation of statin therapy) between those exposed to statin DDIs vs. those unexposed. Statistically significant differences were assessed by comparing the 95% confidence intervals (CIs) of probabilities. RESULTS: After concurrently starting stains and CYP3A, patients exposed to statin DDIs, vs. unexposed, were significantly less likely to discontinue statin therapy (71.4% [95% CI: 71.1, 71.6] vs. 73.3% [95% CI: 72.9, 73.6]) but more likely to experience an ADE (3.4% [95% CI: 3.3, 3.5] vs. 3.2% [95% CI: 3.1, 3.3]) and discontinue with CYP3A4-inhibitor therapy (21.0% [95% CI: 20.8, 21.3] vs. 19.5% [95% CI: 19.2, 19.8]). ADEs did not change these associations because those exposed to statin DDIs, vs. unexposed, were still less likely to discontinue statin therapy but more likely to discontinue CYP3A4-inhibitor therapy after experiencing an ADE. CONCLUSION: We did not observe any meaningful clinical differences in the probability of premature statin discontinuation between statin users exposed to statin DDIs and those unexposed.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Inibidores do Citocromo P-450 CYP3A/efeitos adversos , Citocromo P-450 CYP3A , Estudos de Coortes , Estudos Retrospectivos
18.
Drug Metab Dispos ; 51(3): 276-284, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36460477

RESUMO

Reliable in vitro to in vivo translation of cytochrome P450 (CYP) 3A4 induction potential is essential to support risk mitigation for compounds during pharmaceutical discovery and development. In this study, a linear correlation of CYP3A4 mRNA induction potential in human hepatocytes with the respective pregnane-X receptor (PXR) activation in a reporter gene assay using DPX2 cells was successfully demonstrated for 13 clinically used drugs. Based on this correlation, using rifampicin as a positive control, the magnitude of CYP3A4 mRNA induction for 71 internal compounds at several concentrations up to 10 µM (n = 90) was predicted within 2-fold error for 64% of cases with only a few false positives (19%). Furthermore, the in vivo area under the curve reduction of probe CYP substrates was reasonably predicted for eight marketed drugs (carbamazepine, dexamethasone, enzalutamide, nevirapine, phenobarbital, phenytoin, rifampicin, and rufinamide) using the static net effect model using both the PXR activation and CYP3A4 mRNA induction data. The liver exit concentrations were used for the model in place of the inlet concentrations to avoid false positive predictions and the concentration achieving twofold induction (F2) was used to compensate for the lack of full induction kinetics due to cytotoxicity and solubility limitations in vitro. These findings can complement the currently available induction risk mitigation strategy and potentially influence the drug interaction modeling work conducted at clinical stages. SIGNIFICANCE STATEMENT: The established correlation of CYP3A4 mRNA in human hepatocytes to PXR activation provides a clear cut-off to identify a compound showing an in vitro induction risk, complementing current regulatory guidance. Also, the demonstrated in vitro-in vivo translation of induction data strongly supports a clinical development program although limitations remain for drug candidates showing complex disposition pathways, such as involvement of auto-inhibition/induction, active transport and high protein binding.


Assuntos
Citocromo P-450 CYP3A , Receptores de Esteroides , Humanos , Citocromo P-450 CYP3A/metabolismo , Receptor de Pregnano X/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Rifampina/farmacologia , Rifampina/metabolismo , Indução Enzimática , Hepatócitos/metabolismo , RNA Mensageiro/metabolismo
19.
J Food Sci ; 88(1): 563-573, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36524620

RESUMO

Herbal supplements can cause hepatotoxicity and drug interactions via hepatic cytochrome P-450 (CYP) in some cases. However, there is no simple and stable cell-based assay to conduct a screening for hepatotoxicity and CYP induction. In the present study, we selected 14 components of the herbal supplement based on our previous reports and investigated the safety of the herbal supplement components focusing on toxicity and CYP3A4 induction in a cell-based assay using HepG2. The toxicity of the components was examined by lactate dehydrogenase (LDH) and cell proliferation assays. Then, the CYP3A4 induction of the components were examined by a reporter assay using reporter vectors of CYP3A4. The vector includes the CYP3A4 proximal promoter (CYP3A4PP) and the xenobiotic-responsive enhancer module (XREM) regions. Luteolin (LU) significantly increased LDH activity and decreased cell proliferation activity that suggests LU may cause toxicity in HepG2 cells. Quercetin (QU) increased the transcriptional activity of CYP3A4 (1.5-fold of control) in the reporter assay. However, the induction of QU was slightly in comparison to the validation of the transcriptional activity of CYP3A4 treated with CYP3A4 inducers. The CYP3A4 induction of QU may not involve CYP3A4PP but involves the XREM response. Throughout our results, the method in the present study may be useful for a safety assessment of herbal supplements, primarily focusing on hepatotoxicity and CYP3A4 induction. PRACTICAL APPLICATION: Even though there are problems with herbal supplements, studies related to toxicity are not actively carried out. The present methods may apply to the safety assessment for herbal supplements and be useful for the prevention and verification of health hazards caused by herbal supplements (the summary is shown in Figure S2).


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Citocromo P-450 CYP3A , Humanos , Citocromo P-450 CYP3A/genética , Células Hep G2 , Sistema Enzimático do Citocromo P-450
20.
Toxicol In Vitro ; 85: 105464, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36057418

RESUMO

Establishing the functionality, reproducibility, robustness, and reliability of microphysiological systems is a critical need for adoption of these technologies. A high throughput microphysiological system for liver studies was recently proposed in which induced pluripotent stem cell-derived hepatocytes (iHeps) and non-parenchymal cells (endothelial cells and THP-1 cells differentiated with phorbol 12-myristate 13-acetate into macrophage-like cells) were co-cultured in OrganoPlate® 2-lane 96 devices. The goal of this study was to evaluate this platform using additional cell types and conditions and characterize its utility and reproducibility. Primary human hepatocytes or iHeps, with and without non-parenchymal cells, were cultured for up to 17 days. Image-based cell viability, albumin and urea secretion into culture media, CYP3A4 activity and drug metabolism were assessed. The iHeps co-cultured with non-parenchymal cells demonstrated stable cell viability and function up to 17 days; however, variability was appreciable both within and among studies. The iHeps in monoculture did not form clusters and lost viability and function over time. The primary human hepatocytes in monoculture also exhibited low cell viability and hepatic function. Metabolism of various drugs was most efficient when iHeps were co-cultured with non-parenchymal cells. Overall, we found that the OrganoPlate® 2-lane 96 device, when used with iHeps and non-parenchymal cells, is a functional liver microphysiological model; however, the high-throughput nature of this model is somewhat dampened by the need for replicates to compensate for high variability.


Assuntos
Citocromo P-450 CYP3A , Forbóis , Humanos , Reprodutibilidade dos Testes , Células Cultivadas , Citocromo P-450 CYP3A/metabolismo , Células Endoteliais , Miristatos/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Albuminas/metabolismo , Ureia/metabolismo , Meios de Cultura , Acetatos , Forbóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA