Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 42(7): 1595-1606, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37097014

RESUMO

Neurotoxic pesticides are used worldwide to protect crops from insects; they are recognized to impact nontarget organisms that live in areas surrounded by treated crops. Many biochemical and cell-based solutions have been developed for testing insecticide neurotoxicity. Nevertheless, such solutions provide a partial assessment of the impact of neurotoxicity, neglecting important phenotypic components such as behavior. Behavior is the apical endpoint altered by neurotoxicity, and scientists are increasingly recommending including behavioral endpoints in available tests or developing new methods for assessing contaminant-induced behavioral changes. In the present study, we extended an existing protocol (the amphibian short-term assay) with a behavioral test. To this purpose, we developed a homemade device along with an open-source computing solution for tracking trajectories of Xenopus laevis tadpoles exposed to two organophosphates insecticides (OPIs), diazinon (DZN) and chlorpyrifos (CPF). The data resulting from the tracking were then analyzed, and the impact of exposure to DZN and CPF was tested on speed- and direction-related components. Our results demonstrate weak impacts of DZN on the behavioral components, while CPF demonstrated strong effects, notably on speed-related components. Our results also suggest a time-dependent alteration of behavior by CPF, with the highest impacts at day 6 and an absence of impact at day 8. Although only two OPIs were tested, we argue that our solution coupled with biochemical biomarkers is promising for testing the neurotoxicity of this pesticide group on amphibians. Environ Toxicol Chem 2023;42:1595-1606. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Clorpirifos , Praguicidas , Clorpirifos/toxicidade , Diazinon/toxicidade , Ecotoxicologia , Inseticidas/toxicidade , Praguicidas/toxicidade
2.
Environ Technol ; 44(14): 2148-2156, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34962184

RESUMO

Organophosphates (OPs) and synthetic pyrethroids (SPs) are the most popular broad spectrum pesticides, used in agriculture as they have a strong pesticidal activity while also being biodegradable in the environment. The present study aimed to demonstrate the effects of these pesticides on the Acetylcholinesterase (AChE) activity in brain, gills and body muscles of Oreochromis niloticus - an important enzyme for the assessment and biomonitoring pollution caused by neurotoxins in the environment. The fish were exposed for 24 and 48 h to the LC0 concentrations of the malathion (1.425 mg/L), the chlorpyrifos (0.125 mg/L) and the λ-cyhalothrin (0.0039 mg/L), respectively. The activity of the AChE was significantly increased (p < 0.05) at 24 h and decreased at 48 h (except for the chlorpyrifos-treated brain and gills while tissues had shown no activity at 48 h's exposure) in all pesticides-treated tissues. The maximum increase in the activity and inhibition in the AChE activity were recorded as +92% and -52% in the chlorpyrifos and the lambda-cyhalothrin exposed brain tissues, respectively. Thus, the alterations in the AChE activities indicated that the applied pesticides are highly neurotoxic to fish and the enzyme (AChE) could be used as a useful biomarker for estimation of water pollution.


Assuntos
Clorpirifos , Ciclídeos , Praguicidas , Piretrinas , Poluentes Químicos da Água , Animais , Praguicidas/toxicidade , Clorpirifos/toxicidade , Acetilcolinesterase , Piretrinas/toxicidade , Biomarcadores , Poluentes Químicos da Água/toxicidade
3.
Artigo em Inglês | MEDLINE | ID: mdl-36231509

RESUMO

Chlorpyrifos (CPF) was the most frequently used pesticide in food production in the European Union (EU) until 2020. Unfortunately, this compound is still being applied in other parts of the world. National monitoring of pesticides conducted in various countries indicates the presence of CPF in soil, food, and water, which may have toxic effects on consumers, farmers, and animal health. In addition, CPF may influence changes in the population of fungi, bacteria, and actinomycete in soil and can inhibit nitrogen mineralization. The mechanisms of CPF activity are based on the inhibition of acetylcholinesterase (AChE) activity. This compound also exhibits reproductive toxicity, neurotoxicity, and genotoxicity. The problem seems to be the discrepancy between the actual observations and the final conclusions drawn for the substance's approval in reports presenting the toxic impact of CPF on human health. Therefore, this influence is still a current and important issue that requires continuous monitoring despite its withdrawal from the market in the EU. This review traces the scientific reports describing the effects of CPF resulting in changes occurring in both the environment and at the cellular and tissue level in humans and animals. It also provides an insight into the hazards and risks to human health in food consumer products in which CPF has been detected.


Assuntos
Clorpirifos , Inseticidas , Praguicidas , Acetilcolinesterase , Animais , Clorpirifos/toxicidade , Humanos , Nitrogênio , Solo , Água
4.
Artigo em Inglês | MEDLINE | ID: mdl-36030007

RESUMO

Chlorpyrifos (CPF) and cypermethrin (CYP) are two insecticides that have a proven negative effect on non-target aquatic organisms when they enter the surface waters. However, literature on the comparative effects of these pesticides on important aquaculture fish species, such as common carp (Cyprinus carpio Linnaeus, 1758) is not yet scientifically detailed, especially over the long-term. The idea of conducting a long-term exposure is to find out how the observed biomarkers would change compared to the short-term exposure. In the natural environment, toxicants are not present alone, but in combination. By monitoring the long-term impact of individual substances, the state of aquatic ecosystems exposed to various toxicants could be predicted. Thus, this study aimed to evaluate the toxicity of different concentrations of CYP (0.0002, 0.0003, and 0.0006 µg/L) and CPF (0.03, 0.05, and 0.10 µg/L) in 50-L glass tanks on C. carpio, exposed for 30 days under laboratory conditions. A set of histological and biochemical biomarkers in the gills and liver were applied with the chemical analyses of water and fish organs. Furthermore, the condition and hepatosomatic index were calculated to assess the physiological status of the treated carps. The behavioral responses were also monitored, and the respiration rate was analyzed. The results suggest that CYP had a more prominent effect on the histological structure of fish organs, biochemical responses of anti-oxidant enzymes, behavior, and respiration rate compared to the effect of CPF. In addition, the results also indicate that the liver is more susceptible to chronic and chemically induced cellular stress compared to the gills, with overall destructive changes in the histological biomarkers rather than adaptive. Regardless of the scenario, our results provide novel insights into pesticide exposure and the possible biological impacts on economically important freshwater fish, exposed to lower CYP and CPF concentrations, based on the EU legislation (maximum allowable concentrations, MAC-EQS).


Assuntos
Carpas , Clorpirifos , Praguicidas , Poluentes Químicos da Água , Animais , Biomarcadores , Clorpirifos/toxicidade , Ecossistema , Brânquias , Praguicidas/toxicidade , Poluentes Químicos da Água/toxicidade
5.
Ecotoxicol Environ Saf ; 242: 113831, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35809395

RESUMO

A better understanding of fitness costs and insecticide resistance reversion has practical applications for improving resistance management approaches. The coffee leaf miner, Leucoptera coffeella, is one of the most important coffee pests worldwide. Chlorpyrifos is still used to control L. coffeella despite studies showing resistance in this pest. The current study investigated the fitness costs and reversion of resistance to chlorpyrifos in L. coffeella populations in coffee. The control failure of this insecticide was evaluated in 15 field populations. Selection of resistant and susceptible L. coffeella (G1-G10), with and without chlorpyrifos exposure, was evaluated. The following parameters were investigated: consumed leaf area, adult longevity, number of eggs per female, and egg viability. The present study showed control failures of chlorpyrifos and low (< 31-folds) to high levels (> 80-folds) of resistance in all field populations tested. The resistant population showed less fitness than the susceptible population. The fitness of the resistant population decreased significantly after 10 generations of chlorpyrifos selection. Specifically, the number of eggs per female, larvae hatched, and adult longevity were reduced by factors of 5, 2.3 and 3, respectively. Furthermore, the chlorpyrifos-resistant L. coffeella population consumed more than the susceptible population. Therefore, we concluded that non-exposing L. coffeella populations to chlorpyrifos insecticide leads to rapid reversion of resistance and susceptibility. In addition, resistant populations show reduced reproductive fitness and longevity, while consuming more, probably to meet greater metabolic demands.


Assuntos
Clorpirifos , Inseticidas , Mariposas , Animais , Clorpirifos/toxicidade , Feminino , Resistência a Inseticidas , Inseticidas/toxicidade
6.
Environ Toxicol Chem ; 41(11): 2688-2699, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35856881

RESUMO

Amphibia is the most threatened class among vertebrates, with >40% of the species threatened with extinction. Pollution is thought to alter amphibian population dynamics. With the growing interest in behavioral ecotoxicology, the neurotoxic organophosphate pesticides are of special concern. Understanding how exposure to neurotoxics leads to behavioral alterations is of crucial importance, and mechanistic endpoints should be included in ecotoxicological methods. In the present study, we tested an 8-day assay to evaluate the toxicity of two organophosphates, diazinon and chlorpyrifos, on Xenopus laevis, that is, on biochemical, morphological, and life-history traits related to locomotion capacities. The method involves measuring biomarkers such as glutathione-S-transferase (GST) and ethoxyresorufin-O-deethylase (EROD; two indicators of the detoxifying system) in the 8-day-old larvae as well as acetylcholinesterase (AChE) activity (involved in the nervous system) in 4-day-old embryos and 8-day-old larvae. Snout-to-vent length and snout-to-tail length of 4-day-old embryos and 8-day larvae were recorded as well as the corresponding growth rate. Fin and tail muscle widths were measured as well for testing changes in tail shape. Both tests showed effects of both organophosphates on AChE activity; however, no changes were observed in GST and EROD. Furthermore, exposure to chlorpyrifos demonstrated impacts on morphological and life-history traits, presaging alteration of locomotor traits. In addition, the results suggest a lower sensitivity to chlorpyrifos of 4-day-old embryos compared to 8-day-old larvae. Tests on other organophosphates are needed to test the validity of this method for the whole organophosphate group. Environ Toxicol Chem 2022;41:2688-2699. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Clorpirifos , Inseticidas , Animais , Clorpirifos/toxicidade , Diazinon/toxicidade , Ecotoxicologia , Acetilcolinesterase , Citocromo P-450 CYP1A1 , Inseticidas/toxicidade , Compostos Organofosforados/toxicidade , Xenopus laevis , Larva , Transferases , Glutationa
7.
Arch Toxicol ; 96(5): 1387-1409, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35294598

RESUMO

The present study compares two approaches to evaluate the effects of inter-individual differences in the biotransformation of chlorpyrifos (CPF) on the sensitivity towards in vivo red blood cell (RBC) acetylcholinesterase (AChE) inhibition and to calculate a chemical-specific adjustment factor (CSAF) to account for inter-individual differences in kinetics (HKAF). These approaches included use of a Supersome™ cytochromes P450 (CYP)-based and a human liver microsome (HLM)-based physiologically based kinetic (PBK) model, both combined with Monte Carlo simulations. The results revealed that bioactivation of CPF exhibits biphasic kinetics caused by distinct differences in the Km of CYPs involved, which was elucidated by Supersome™ CYP rather than by HLM. Use of Supersome™ CYP-derived kinetic data was influenced by the accuracy of the intersystem extrapolation factors (ISEFs) required to scale CYP isoform activity of Supersome™ to HLMs. The predicted dose-response curves for average, 99th percentile and 1st percentile sensitive individuals were found to be similar in the two approaches when biphasic kinetics was included in the HLM-based approach, resulting in similar benchmark dose lower confidence limits for 10% inhibition (BMDL10) and HKAF values. The variation in metabolism-related kinetic parameters resulted in HKAF values at the 99th percentile that were slightly higher than the default uncertainty factor of 3.16. While HKAF values up to 6.9 were obtained when including also the variability in other influential PBK model parameters. It is concluded that the Supersome™ CYP-based approach appeared most adequate for identifying inter-individual variation in biotransformation of CPF and its resulting RBC AChE inhibition.


Assuntos
Clorpirifos , Acetilcolinesterase/metabolismo , Clorpirifos/toxicidade , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Cinética , Fígado/metabolismo , Microssomos Hepáticos/metabolismo , Modelos Biológicos , Método de Monte Carlo , Toxicocinética
8.
PLoS One ; 17(1): e0262127, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35051200

RESUMO

Since chlorpyrifos (CPF), a major organophosphorus pesticide, is widely used for agricultural and domestic purposes, thus, humans may be exposed to these toxic compounds through multiple sources. In recent years, significant concerns have been raised regarding the deleterious effects of exposure to CPF on human health, especially growing fetus. Therefore, in this study, we aimed to evaluate the health risks of exposure to CPF among pregnant women living in Isfahan province, Iran, using deterministic and probabilistic approaches. The urinary concentration of 3, 5, 6-trichloro-2-pyridinol (TCP), the most common metabolite of CPF, was measured as the biomarker of current exposure to CPF. For this purpose, spot urine samples were taken from 110 pregnant women and the urinary concentrations of TCP were quantified. The estimated daily intake and hazard quotient (HQ) for CPF exposure were measured according to the reference values set by World Health Organization (WHO) and United States Environmental Protection Agency (US EPA) for acute and chronic exposure to CPF. Based on the results, TCP was detected in more than 70% of samples (3.8 ± 2.72 µg/L). The estimated daily intake for some participants was found to be higher than the suggested reference dose by USEPA for chronic exposure to CPF. Furthermore, the HQ>1 was obtained for 20% of the study population in Monte-Carlo analysis using USEPA chronic reference dose, indicating that chronic toxic effects are expected at least for a part of the target population. Based on the findings, proper measures should be taken to reduce the exposure of Iranian pregnant women to CPF and resultant health risks.


Assuntos
Clorpirifos/toxicidade , Inseticidas/toxicidade , Exposição Materna/estatística & dados numéricos , Piridonas/urina , Adulto , Biomarcadores/urina , Clorpirifos/urina , Estudos Transversais , Feminino , Humanos , Inseticidas/urina , Irã (Geográfico) , Idade Materna , Exposição Materna/prevenção & controle , Método de Monte Carlo , Lectinas de Plantas , Gravidez , Medição de Risco
9.
Sci Total Environ ; 805: 150373, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34818764

RESUMO

There is increasing awareness that the toxicity of pesticides can to a large extent be modulated by warming, and that temporal exposure scenarios may strongly affect the impact of two stressors. Nevertheless, we lack information on how the exposure duration to warming may shape pesticide toxicity under warming. Furthermore, despite that bioenergetic responses have the potential to generate mechanistic insights in how toxicants interact with warming, this has been understudied in ecotoxicology. To investigate whether warming duration modifies pesticide toxicity, mosquito larvae were exposed to a control temperature at 20 °C or three warming treatments at 24 °C (acute, developmental and transgenerational warming), and to four pesticide treatments (solvent control, and three chlorpyrifos concentrations) in a full factorial design. Chlorpyrifos increased mortality, growth rate and the energy consumed, and reduced the AChE (acetylcholinesterase) activity, the energy available, and the net energy budget (estimated as cellular energy allocation). The warming treatments did not affect mortality, AChE activity, and the energy consumed. However, acute warming increased the growth rate and decreased the energy available, while both acute and developmental warming decreased the cellular energy allocation. A first key finding was that the lethal and sublethal effects of chlorpyrifos were less strong under warming because of a higher degradation in the medium under warming. A second key finding was that, among the warming treatments, the pesticide toxicity was more increased under acute warming than under transgenerational warming. This could be explained by the negative impact of acute warming but not transgenerational warming on the net energy budget. The results in this study provide mechanistic insights that the exposure duration to warming can play an important role in modulating the impact of pesticides under warming. Therefore, including ecologically relevant temporal scenarios of exposure to warming is important in ecotoxicological studies.


Assuntos
Clorpirifos , Praguicidas , Acetilcolinesterase , Animais , Clorpirifos/toxicidade , Temperatura Alta , Larva , Praguicidas/toxicidade
10.
Ecotoxicol Environ Saf ; 226: 112790, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34653840

RESUMO

The organophosphorus (OP) and carbamate (CB) insecticides are responsible for inhibition of the Acetylcholinesterase (AChE) enzyme. The AChE activity, therefore, has been demonstrated to be a potent biomarker for these insecticides in terrestrial and aquatic environments. The objective of this study was to investigate the response of AChE in the brain of four-week old fingerlings of silver perch, Bidyanus bidyanus exposed to OP and CB insecticides. The fish fingeling were exposed to three OPs and one CB insecticide as individual and their binary mixtures for 48 h. The OP insecticides with oxon (PO) as well as thion (PS) group gets oxidized to oxon analogs in biological systems. The 50% AChE inhibition (48 h EC50) in fingerling exposed to chlorpyrifos (CPF) and triazophos (TRZ) was evident at 2.3 and 6.7 µg/L, respectively. The toxicological interaction of three OPs and one CB insecticide was evaluated using the toxic unit method. A strong synergism was observed for binary combination of CPF with profenofos (PRF), and CPF with TAZ. In contrast, the mixture of TAZ with PRF and carbofuran (CBF) with CPF and PRF showed antagonistic behavior. Although OP and CB insecticides can break down rapidly in the environment, this study suggests that non-target aquatic biota may be exposed to mixtures of ChE-inhibiting insecticides for a period of several months, in agricultural regions where insecticides are applied for extended periods of the year. And at environmentally relevant concentrations such mixtures may lead to deleterious effects in non-target organisms.


Assuntos
Clorpirifos , Inseticidas , Percas , Acetilcolinesterase , Animais , Clorpirifos/toxicidade , Inibidores da Colinesterase/toxicidade , Inseticidas/toxicidade
11.
Environ Sci Pollut Res Int ; 28(47): 67555-67564, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34258701

RESUMO

Human health risk assessments of exposures to non-carcinogenic occupational and environmental toxicants have mostly been undertaken using the Hazard Quotient (HQ) approach, which largely ignores variabilities in both exposures and associated adverse health outcomes, unlike probabilistic approaches. Chlorpyrifos is a neurotoxic insecticide that is commonly applied by farmers in Ghana with limited research on associated health risks among applicators. The objective of this study was to assess health risks associated with chlorpyrifos exposure among applicators on rice farms in Ghana, using advanced probabilistic approaches that incorporate variability in both exposure doses and adverse response doses obtained from human epidemiological studies. Urine samples obtained from the applicators were analyzed for 3,5,6-trichloro-2-pyridinol (TCP)from which Absorbed Daily Dose (ADD) and Lifetime Average Daily Dose (LADD) levels of chlorpyrifos were estimated. The scientific literature was searched to identify human epidemiological data from studies that have reported chlorpyrifos adverse effects and their corresponding exposure levels. Equivalent ADD and LADD of chlorpyrifos were estimated from the human epidemiological data to obtain chlorpyrifos Toxicant Sensitivity Distributions (TSDs). Using the applicators' chlorpyrifos dose distribution and TSDs, adverse health risks among the applicators were characterized using the probabilistic approaches, Overall Risk Probability (ORP) and Monte Carlo Simulation (MCS). The probabilities of chlorpyrifos adverse health effects occurring under the chronic exposure scenarios ranged from 1 to 8%, while those for acute exposure scenarios ranged from 31 to 34%. This study indicates that while the risks of chronic adverse health effects from chlorpyrifos exposure among the applicators were low, acute health risks were high.


Assuntos
Clorpirifos , Inseticidas , Exposição Ocupacional , Oryza , Clorpirifos/toxicidade , Fazendas , Gana , Humanos , Inseticidas/análise , Exposição Ocupacional/análise , Medição de Risco
12.
Sci Rep ; 11(1): 14652, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34282231

RESUMO

Aquatic organisms are often exposed briefly to high pesticide concentration. Survival time model was used to study risk of death in C. gariepinus and O. niloticus fingerlings exposed to 24 mg/L atrazine, 42 mg/l mancozeb, 1 mg/L chlorpyrifos and 0.75 µg/L lambda cyhalothrin for 15, 30, 45 and 60 minutes and continuously for 96 hours. Mortality, time-to-death, weight, length, and condition factor of the fingerlings were recorded. Results obtained showed tilapia was more susceptible than catfish to continuous exposure but not pulse exposure. The survival probability of both species was similar when exposed for 15, 30 and 45 minutes (p > 0.05) but differed after 60 minutes (p < 0.05). Risk of death of catfish exposed briefly to atrazine, mancozeb and chlorpyrifos for 60 minutes was similar to 96 hours continuous exposure, same for tilapia exposed to 1 mg/L chlorpyrifos (p > 0.05). Survival probability of tilapia exposed to chlorpyrifos for 15, 30, 45 and 60 minutes was similar (p > 0.05) and was not influenced by pulse length. Pesticide hazard and risk of death decreased as fish size (weight, length, and condition factor) increased. Pulse toxicity assessment using survival models could make pesticides exposure assessment more realistic by studying factors that can influence the toxicity of pesticides.


Assuntos
Peixes-Gato , Ciclídeos , Praguicidas/toxicidade , Agricultura , Animais , Atrazina/toxicidade , Peixes-Gato/crescimento & desenvolvimento , Clorpirifos/toxicidade , Ciclídeos/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Exposição Ambiental/estatística & dados numéricos , Mortalidade , Medição de Risco , Fatores de Tempo , Testes de Toxicidade/veterinária , Poluentes Químicos da Água/toxicidade , Poluição Química da Água/estatística & dados numéricos
13.
Water Sci Technol ; 83(1): 212-222, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33460419

RESUMO

This study represents the first application of Fe-citrate-based photo-Fenton chemistry for the degradation of chlorpyrifos (CPF) spiked into agricultural runoff, and its phytotoxicity assessment. The effects of the initial CPF concentration, time and ratio of Fe-citrate/H2O2 on CPF removal during the photo-Fenton reaction were investigated and modeled with analysis of variance using R software by the response-surface methodology package. According to the stationary point in original units, the optimal condition for 70.00% CPF removal was as follows: CPF = 2.5 mg L-1 (0.0), time = 48.0 min (0.585) and Fe-citrate/H2O2 = 0.075 (0.539). Beside running the system at near-neutral pH, another strength of this study is related to the treatment of agricultural runoff contaminated with CPF with a raceway pond reactor, which has the advantages of simplicity of the facilities and procedures, as well as the possibility of using sunlight more efficiently in the field of applications. Finally, untreated and treated agriculture runoffs were used as irrigation to determine their phytotoxic effects on seed germination of cress (Lepidium sativum). Solar photo-Fenton treatment greatly reduced phytotoxicity of agriculture runoff and showed the highest germination percentage (70%) compared to both raw agricultural runoff (60%) and untreated CPF-spiked runoff (35%).


Assuntos
Clorpirifos , Poluentes Químicos da Água , Agricultura , Clorpirifos/toxicidade , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Oxirredução , Luz Solar , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
14.
Artigo em Inglês | MEDLINE | ID: mdl-33460822

RESUMO

Common carp (Cyprinus carpio) is an important aquaculture species. However, their production and health is sometimes threatened by pesticides. In common carp, extensive studies have been done for exposures of single pesticides, but effects of mixtures such as those of the commonly used chlorpyrifos and dichlorvos, are still unknown for this species. In the first phase of this work, an acute lethal exposure experiment was conducted to estimate 24 h to 96 h lethal concentrations (LC10-90) of chlorpyrifos, dichlorvos and their mixture. Compared to dichlorvos, chlorpyrifos was found to be highly toxic to the tested species. Joint toxicity assessment of these pesticides in binary mixtures was dominated by synergism. In the second experimental phase, common carp were exposed to sub-lethal concentrations (LD-10% and HD-50% 96 h-LC50) of individual pesticides and their mixture. General fish behaviors, buccal movements and feeding attempts by fish were recorded after 1 h, 24 h, 48 h, 72 h and 96 h whereas aerobic metabolism of fish was recorded for 0-24 h, 24-48 h 48-72 h and 72-96 h of exposure. All pesticide treatments elevated buccal movements and oxygen uptake in a dose dependent manner. Feeding depression was also observed by pesticide exposure. The augmented deleterious effect of these pesticides in a mixture suggests that joint toxicity assessment is critical to develop more realistic water quality standards and monitoring guidelines.


Assuntos
Carpas , Clorpirifos/toxicidade , Diclorvós/toxicidade , Comportamento Alimentar/efeitos dos fármacos , Animais , Clorpirifos/administração & dosagem , Diclorvós/administração & dosagem , Sinergismo Farmacológico , Quimioterapia Combinada , Praguicidas/toxicidade , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade
15.
Chemosphere ; 270: 129382, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33418228

RESUMO

It is widely believed that an increasing trend in the production and consumption of vegetables has led to a dramatic rise in the use of pesticides potentially threatening the health of consumers around the world. This systematic study along with meta-analysis has mainly centered on the evaluation of the quantity of three well-known pesticides namely, Malathion (MLT), Diazinon (DZN) and Chlorpyrifos (CPF) in vegetables. In this regard, a comprehensive literature search has been performed over the last decade (January 1, 2011 to June 21, 2020) within the scientific databases including PubMed, Web of Science, and Scopus. Of 1239 articles identified through the database screening, 22 plus 37 data report were retained and included in the meta-analysis phase. Additionally, the probabilistic human health risks for the consumers due to the intake of CPF, DZN and MLT from eating vegetables were estimated by the Monte Carlo Simulated (MCS) method. According to the findings, the maximum quantities of MLT, DZN and CPF in the vegetables were observed in Pakistan (222 µg/kg, 95%CI = 214.94-229.08), Thailand (245.00, 95% CI = 235.2-254.8) and South Korea (440 µg/kg, 95% CI = 437.19-442.81), while the lowest concentration levels were reported in China (1.7 µg/kg, 95% CI = 1.56-1.84), Poland (0.57, 95% CI = 0.46-0.68) and Poland (5.78 µg/kg, 95% CI = 4.40-7.12), respectively. The results of the Egger's and the Begg's tests revealed that no bias with regard to the potential publication was observed. Finally, non-carcinogenic risk assessment results demonstrated that the exposure to the studied pesticides thorough vegetables consumption could not threaten the health of consumers.


Assuntos
Clorpirifos , Inseticidas , China , Clorpirifos/toxicidade , Diazinon/toxicidade , Humanos , Inseticidas/análise , Inseticidas/toxicidade , Malation , Paquistão , Polônia , República da Coreia , Medição de Risco , Tailândia , Verduras
16.
Chemosphere ; 273: 128475, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33069438

RESUMO

The presence of pesticides as well as that of several antibiotics provided at a great scale to poultry, cattle, and swine in aquatic environments within agroecosystems is a matter of growing concern. The objective of the present study was to characterize the sublethal effects of four environmental toxic compounds at two experimental pollution scenarios on the morphology, development and thyroid (T4), acetylcholinesterase (AChE) and glutathione S-transferase (GST) levels in Rhinella arenarum tadpoles. The first experimental pollution scenario aimed to evaluate the individual and mixed toxicity (50:50% v/v) of a glyphosate-based herbicide (GBH) and the antibiotic ciprofloxacin (CIP) on earlier developmental stages. The second experimental pollution scenario aimed to evaluate the effects of other toxic compounds (the insecticide chlorpyrifos (CP) and the antibiotic amoxicillin (AMX)) added to the ones from the first scenario on previously exposed premetamorphic tadpoles. In all the treatments of the first pollution scenario, the most conspicuous effect observed in early-stage tadpoles was a high prevalence of morphological abnormalities. Exposure to GBH and to its mixture with CIP also led to a significant decrease in T4 levels and lower development. Both pollutant combinations from the second experimental scenario significantly increased T4 levels, inhibited AChE activities, and led to lower development, whereas the quaternary mixture led to a significant decrease in GST levels. The alterations here revealed by our approaches in several morphological and biochemical endpoints allow characterizing the ecotoxicological risk for anurans exposed to complex mixtures of pollutants that frequently occur in aquatic systems.


Assuntos
Bufonidae , Clorpirifos , Animais , Antibacterianos/toxicidade , Bovinos , Clorpirifos/toxicidade , Glicina/análogos & derivados , Larva , Suínos , Glifosato
17.
Integr Environ Assess Manag ; 17(1): 243-258, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32786054

RESUMO

Mathematical models within the General Unified Threshold models of Survival (GUTS) framework translate time-variable chemical exposure information into expected survival of animals. The GUTS models are species and compound specific and explicitly describe the internal exposure dynamics in an organism (toxicokinetics) and the related damage and effect dynamics (toxicodynamics), thereby connecting the external exposure concentration dynamics with the simulated mortality or immobility over time. In a recent scientific opinion on toxicokinetic-toxicodynamic (TKTD) models published by the European Food Safety Authority (EFSA), the GUTS modeling framework was considered ready for use in the aquatic risk assessment for pesticides and aquatic fauna. The GUTS models are suggested for use in risk assessment, if they are sufficiently validated for a specific substance-species combination. This paper aims to illustrate how they can be used in the regulatory environmental risk assessment for pesticides for a specific type of refinement, that is, when risks are triggered by lower tiers in acute as well as in chronic risk assessment and mortality or immobility is the critical endpoint. This approach involves the evaluation of time-variable exposure regimes in a so-called "Tier-2C" assessment. The insecticide chlorpyrifos was selected as an example compound because a large data set was available. The GUTS models for 13 different freshwater arthropods and 8 different theoretical aquatic exposure profiles were used to calculate a series of GUTS-based risk estimates, including exposure profile-specific multiplication factors leading to 50% mortality or immobility at the end of the tested profile (LP50/EP50) as "margins of safety." To put the use of GUTS models within the tiered aquatic risk assessment into perspective, GUTS models for the 13 aquatic arthropods were also used to predict the environmental risks of a measured chlorpyrifos exposure profile from an experimental ditch study (Tier-3 approach), and the results are discussed in the context of calibration of the tiered approach. Integr Environ Assess Manag 2021;17:243-258. © 2020 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Clorpirifos , Inseticidas , Praguicidas , Poluentes Químicos da Água , Animais , Clorpirifos/toxicidade , Inseticidas/toxicidade , Medição de Risco , Análise de Sobrevida , Toxicocinética , Poluentes Químicos da Água/toxicidade
18.
Bull Environ Contam Toxicol ; 105(4): 582-587, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32948914

RESUMO

Oreochromis niloticus was exposed to 10.0 ppb of organophosphate insecticide chlorpyrifos (CPF) and avermectin insecticides abamectin (ABM) and emamectin benzoate (EB) for 48 and 96 h. RBC and Hb decreased in CPF- and ABM-exposed fish after 96-h. Plasma ALT, AST, cortisol, and glucose increased in 96-h CPF-, ABM- and EB-exposed fish, while plasma ions declined in 96-h CPF-exposed ones. Insecticides caused alterations in liver oxidative stress parameters. In fish exposed to CPF, CAT increased after 48-h whereas it decreased after 96-h. Also, CAT declined in 48- and 96-h ABM-exposed fish, whereas it elevated in 48-h EB-exposed ones. Insecticides caused decreases in SOD at 48- and 96-h and in GR after 96-h. GSH elevated in CPF-exposed fish after 48-h, while it decreased in all the tested insecticide exposures after 96-h. Malondialdehyde of fish exposed to insecticides for 96-h increased. Consequently, toxic effects of insecticides on O. niloticus were generally as CPF > ABM > EB.


Assuntos
Clorpirifos/toxicidade , Ciclídeos , Inseticidas/toxicidade , Ivermectina/análogos & derivados , Poluentes Químicos da Água/toxicidade , Animais , Análise Química do Sangue/veterinária , Testes Hematológicos/veterinária , Ivermectina/toxicidade , Fígado/efeitos dos fármacos , Fígado/enzimologia , Oxirredução , Distribuição Aleatória , Testes de Toxicidade Aguda/veterinária
19.
Environ Sci Technol ; 54(19): 12383-12392, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32900191

RESUMO

Exposure assessment of pesticides has substantially improved over time, with methods that now include a combination of advanced analytical techniques and fate/transport models to evaluate their spatiotemporal distribution. However, the current regulatory environmental risk assessment considers thresholds from laboratory studies completed under standardized conditions that do not reflect environmental dynamics. Using the General Unified Threshold model for Survival (GUTS) model framework, we predicted the impact of time-varying pesticide exposures on the survival of gammarids in a small agricultural stream. The LP50 values were used as an additional metric for assessing risks (defined in GUTS as a multiplication factor applied to the concentration time series to induce 50% mortality by the end of exposure). Although real-case exposures to individual pesticides were predicted to produce little to no impact on survival, the LP50 values indicate acute (LP50 ≤ 100) and/or chronic (LP50 ≤ 10) toxicities for azoxystrobin, chlorpyrifos, diazinon, and imidacloprid, while risk to propiconazole exposure was considered very low (LP50 ≫ 100). Finally, the model was extended to reflect mixture toxicity via concentration addition. It predicted risks under acute and chronic exposures to organophosphates and neonicotinoids. Given that gammarids are simultaneously exposed to multiple chemicals and other stressors throughout their lifetime, a decline in survival probabilities due to chemical stress can likely influence their overall fitness. We recognize that some assumptions require validation, but our work included a level of realism that can assist risk managers when evaluating the cumulative consequences of chemical exposure.


Assuntos
Clorpirifos , Diazinon , Praguicidas , Clorpirifos/toxicidade , Praguicidas/análise , Praguicidas/toxicidade , Medição de Risco , Rios
20.
Chemosphere ; 261: 127782, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32750624

RESUMO

Pesticide mixtures are frequent in freshwaters systems around the world, threatening the biota exposed to these conditions. The aim of this study was to determine the single and joint effect of two widely used pesticides in southern South America on a widely distributed fish species. In a 96-h assay, individuals of Cnesterodon decemmaculatus were exposed to 0.84 nL/L and 8.4 nL/L of Clorfox and 0.2 mg/L and 2 mg/L of Roundup Max, commercial formulations of chlorpyrifos and glyphosate, respectively. Also, there were four mixture treatments with all the possible combinations of both pesticides. A multi-level approach was carried out to assess their effects covering the following relevant biomarkers: behavior (immobile time, line crossings and average speed), somatic conditions (Fulton condition factor and hepatosomatic index), serum parameters (cortisol levels, lactate dehydrogenase (LDH), and creatine phosphokinase activity (CPK)), brain and muscle acetylcholinesterase and cytological characteristics (micronuclei frequency and nuclear abnormalities in erythrocytes). Our results showed that Clorfox exposures affect behavioral parameters, serum cortisol, and nuclear characteristics of erythrocytes. Roundup Max affects only the cortisol levels whereas mixture treatments have an effect on behavioral parameters, cortisol levels, LDH and CPK activities, and nuclear characteristics of erythrocytes. Potentiation was the main interaction at the lowest concentrations of both pesticides whereas antagonism occurred at the highest concentrations of both pesticides. These results are highly significant since they arise from an integrated ecotoxicological assessment at several levels of biological organization but even more important is that the potentiated effects of the mixtures we registered are environmentally relevant concentrations.


Assuntos
Clorpirifos/toxicidade , Ciprinodontiformes/fisiologia , Glicina/análogos & derivados , Praguicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Acetilcolinesterase , Animais , Bioensaio , Biomarcadores , Ecotoxicologia , Água Doce , Glicina/toxicidade , Praguicidas/análise , América do Sul , Poluentes Químicos da Água/análise , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA