Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Clin Transl Sci ; 17(4): e13799, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38634429

RESUMO

Momelotinib-approved for treatment of myelofibrosis in adults with anemia-and its major active metabolite, M21, were assessed as drug-drug interaction (DDI) victims with a strong cytochrome P450 (CYP) 3A4 inhibitor (multiple-dose ritonavir), an organic anion transporting polypeptide (OATP) 1B1/1B3 inhibitor (single-dose rifampin), and a strong CYP3A4 inducer (multiple-dose rifampin). Momelotinib DDI perpetrator potential (multiple-dose) was evaluated with CYP3A4 and breast cancer resistance protein (BCRP) substrates (midazolam and rosuvastatin, respectively). DDI was assessed from changes in maximum plasma concentration (Cmax), area under the concentration-time curve (AUC), time to reach Cmax, and half-life. The increase in momelotinib (23% Cmax, 14% AUC) or M21 (30% Cmax, 24% AUC) exposure with ritonavir coadministration was not clinically relevant. A moderate increase in momelotinib (40% Cmax, 57% AUC) and minimal change in M21 was observed with single-dose rifampin. A moderate decrease in momelotinib (29% Cmax, 46% AUC) and increase in M21 (31% Cmax, 15% AUC) were observed with multiple-dose rifampin compared with single-dose rifampin. Due to potentially counteracting effects of OATP1B1/1B3 inhibition and CYP3A4 induction, multiple-dose rifampin did not significantly change momelotinib pharmacokinetics compared with momelotinib alone (Cmax no change, 15% AUC decrease). Momelotinib did not alter the pharmacokinetics of midazolam (8% Cmax, 16% AUC decreases) or 1'-hydroxymidazolam (14% Cmax, 16% AUC decreases) but increased rosuvastatin Cmax by 220% and AUC by 170%. Safety findings were mild in this short-term study in healthy volunteers. This analysis suggests that momelotinib interactions with OATP1B1/1B3 inhibitors and BCRP substrates may warrant monitoring for adverse reactions or dose adjustments.


Assuntos
Benzamidas , Citocromo P-450 CYP3A , Pirimidinas , Ritonavir , Adulto , Humanos , Citocromo P-450 CYP3A/metabolismo , Rifampina/farmacologia , Midazolam/farmacocinética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Rosuvastatina Cálcica/farmacocinética , Proteínas de Neoplasias/metabolismo , Interações Medicamentosas , Proteínas de Membrana Transportadoras/metabolismo
2.
Cancer Chemother Pharmacol ; 93(5): 439-453, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38270613

RESUMO

PURPOSE: Midostaurin, approved for treating FLT-3-mutated acute myeloid leukemia and advanced systemic mastocytosis, is metabolized by cytochrome P450 (CYP) 3A4 to two major metabolites, and may inhibit and/or induce CYP3A, CYP2B6, and CYP2C8. Two studies investigated the impact of midostaurin on CYP substrate drugs and oral contraceptives in healthy participants. METHODS: Using sentinel dosing for participants' safety, the effects of midostaurin at steady state following 25-day (Study 1) or 24-day (Study 2) dosing with 50 mg twice daily were evaluated on CYP substrates, midazolam (CYP3A4), bupropion (CYP2B6), and pioglitazone (CYP2C8) in Study 1; and monophasic oral contraceptives (containing ethinylestradiol [EES] and levonorgestrel [LVG]) in Study 2. RESULTS: In Study 1, midostaurin resulted in a 10% increase in midazolam peak plasma concentrations (Cmax), and 3-4% decrease in total exposures (AUC). Bupropion showed a 55% decrease in Cmax and 48-49% decrease in AUCs. Pioglitazone showed a 10% decrease in Cmax and 6% decrease in AUC. In Study 2, midostaurin resulted in a 26% increase in Cmax and 7-10% increase in AUC of EES; and a 19% increase in Cmax and 29-42% increase in AUC of LVG. Midostaurin 50 mg twice daily for 28 days ensured that steady-state concentrations of midostaurin and the active metabolites were achieved by the time of CYP substrate drugs or oral contraceptive dosing. No safety concerns were reported. CONCLUSION: Midostaurin neither inhibits nor induces CYP3A4 and CYP2C8, and weakly induces CYP2B6. Midostaurin at steady state has no clinically relevant PK interaction on hormonal contraceptives. All treatments were well tolerated.


Assuntos
Bupropiona , Citocromo P-450 CYP2B6 , Citocromo P-450 CYP2C8 , Citocromo P-450 CYP3A , Interações Medicamentosas , Midazolam , Estaurosporina , Humanos , Área Sob a Curva , Bupropiona/farmacocinética , Bupropiona/administração & dosagem , Anticoncepcionais Orais/administração & dosagem , Anticoncepcionais Orais/farmacologia , Anticoncepcionais Orais/farmacocinética , Citocromo P-450 CYP2B6/metabolismo , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2C8/metabolismo , Citocromo P-450 CYP3A/metabolismo , Combinação de Medicamentos , Etinilestradiol/farmacocinética , Etinilestradiol/administração & dosagem , Etinilestradiol/farmacologia , Voluntários Saudáveis , Levanogestrel/farmacocinética , Levanogestrel/administração & dosagem , Levanogestrel/farmacologia , Midazolam/farmacocinética , Midazolam/administração & dosagem , Pioglitazona/farmacologia , Pioglitazona/administração & dosagem , Pioglitazona/farmacocinética , Estaurosporina/análogos & derivados , Estaurosporina/farmacologia , Estaurosporina/farmacocinética , Estaurosporina/administração & dosagem , Masculino , Feminino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade
3.
Drug Metab Dispos ; 52(3): 218-227, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38195522

RESUMO

Cytochrome P450 3A4 (CYP3A4), a key enzyme, is pivotal in metabolizing approximately half of the drugs used clinically. The genetic polymorphism of the CYP3A4 gene significantly influences individual variations in drug metabolism, potentially leading to severe adverse drug reactions (ADRs). In this study, we conducted a genetic analysis on CYP3A4 gene in 1163 Chinese Han individuals to identify the genetic variations that might affect their drug metabolism capabilities. For this purpose, a multiplex polymerase chain reaction (PCR) amplicon sequencing technique was developed, enabling us to perform the genotyping of CYP3A4 gene efficiently and economically on a large scale. As a result, a total of 14 CYP3A4 allelic variants were identified, comprising six previously reported alleles and eight new nonsynonymous variants that were nominated as new allelic variants *39-*46 by the PharmVar Association. Further, functional assessments of these novel CYP3A4 variants were undertaken by coexpressing them with cytochromes P450 oxidoreductase (CYPOR) in Saccharomyces cerevisiae microsomes. Immunoblot analysis indicated that with the exception of CYP3A4.40 and CYP3A4.45, the protein expression levels of most new variants were similar to that of the wild-type CYP3A4.1 in yeast cells. To evaluate their catalytic activities, midazolam was used as a probe drug. The results showed that variant CYP3A4.45 had almost no catalytic activity, whereas the other variants exhibited significantly reduced drug metabolism abilities. This suggests that the majority of the CYP3A4 variants identified in the Chinese population possess markedly altered capacities for drug metabolism. SIGNIFICANCE STATEMENT: In this study, we established a multiplex polymerase chain reaction (PCR) amplicon sequencing method and detected the maximum number of new CYP3A4 variants in a single ethnic population. Additionally, we performed the functional characterizations of these eight novel CYP3A4 allele variants in vitro. This study not only contributes to the understanding of CYP3A4 genetic polymorphism in the Chinese Han population but also holds substantial reference value for their potential clinical applications in personalized medicine.


Assuntos
Citocromo P-450 CYP3A , Polimorfismo Genético , Humanos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Alelos , Polimorfismo Genético/genética , Microssomos/metabolismo , China
4.
CPT Pharmacometrics Syst Pharmacol ; 13(2): 234-246, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38050329

RESUMO

Mosunetuzumab is a CD3/CD20 bispecific antibody. As an on-target effect, transient elevation of interleukin-6 (IL-6) occurs in early treatment cycles. A physiologically-based pharmacokinetic (PBPK) model was developed to assess potential drug interaction caused by IL-6 enzyme suppression on cytochrome P450 3A (CYP3A) during mosunetuzumab treatment. The model's performance in predicting IL-6 CYP3A suppression and subsequent drug-drug interactions (DDIs) was verified using existing clinical data of DDIs caused by chronic and transient IL-6 elevation. Sensitivity analyses were performed for a complete DDI risk assessment. The IL-6 concentration- and time-dependent CYP3A suppression during mosunetuzumab treatment was simulated using PBPK model with incorporation of in vitro IL-6 inhibition data. At clinically approved doses/regimens, the DDI at maximum CYP3A suppression was predicted to be a midazolam maximum drug concentration in plasma (Cmax ) and area under the plasma drug concentration-time curve (AUC) ratio of 1.17 and 1.37, respectively. At the 95th percentile of IL-6 concentration level or when gut CYP3A suppression was considered, the predicted DDI risk for mosunetuzumab remained low (<2-fold). The PBPK-based DDI predictions informed the mosunetuzumab product label to monitor, in early cycles, the concentrations and toxicities for sensitive CYP3A substrates with narrow therapeutic windows.


Assuntos
Antineoplásicos , Citocromo P-450 CYP3A , Humanos , Citocromo P-450 CYP3A/metabolismo , Interleucina-6 , Citocinas , Interações Medicamentosas , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Modelos Biológicos
5.
Invest New Drugs ; 41(4): 596-605, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37415001

RESUMO

Tepotinib is a highly selective, potent, mesenchymal-epithelial transition factor (MET) inhibitor, approved for the treatment of non-small cell lung cancer harboring MET exon 14 skipping alterations. The aims of this work were to investigate the potential for drug-drug interactions via cytochrome P450 (CYP) 3A4/5 or P-glycoprotein (P-gp) inhibition. In vitro studies were conducted in human liver microsomes, human hepatocyte cultures and Caco-2 cell monolayers to investigate whether tepotinib or its major metabolite (MSC2571109A) inhibited or induced CYP3A4/5 or inhibited P-gp. Two clinical studies were conducted to investigate the effect of multiple dose tepotinib (500 mg once daily orally) on the single dose pharmacokinetics of a sensitive CYP3A4 substrate (midazolam 7.5 mg orally) and a P-gp substrate (dabigatran etexilate 75 mg orally) in healthy participants. Tepotinib and MSC2571109A showed little evidence of direct or time-dependent CYP3A4/5 inhibition (IC50 > 15 µM) in vitro, although MSC2571109A did show mechanism-based CYP3A4/5 inhibition. Tepotinib did not induce CYP3A4/5 activity in vitro, although both tepotinib and MSC2571109A increased CYP3A4 mRNA. In clinical studies, tepotinib had no effect on the pharmacokinetics of midazolam or its metabolite 1'-hydroxymidazolam. Tepotinib increased dabigatran maximum concentration and area under the curve extrapolated to infinity by 38% and 51%, respectively. These changes were not considered to be clinically relevant. Tepotinib was considered safe and well tolerated in both studies. The potential of tepotinib to cause clinically relevant DDI with CYP3A4- or P-gp-dependent drugs at the clinical dose is considered low. Study 1 (midazolam): NCT03628339 (registered 14 August 2018). Study 2 (dabigatran): NCT03492437 (registered 10 April 2018).


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Citocromo P-450 CYP3A/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Midazolam/farmacocinética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Dabigatrana/farmacocinética , Células CACO-2 , Subfamília B de Transportador de Cassetes de Ligação de ATP , Interações Medicamentosas
6.
Food Chem Toxicol ; 175: 113711, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36893891

RESUMO

As a promiscuous xenobiotic receptor, pregnane X receptor (PXR) has been confirmed to participate in numerous physiological process. In addition to the conventional estrogen/androgen receptor, PXR also serves as an alternative target for environmental chemical contaminants. In this work, the PXR-mediated endocrine disrupting effects of typical food contaminants were explored. Firstly, the time-resolved fluorescence resonance energy transfer assays confirmed the PXR binding affinities of 2,2',4,4',5,5'-hexachlorobiphenyl, bis(2-ethylhexyl) phthalate, dibutyl phthalate, chlorpyrifos, bisphenol A, and zearalenone, with IC50 values ranging from 1.88 to 4284.00 nM. Then their PXR agonist activities were assessed by PXR-mediated CYP3A4 reporter gene assays. Subsequently, the regulation of gene expressions of PXR and its targets CYP3A4, UGT1A1, and MDR1 by these compounds was further investigated. Intriguingly, all the tested compounds interfered with these gene expressions, confirming their endocrine disrupting effects via PXR-mediated signaling. The compound-PXR-LBD binding interactions were explored by molecular docking and molecular dynamics simulations to unravel the structural basis of their PXR binding capacities. The weak intermolecular interactions are key players in stabilizing these compound-PXR-LBD complexes. During the simulation process, 2,2',4,4',5,5'-hexachlorobiphenyl remained stable while the other 5 compounds underwent relatively severe disturbances. In conclusion, these food contaminants might exhibit endocrine disrupting effects via PXR.


Assuntos
Receptores de Esteroides , Receptor de Pregnano X , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Simulação de Acoplamento Molecular
7.
Clin Transl Sci ; 16(4): 647-661, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36642822

RESUMO

Gepotidacin is a novel triazaacenaphthylene antibiotic in phase III development. Based on nonclinical in vitro characterization of gepotidacin metabolism, two phase I studies were conducted in healthy participants to investigate clinical drug-drug interactions (DDIs). We assessed gepotidacin as a DDI victim with a potent cytochrome P450 (CYP) 3A4/P-glycoprotein (P-gp) inhibitor (itraconazole), potent CYP3A4 inducer (rifampicin), and nonspecific organic cation transporter (OCT)/multidrug and toxic extrusion transporter (MATE) renal transport inhibitor (cimetidine) via single doses of gepotidacin before and after co-administration with multiple doses of the modulator drugs. Gepotidacin DDI perpetrator potential for P-gp inhibition (digoxin) and CYP3A4 inhibition (midazolam) was evaluated via single doses of the two-drug cocktail without and with gepotidacin. The DDI magnitudes were interpreted based on area under the concentration-time curve (AUC). A weak DDI (AUC increase 48%-50%) was observed for gepotidacin co-administered with itraconazole. A clinically significant decrease in gepotidacin plasma AUC (52%) was observed with rifampicin coadministration, indicating a moderate DDI. There was no DDI for gepotidacin with cimetidine; a unique biomarker approach showed increased serum creatinine (24%), decreased renal clearance of creatinine (21%), and N1-methylnicotinamide (39%), which confirmed extensive MATE inhibition and partial OCT2 inhibition. Gepotidacin was not a P-gp DDI perpetrator, although the maximum plasma concentration of digoxin increased (53%) and is potentially clinically relevant given its narrow therapeutic index. Gepotidacin demonstrated weak CYP3A4 inhibition with midazolam (<2-fold AUC increase). There were no new safety-risk profile findings. These results will inform the safe and efficacious clinical use of gepotidacin when co-administered with other drugs.


Assuntos
Citocromo P-450 CYP3A , Itraconazol , Humanos , Citocromo P-450 CYP3A/metabolismo , Itraconazol/farmacologia , Rifampina/farmacologia , Midazolam , Cimetidina , Interações Medicamentosas , Preparações Farmacêuticas , Proteínas de Membrana Transportadoras , Digoxina , Modelos Biológicos
8.
Br J Clin Pharmacol ; 89(2): 898-902, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36354135

RESUMO

The inhibition of cytochrome P450 (CYP) enzymes is the most frequent cause of drug-drug interactions. Many safe, inexpensive and widely available therapeutic drugs can inhibit CYP enzymes (e.g., azoles). Also, the specific potency of inhibition and the targeted CYP enzyme have been well described (e.g., itraconazole strongly inhibits CYP enzyme 3A4 and, in turn, CYP3A4 metabolizes venetoclax and ibrutinib). CYP enzyme inhibitors increase the plasma concentration of other drugs via shared metabolic pathways. We herein present the effects of inhibiting CYP enzymes with itraconazole-venetoclax for the treatment of refractory acute myeloid leukaemia, as well as itraconazole-ibrutinib to treat steroid-refractory acute graft vs. host disease in the same patient. Both of the patient's conditions responded completely. This appears to be a feasible strategy that decreases treatment costs by 75%. Previous Food and Drug Administration recommendations and clinical data support these subsequent dose reductions. Eleven months after the transplant, the patient remains in complete response and with no minimal residual disease. Another patient had been effectively treated before with CYP enzyme inhibition prior to venetoclax-itraconazole administration for orbital myeloid sarcoma. Thus, this case study furthers information on the CYP enzyme inhibition strategy when associated with another costly drug, ibrutinib. The CYP enzyme inhibition strategy could be applied to many more anticancer drugs (e.g., ruxolitinib and ponatinib) and facilitate the availability of expensive oncological treatments in low- and middle-income countries. Also, this strategy could be further generalized by using different CYP enzyme inhibitors with varied pharmacokinetic and pharmacodynamic properties (i.e., grapefruit, azoles and clarithromycin).


Assuntos
Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450 , Interações Medicamentosas , Humanos , Citocromo P-450 CYP3A/metabolismo , Inibidores das Enzimas do Citocromo P-450/uso terapêutico , Sistema Enzimático do Citocromo P-450/metabolismo , Itraconazol/farmacologia
9.
Drug Metab Dispos ; 51(3): 276-284, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36460477

RESUMO

Reliable in vitro to in vivo translation of cytochrome P450 (CYP) 3A4 induction potential is essential to support risk mitigation for compounds during pharmaceutical discovery and development. In this study, a linear correlation of CYP3A4 mRNA induction potential in human hepatocytes with the respective pregnane-X receptor (PXR) activation in a reporter gene assay using DPX2 cells was successfully demonstrated for 13 clinically used drugs. Based on this correlation, using rifampicin as a positive control, the magnitude of CYP3A4 mRNA induction for 71 internal compounds at several concentrations up to 10 µM (n = 90) was predicted within 2-fold error for 64% of cases with only a few false positives (19%). Furthermore, the in vivo area under the curve reduction of probe CYP substrates was reasonably predicted for eight marketed drugs (carbamazepine, dexamethasone, enzalutamide, nevirapine, phenobarbital, phenytoin, rifampicin, and rufinamide) using the static net effect model using both the PXR activation and CYP3A4 mRNA induction data. The liver exit concentrations were used for the model in place of the inlet concentrations to avoid false positive predictions and the concentration achieving twofold induction (F2) was used to compensate for the lack of full induction kinetics due to cytotoxicity and solubility limitations in vitro. These findings can complement the currently available induction risk mitigation strategy and potentially influence the drug interaction modeling work conducted at clinical stages. SIGNIFICANCE STATEMENT: The established correlation of CYP3A4 mRNA in human hepatocytes to PXR activation provides a clear cut-off to identify a compound showing an in vitro induction risk, complementing current regulatory guidance. Also, the demonstrated in vitro-in vivo translation of induction data strongly supports a clinical development program although limitations remain for drug candidates showing complex disposition pathways, such as involvement of auto-inhibition/induction, active transport and high protein binding.


Assuntos
Citocromo P-450 CYP3A , Receptores de Esteroides , Humanos , Citocromo P-450 CYP3A/metabolismo , Receptor de Pregnano X/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Rifampina/farmacologia , Rifampina/metabolismo , Indução Enzimática , Hepatócitos/metabolismo , RNA Mensageiro/metabolismo
10.
Clin Transl Sci ; 15(12): 2838-2843, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36152313

RESUMO

Bintrafusp alfa, a first-in-class bifunctional fusion protein composed of the extracellular domain of TGF-ßRII (a TGF-ß "trap") fused to a human IgG1 mAb blocking PD-L1, is being evaluated for efficacy and safety in solid tumor indications as monotherapy and in combination with small-molecule drugs. We evaluated the perpetrator drug-drug interaction (DDI) potential of bintrafusp alfa via cytochrome P4503A4 (CYP3A4) enzyme modulation, which is responsible for the metabolism of a majority of drugs. The holistic approach included (1) evaluation of longitudinal profiles of cytokines implicated in CYP3A4 modulation and serum 4ß-hydroxycholesterol, an endogenous marker of CYP3A4 activity, in a phase I clinical study, and (2) transcriptomics analysis of the CYP3A4 mRNA levels vs the TGFB gene expression signature in normal hepatic tissues. Bintrafusp alfa was confirmed not to cause relevant proinflammatory cytokine modulation or alterations in 4ß-hydroxycholesterol serum concentrations in phase I studies. Transcriptomics analyses revealed no meaningful correlations between TGFB gene expression and CYP3A4 mRNA expression, supporting the conclusion that the risk of CYP3A4 enzyme modulation due to TGF-ß neutralization by bintrafusp alfa is low. Thus, bintrafusp alfa is not expected to have DDI potential as a perpetrator with co-administered drugs metabolized by CYP3A4; this information is relevant to clinical evaluations of bintrafusp alfa in combination settings.


Assuntos
Citocromo P-450 CYP3A , Proteínas Recombinantes de Fusão , Humanos , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Medição de Risco , RNA Mensageiro/genética , Fator de Crescimento Transformador beta , Proteínas Recombinantes de Fusão/farmacologia
11.
Toxicol In Vitro ; 85: 105464, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36057418

RESUMO

Establishing the functionality, reproducibility, robustness, and reliability of microphysiological systems is a critical need for adoption of these technologies. A high throughput microphysiological system for liver studies was recently proposed in which induced pluripotent stem cell-derived hepatocytes (iHeps) and non-parenchymal cells (endothelial cells and THP-1 cells differentiated with phorbol 12-myristate 13-acetate into macrophage-like cells) were co-cultured in OrganoPlate® 2-lane 96 devices. The goal of this study was to evaluate this platform using additional cell types and conditions and characterize its utility and reproducibility. Primary human hepatocytes or iHeps, with and without non-parenchymal cells, were cultured for up to 17 days. Image-based cell viability, albumin and urea secretion into culture media, CYP3A4 activity and drug metabolism were assessed. The iHeps co-cultured with non-parenchymal cells demonstrated stable cell viability and function up to 17 days; however, variability was appreciable both within and among studies. The iHeps in monoculture did not form clusters and lost viability and function over time. The primary human hepatocytes in monoculture also exhibited low cell viability and hepatic function. Metabolism of various drugs was most efficient when iHeps were co-cultured with non-parenchymal cells. Overall, we found that the OrganoPlate® 2-lane 96 device, when used with iHeps and non-parenchymal cells, is a functional liver microphysiological model; however, the high-throughput nature of this model is somewhat dampened by the need for replicates to compensate for high variability.


Assuntos
Citocromo P-450 CYP3A , Forbóis , Humanos , Reprodutibilidade dos Testes , Células Cultivadas , Citocromo P-450 CYP3A/metabolismo , Células Endoteliais , Miristatos/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Albuminas/metabolismo , Ureia/metabolismo , Meios de Cultura , Acetatos , Forbóis/metabolismo
12.
J Pharm Sci ; 111(10): 2917-2929, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35872023

RESUMO

Crohn's disease affects the mucosal layer of the intestine, predominantly ileum and colon segments, with the potential to affect the expression of intestinal enzymes and transporters, and consequently, oral drug bioavailability. We carried out a quantitative proteomic analysis of inflamed and non-inflamed ileum and colon tissues from Crohn's disease patients and healthy donors. Homogenates from samples in each group were pooled and protein abundance determined by liquid chromatography-mass spectrometry (LC-MS). In inflamed Crohn's ileum, CYP3A4, CYP20A1, CYP51A1, ADH1B, ALPI, FOM1, SULT1A2, SULT1B1 and ABCB7 showed ≥10-fold reduction in abundance compared with healthy baseline. By contrast, only MGST1 showed ≥10 fold reduction in inflamed colon. Ileal UGT1A1, MGST1, MGST2, and MAOA levels increased by ≥2 fold in Crohn's patients, while only ALPI showed ≥2 fold increase in the colon. Counter-intuitively, non-inflamed ileum had a higher magnitude of fold change than inflamed tissue when compared with healthy tissue. Marked but non-uniform alterations were observed in the expression of various enzymes and transporters in ileum and colon compared with healthy samples. Modelling will allow improved understanding of the variable effects of Crohn's disease on bioavailability of orally administered drugs.


Assuntos
Doença de Crohn , Colo/metabolismo , Doença de Crohn/tratamento farmacológico , Doença de Crohn/metabolismo , Citocromo P-450 CYP3A/metabolismo , Humanos , Íleo/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteômica
13.
Clin Transl Sci ; 15(9): 2146-2158, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35675500

RESUMO

EDP-305 is a farnesoid X receptor (FXR) agonist that selectively activates FXR and is a potential treatment for patients with nonalcoholic steatohepatitis (NASH) with liver fibrosis. Results from preclinical studies indicate that CYP3A4 is the primary enzyme involved in EDP-305 metabolism and that EDP-305 has low potential to inhibit or induce cytochrome (CYP) isoenzymes and drug transporters. Four studies were conducted in healthy volunteers to evaluate the drug-drug interaction (DDI) potential of EDP-305 co-administered with drugs known to be substrates for drug metabolizing enzymes or transporters, and to assess the effect of inhibitors and inducers of CYP3A4 on EDP-305. Results suggest caution when substrates of CYP3A4 are administered concomitantly with EDP-305. A potential for increased exposure is apparent when CYP1A2 substrates with a narrow therapeutic index are administered with EDP-305. In contrast, substrates of drug transporters can be administered concomitantly with EDP-305 with a low potential for interactions. Coadministration of EDP-305 and a combined OC had no relevant effects on plasma concentrations of the combined OC. Co-administration of EDP-305 with strong or moderate inhibitors and inducers of CYP3A4 is not recommended. These results indicate low overall likelihood of interaction of EDP-305 and other substrates through CYP mediated interactions. The interaction potential of EDP-305 with drug transporters was low and of unlikely clinical significance. The EDP-305 DDI profile allows for convenient administration in patients with NASH and other patient populations with comorbidities, with minimal dose modification of concomitant medications.


Assuntos
Citocromo P-450 CYP3A , Hepatopatia Gordurosa não Alcoólica , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Voluntários Saudáveis , Humanos , Preparações Farmacêuticas , Esteroides
14.
Eur J Drug Metab Pharmacokinet ; 47(4): 467-482, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35344159

RESUMO

BACKGROUND AND OBJECTIVE: Induction of drug-metabolizing enzymes can lead to drug-drug interactions (DDIs); therefore, early assessment is often conducted. Previous reports focused on true positive cytochrome P450 3A (CYP3A) inducers leaving a gap in translation for in vitro inducers which do not manifest in clinical induction. The goal herein was to expand the in vitro induction dataset by including true negative clinical inducers to identify a correction factor to basic DDI models, which reduces false positives without impacting false negatives. METHODS: True negative clinical inducers were identified through a literature search, in vitro induction parameters were generated in three human hepatocyte donors, and the performance of basic induction models proposed by regulatory agencies, concentration producing twofold induction (F2), basic static model (R3) and relative induction score (RIS), was used to characterize clinical induction risk. RESULTS: The data demonstrated the importance of correcting for in vitro binding and metabolism to derive induction parameters. The aggregate analysis indicates that the RIS with a positive cut-off of < 0.7-fold area under the curve ratio (AUCR) provides the best quantitative prediction. Additionally, correction factors of ten and two times the unbound peak plasma concentration at steady state (Cmax,ss,u) can be confidently used to identify true positive inducers when referenced against the concentration resulting in twofold increase in messenger ribonucleic acid (mRNA) or using the R3 equation, respectively. CONCLUSIONS: These iterative improvements, which reduce the number of false positives, could aid regulatory recommendations and limit unnecessary clinical explorations into CYP3A induction.


Assuntos
Citocromo P-450 CYP3A , Hepatócitos , Área Sob a Curva , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Indução Enzimática , Hepatócitos/metabolismo , Humanos , Modelos Biológicos
15.
J Clin Pharm Ther ; 47(5): 668-675, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35032137

RESUMO

WHAT IS KNOWN AND OBJECTIVES: Although the apixaban Food and Drug Administration (FDA) package insert recommends dose reduction in patients administered dual strong inhibitors of p-glycoprotein (P-gp) and cytochrome P-450 (CYP) 3A4, there are limited published data regarding potential drug-drug interactions between apixaban (Eliquis) and common p-glycoprotein (P-gp) and CYP3A4 inhibitors co-administered with statins. The aim of this study was to investigate the degree of elevation relative to apixaban serum peak and trough concentration after the co-administration of amiodarone, diltiazem and statins (atorvastatin, rosuvastatin and simvastatin). METHODS: Patients prescribed apixaban 5mg twice daily for at least one week were identified from the anticoagulation clinic database and contacted for potential enrolment. A total of 117 volunteers were enrolled with eight excluded due to discontinued use, resulting in 109 volunteers (44 females and 65 males delineated into age groups 40-64 and ≥65 years old) completing the observational study. Fifty-five volunteers were administered apixaban without the P-gp inhibitors amiodarone or diltiazem, with or without statins (atorvastatin, rosuvastatin and simvastatin). Fifty-four volunteers were administered apixaban with either amiodarone or diltiazem, with or without statins (atorvastatin, rosuvastatin or simvastatin). Peak and trough concentrations were assessed for each patient utilizing an apixaban anti-Xa assay. RESULTS: Of the combinations studied, the mean apixaban trough concentration upon co-administration of amiodarone without a statin was elevated compared to apixaban alone (experimental 156.83 +/- 79.59 ng/ml vs. control 104.09 +/- 44.56 ng/ml; p = 0.04). The co-administration of diltiazem and rosuvastatin, and the administration of amiodarone without a statin led to greater than 1.5-fold increase in apixaban concentrations (peak experimental 315.19 +/- 157.53 ng/ml vs control 207.6 +/- 83.38 ng/ml; p = 0.08 and trough experimental 182.03 +/- 95.93 ng/ml vs control 112.32 +/- 37.78 ng/ml; p = 0.17) suggesting the need to assess dose adjustment for patients per the FDA package insert. In addition, the aggregated mean peak (p = 0.0056) and trough (p = 0.0089) elevation of CYP3A4 experimental groups (atorvastatin and simvastatin) co-administered apixaban and diltiazem were statistically significant compared with the aggregated non-CYP3A4 control groups (no statin and rosuvastatin). WHAT IS NEW AND CONCLUSION: Herein, we report novel data regarding peak and trough apixaban concentrations after concomitant administration of P-gp and CYP3A4 inhibitors (amiodarone or diltiazem) co-administered with statins (atorvastatin, rosuvastatin or simvastatin). Providers should consider utilizing the apixaban anti-Xa assay or comparative heparin anti-Xa assay to determine if patients require dose reduction to decrease adverse events in high-risk patients prescribed apixaban and concomitant p-glycoprotein and CYP3A4 inhibitors amiodarone or diltiazem with and without a CYP3A4 or non-3A4 statin.


Assuntos
Amiodarona , Inibidores de Hidroximetilglutaril-CoA Redutases , Subfamília B de Transportador de Cassetes de Ligação de ATP , Adulto , Idoso , Amiodarona/uso terapêutico , Atorvastatina/uso terapêutico , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/uso terapêutico , Diltiazem/uso terapêutico , Interações Medicamentosas , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Masculino , Pessoa de Meia-Idade , Pirazóis/uso terapêutico , Piridonas/uso terapêutico , Rosuvastatina Cálcica/uso terapêutico , Sinvastatina/uso terapêutico
16.
Drug Metab Dispos ; 50(3): 214-223, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34937801

RESUMO

Idasanutlin is a potent inhibitor of the p53-MDM2 interaction that enables reactivation of the p53 pathway, which induces cell cycle arrest and/or apoptosis in tumor cells expressing functional p53. It was investigated for the treatment of solid tumors and several hematologic indications such as relapsed/refractory acute myeloid leukemia, polycythemia vera, or non-Hodgkin lymphoma. For safety reasons, it cannot be given in healthy volunteers for drug-drug interaction (DDI) explorations. This triggered the need for in silico explorations on top of the one available CYP3A clinical DDI study with posaconazole in solid tumor patients. Idasanutlin's clearance is dependent on CYP3A4/2C8 forming its major circulating metabolite M4, with contributions from UGT1A3 and biliary excretion. Idasanutlin and M4 have low permeability, very low clearance, and extremely low unbound fraction in plasma (<0.001), which makes in vitro data showing inhibition on CYP3A4/2C8 enzymes challenging to translate to clinical relevance. Physiologically-based pharmacokinetic models of idasanutlin and M4 have been established to simulate perpetrator and victim DDI scenarios and to evaluate whether further DDI studies in oncology patients are necessary. Modeling indicated that idasanutlin and M4 would show no or weak clinical inhibition of selective CYP3A4/2C8 substrates. Co-administered strong CYP3A and CYP2C8 inhibitors might lead to weak or moderate idasanutlin exposure increases, and the strong inducer rifampicin might cause moderate exposure reduction. As the simulated idasanutlin systemic exposure changes would be within the range of observed intrinsic variability, the target population can take co-medications that are either CYP2C8/3A4 inhibitors or weak/moderate CYP2C8/3A4 inducers without dose adjustment. SIGNIFICANCE STATEMENT: Clinical trials for idasanutlin are restricted to cancer patients, which imposes practical, scientific, and ethical challenges on drug-drug interaction investigations. Furthermore, idasanutlin and its major circulating metabolite have very challenging profiles of absorption, distribution, metabolism and excretion including high protein binding, low permeability and a combination of different elimination pathways each with extremely low clearance. Nonetheless, physiologically-based pharmacokinetic models could be established and applied for drug-drug interaction risk assessment and were especially useful to provide guidance on concomitant medications in patients.


Assuntos
Isoenzimas , Leucemia Mieloide Aguda , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Interações Medicamentosas , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Modelos Biológicos , Pirrolidinas , Medição de Risco , para-Aminobenzoatos
17.
Chem Biol Interact ; 345: 109559, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34153224

RESUMO

AIM: We aimed (i) to study the effects of genetic polymorphism of cytochrome P450 3A4 (CYP3A4) and drug interactions on acalabrutinib (ACA) metabolism and (ii) to investigate the mechanisms underlying the effects of CYP3A4 variants on the differential kinetic profiles of ACA and ibrutinib. METHOD: Recombinant human CYP3A4 and variants were expressed using a Bac-to-Bac baculovirus expression system. The cell microsome was prepared and subjected to kinetic study. The analyte concentrations were determined by UPLC-MS/MS. A molecular docking assay was employed to investigate the mechanisms leading to differences in kinetic profiles. RESULTS: The kinetic parameters of ACA, catalyzed by CYP3A4 and 28 of its variants, were determined, including Vmax, Km, and Ksi. CYP3A4.6-8, 12, 13, 17, 18, 20, and 30 lost their catalytic function. No significant differences were found for CYP3A4.4, 5, 10, 15, 31, and 34 compared with CYP3A4.1 with respect to intrinsic clearance (Vmax/Km, Clint). However, the Clint values of CYP3A4.9, 14, 16, 19, 23, 24, 28, 32 were obviously decreased, ranging from 0.02 to 0.05 µL/min/pmol. On the contrary, the catalytic activities of CYP3A4.2, 3, 11, 29, and 33 were increased dramatically. The Clint value of CYP3A4.11 was 5.95 times as high as that of CYP3A4.1. Subsequently, CYP3A4.1, 3, 11, 23, and 28 were chosen to study the kinetic changes in combination with ketoconazole. Interestingly, we found the inhibitory potency of ketoconazole varied in different variants. In addition, the kinetic parameters of ibrutinib and ACA were accordingly compared in different CYP3A4 variants. Significant differences in relative clearance were observed among variants, which would probably influence the distance between the redox site and the heme iron atom. CONCLUSION: Genetic polymorphism of CYP3A4 extensively changes its ACA-metabolizing enzymatic activity. In combination with a CYP inhibitor, its inhibitory potency also varied among different variants. Even the same variants exhibited different capabilities catalyzing ACA. Its enzymatic capabilities are probably determined by the distance between the substrate and the heme iron atom, which could be impacted by mutation.


Assuntos
Benzamidas/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Variação Genética , Pirazinas/metabolismo , Biocatálise , Citocromo P-450 CYP3A/química , Heme/metabolismo , Humanos , Simulação de Acoplamento Molecular , Oxirredução , Conformação Proteica
18.
Curr Drug Metab ; 22(10): 784-794, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33622223

RESUMO

BACKGROUND: Letermovir is approved for prophylaxis of cytomegalovirus infection and disease in cytomegalovirus-seropositive hematopoietic stem-cell transplant (HSCT) recipients. OBJECTIVE: HSCT recipients are required to take many drugs concomitantly. The pharmacokinetics, absorption, distribution, metabolism, and excretion of letermovir and its potential to inhibit metabolizing enzymes and transporters in vitro were investigated to inform on the potential for drug-drug interactions (DDIs). METHODS: A combination of in vitro and in vivo studies described the absorption, distribution, metabolism, and routes of elimination of letermovir, as well as the enzymes and transporters involved in these processes. The effect of letermovir to inhibit and induce metabolizing enzymes and transporters was evaluated in vitro and its victim and perpetrator DDI potentials were predicted by applying the regulatory guidance for DDI assessment. RESULTS: Letermovir was a substrate of CYP3A4/5 and UGT1A1/3 in vitro. Letermovir showed concentration- dependent uptake into organic anionic transporting polypeptide (OATP)1B1/3-transfected cells and was a substrate of P-glycoprotein (P-gp). In a human ADME study, letermovir was primarily recovered as unchanged drug and minor amounts of a direct glucuronide in feces. Based on the metabolic pathway profiling of letermovir, there were few oxidative metabolites in human matrix. Letermovir inhibited CYP2B6, CYP2C8, CYP3A, and UGT1A1 in vitro, and induced CYP3A4 and CYP2B6 in hepatocytes. Letermovir also inhibited OATP1B1/3, OATP2B1, OAT3, OCT2, BCRP, BSEP, and P-gp. CONCLUSION: The body of work presented in this manuscript informed on the potential for DDIs when letermovir is administered both intravenously and orally in HSCT recipients.


Assuntos
Acetatos , Biotransformação , Infecções por Citomegalovirus/tratamento farmacológico , Citomegalovirus/imunologia , Vias de Eliminação de Fármacos/fisiologia , Interações Medicamentosas , Quinazolinas , Distribuição Tecidual/fisiologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Acetatos/metabolismo , Acetatos/farmacocinética , Adulto , Animais , Antivirais/metabolismo , Antivirais/farmacocinética , Citocromo P-450 CYP3A/metabolismo , Glucuronosiltransferase/metabolismo , Voluntários Saudáveis , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Masculino , Conduta do Tratamento Medicamentoso/normas , Proteínas de Neoplasias/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Quinazolinas/metabolismo , Quinazolinas/farmacocinética , Ratos
19.
Arch Toxicol ; 95(1): 169-178, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32815004

RESUMO

The epidermal growth factor receptors EGFR and HER2 are the main targets for tyrosine kinase inhibitors (TKIs). The quinazoline derivative lapatinib (LAP) is used since 2007 as dual TKI in the treatment of metastatic breast cancer and currently, it is used as an oral anticancer drug for the treatment of solid tumors such as breast and lung cancer. Although hepatotoxicity is its main side effect, it makes sense to investigate the ability of LAP to induce photosensitivity reactions bearing in mind that BRAF (serine/threonine-protein kinase B-Raf) inhibitors display a considerable phototoxic potential and that afloqualone, a quinazoline-marketed drug, causes photodermatosis. Metabolic bioactivation of LAP by CYP3A4 and CYP3A5 leads to chemically reactive N-dealkylated (N-LAP) and O-dealkylated (O-LAP) derivatives. In this context, the aim of the present work is to explore whether LAP and its N- and O-dealkylated metabolites can induce photosensitivity disorders by evaluating their photo(geno)toxicity through in vitro studies, including cell viability as well as photosensitized protein and DNA damage. As a matter of fact, our work has demonstrated that not only LAP, but also its metabolite N-LAP have a clear photosensitizing potential. They are both phototoxic and photogenotoxic to cells, as revealed by the 3T3 NRU assay and the comet assay, respectively. By contrast, the O-LAP does not display relevant photobiological properties. Remarkably, the parent drug LAP shows the highest activity in membrane phototoxicity and protein oxidation, whereas N-LAP is associated with the highest photogenotoxicity, through oxidation of purine bases, as revealed by detection of 8-Oxo-dG.


Assuntos
Antineoplásicos/toxicidade , Dano ao DNA , Fibroblastos/efeitos dos fármacos , Lapatinib/toxicidade , Transtornos de Fotossensibilidade/induzido quimicamente , Inibidores de Proteínas Quinases/toxicidade , Pele/efeitos dos fármacos , Ativação Metabólica , Animais , Antineoplásicos/metabolismo , Células 3T3 BALB , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Citocromo P-450 CYP3A/metabolismo , Remoção de Radical Alquila , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/efeitos da radiação , Humanos , Lapatinib/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Processos Fotoquímicos , Transtornos de Fotossensibilidade/genética , Transtornos de Fotossensibilidade/metabolismo , Transtornos de Fotossensibilidade/patologia , Carbonilação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/metabolismo , Pele/metabolismo , Pele/patologia
20.
Br J Clin Pharmacol ; 87(1): 178-188, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32436239

RESUMO

AIMS: We aimed to incorporate a pharmacologically inactive midazolam microdose into early clinical studies for the assessment of CYP3A drug-drug interaction liability. METHODS: Three early clinical studies were conducted with substances (Compounds A, B and C) which gave positive CYP3A perpetrator signals in vitro. A 75 µg dose of midazolam was administered alone (baseline CYP3A activity) followed by administration with the highest dose groups tested for each compound on Day 1/3 and Day 14 or Day 17. Midazolam exposure (AUC0-∞ , Cmax ) during administration with the test substances was compared to baseline data via an analysis of variance on log-transformed data. Partial AUC2-4 ratios were also compared to AUC0-∞ ratios using linear regression on log-transformed data. RESULTS: Test compound Cmax values exceeded relevant thresholds for drug-drug interaction liability. Midazolam concentrations were quantifiable over the full profiles for all subjects in all studies. Point estimates of the midazolam AUC0-∞ gMean ratios ranged from 108.3 to 127.1% for Compound A, from 93.3 to 114.5% for Compound B, and from 92.0 to 96.7% for the two highest dose groups of Compound C. Cmax gMean ratios were in the same range. Thus, no relevant drug-drug interactions were evident, based on the results of midazolam microdosing. AUC2-4 ratios from these studies were comparable to the AUC0-∞ ratios. CONCLUSION: Midazolam microdosing incorporated into early clinical studies is a feasible tool for reducing dedicated drug-drug interaction studies, meaning reduced subject burden. Limited sampling could further reduce subject burden, costs and needed resources.


Assuntos
Midazolam , Preparações Farmacêuticas , Área Sob a Curva , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA