Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 10: 298, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863406

RESUMO

B-cells can neutralize pathogenic molecules by targeting them with extreme specificity using receptors secreted or expressed on their surface (antibodies). This is achieved via molecular interactions between the paratope (i.e., the antibody residues involved in the binding) and the interacting region (epitope) of its target molecule (antigen). Discerning the rules that define this specificity would have profound implications for our understanding of humoral immunogenicity and its applications. The aim of this work is to produce improved, antibody-specific epitope predictions by exploiting features derived from the antigens and their cognate antibodies structures, and combining them using statistical and machine learning algorithms. We have identified several geometric and physicochemical features that are correlated in interacting paratopes and epitopes, used them to develop a Monte Carlo algorithm to generate putative epitopes-paratope pairs, and train a machine-learning model to score them. We show that, by including the structural and physicochemical properties of the paratope, we improve the prediction of the target of a given B-cell receptor. Moreover, we demonstrate a gain in predictive power both in terms of identifying the cognate antigen target for a given antibody and the antibody target for a given antigen, exceeding the results of other available tools.


Assuntos
Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Complexo Antígeno-Anticorpo/imunologia , Epitopos de Linfócito B/imunologia , Algoritmos , Sequência de Aminoácidos , Animais , Complexo Antígeno-Anticorpo/química , Sítios de Ligação de Anticorpos , Mapeamento de Epitopos/métodos , Humanos , Modelos Moleculares , Método de Monte Carlo , Redes Neurais de Computação , Domínios Proteicos , Reprodutibilidade dos Testes
2.
PLoS Comput Biol ; 14(4): e1006112, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29702641

RESUMO

A structural-bioinformatics-based computational methodology and framework have been developed for the design of antibodies to targets of interest. RosettaAntibodyDesign (RAbD) samples the diverse sequence, structure, and binding space of an antibody to an antigen in highly customizable protocols for the design of antibodies in a broad range of applications. The program samples antibody sequences and structures by grafting structures from a widely accepted set of the canonical clusters of CDRs (North et al., J. Mol. Biol., 406:228-256, 2011). It then performs sequence design according to amino acid sequence profiles of each cluster, and samples CDR backbones using a flexible-backbone design protocol incorporating cluster-based CDR constraints. Starting from an existing experimental or computationally modeled antigen-antibody structure, RAbD can be used to redesign a single CDR or multiple CDRs with loops of different length, conformation, and sequence. We rigorously benchmarked RAbD on a set of 60 diverse antibody-antigen complexes, using two design strategies-optimizing total Rosetta energy and optimizing interface energy alone. We utilized two novel metrics for measuring success in computational protein design. The design risk ratio (DRR) is equal to the frequency of recovery of native CDR lengths and clusters divided by the frequency of sampling of those features during the Monte Carlo design procedure. Ratios greater than 1.0 indicate that the design process is picking out the native more frequently than expected from their sampled rate. We achieved DRRs for the non-H3 CDRs of between 2.4 and 4.0. The antigen risk ratio (ARR) is the ratio of frequencies of the native amino acid types, CDR lengths, and clusters in the output decoys for simulations performed in the presence and absence of the antigen. For CDRs, we achieved cluster ARRs as high as 2.5 for L1 and 1.5 for H2. For sequence design simulations without CDR grafting, the overall recovery for the native amino acid types for residues that contact the antigen in the native structures was 72% in simulations performed in the presence of the antigen and 48% in simulations performed without the antigen, for an ARR of 1.5. For the non-contacting residues, the ARR was 1.08. This shows that the sequence profiles are able to maintain the amino acid types of these conserved, buried sites, while recovery of the exposed, contacting residues requires the presence of the antigen-antibody interface. We tested RAbD experimentally on both a lambda and kappa antibody-antigen complex, successfully improving their affinities 10 to 50 fold by replacing individual CDRs of the native antibody with new CDR lengths and clusters.


Assuntos
Anticorpos/química , Software , Sequência de Aminoácidos , Animais , Anticorpos/genética , Anticorpos/imunologia , Complexo Antígeno-Anticorpo/química , Complexo Antígeno-Anticorpo/genética , Complexo Antígeno-Anticorpo/imunologia , Regiões Determinantes de Complementaridade , Biologia Computacional , Simulação por Computador , Evolução Molecular Direcionada , Desenho de Fármacos , Humanos , Modelos Moleculares , Método de Monte Carlo , Conformação Proteica , Engenharia de Proteínas/métodos , Engenharia de Proteínas/estatística & dados numéricos
3.
Oxid Med Cell Longev ; 2016: 1480463, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27313823

RESUMO

Objective. We quantitatively assessed the influence of oxidants on antigen-antibody-binding activity. Methods. We used several immunological detection methods, including precipitation reactions, agglutination reactions, and enzyme immunoassays, to determine antibody activity. The oxidation-reduction potential was measured in order to determine total serum antioxidant capacity. Results. Certain concentrations of oxidants resulted in significant inhibition of antibody activity but had little influence on total serum antioxidant capacity. Conclusions. Oxidants had a significant influence on interactions between antigen and antibody, but minimal effect on the peptide of the antibody molecule.


Assuntos
Complexo Antígeno-Anticorpo/metabolismo , Oxidantes/metabolismo , Adulto , Aglutinação , Anticorpos Antivirais/imunologia , Complexo Antígeno-Anticorpo/química , Antioxidantes/análise , Técnicas Eletroquímicas , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Feminino , Antígenos de Superfície da Hepatite B/imunologia , Humanos , Imunoprecipitação , Masculino , Oxidantes/química
4.
BMC Bioinformatics ; 13 Suppl 17: S20, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23281855

RESUMO

BACKGROUND: Prediction of B-cell epitopes from antigens is useful to understand the immune basis of antibody-antigen recognition, and is helpful in vaccine design and drug development. Tremendous efforts have been devoted to this long-studied problem, however, existing methods have at least two common limitations. One is that they only favor prediction of those epitopes with protrusive conformations, but show poor performance in dealing with planar epitopes. The other limit is that they predict all of the antigenic residues of an antigen as belonging to one single epitope even when multiple non-overlapping epitopes of an antigen exist. RESULTS: In this paper, we propose to divide an antigen surface graph into subgraphs by using a Markov Clustering algorithm, and then we construct a classifier to distinguish these subgraphs as epitope or non-epitope subgraphs. This classifier is then taken to predict epitopes for a test antigen. On a big data set comprising 92 antigen-antibody PDB complexes, our method significantly outperforms the state-of-the-art epitope prediction methods, achieving 24.7% higher averaged f-score than the best existing models. In particular, our method can successfully identify those epitopes with a non-planarity which is too small to be addressed by the other models. Our method can also detect multiple epitopes whenever they exist. CONCLUSIONS: Various protrusive and planar patches at the surface of antigens can be distinguishable by using graphical models combined with unsupervised clustering and supervised learning ideas. The difficult problem of identifying multiple epitopes from an antigen can be made easied by using our subgraph approach. The outstanding residue combinations found in the supervised learning will be useful for us to form new hypothesis in future studies.


Assuntos
Gráficos por Computador , Simulação por Computador , Mapeamento de Epitopos/métodos , Epitopos de Linfócito B/química , Epitopos de Linfócito B/imunologia , Modelos Imunológicos , Algoritmos , Anticorpos/química , Anticorpos/imunologia , Complexo Antígeno-Anticorpo/química , Complexo Antígeno-Anticorpo/imunologia , Antígenos/química , Antígenos/imunologia , Humanos , Cadeias de Markov , Conformação Proteica
5.
Protein Sci ; 20(6): 1082-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21465611

RESUMO

Computational protein design methods can complement experimental screening and selection techniques by predicting libraries of low-energy sequences compatible with a desired structure and function. Incorporating backbone flexibility in computational design allows conformational adjustments that should broaden the range of predicted low-energy sequences. Here, we evaluate computational predictions of sequence libraries from different protocols for modeling backbone flexibility using the complex between the therapeutic antibody Herceptin and its target human epidermal growth factor receptor 2 (HER2) as a model system. Within the program RosettaDesign, three methods are compared: The first two use ensembles of structures generated by Monte Carlo protocols for near-native conformational sampling: kinematic closure (KIC) and backrub, and the third method uses snapshots from molecular dynamics (MD) simulations. KIC or backrub methods were better able to identify the amino acid residues experimentally observed by phage display in the Herceptin-HER2 interface than MD snapshots, which generated much larger conformational and sequence diversity. KIC and backrub, as well as fixed backbone simulations, captured the key mutation Asp98Trp in Herceptin, which leads to a further threefold affinity improvement of the already subnanomolar parental Herceptin-HER2 interface. Modeling subtle backbone conformational changes may assist in the design of sequence libraries for improving the affinity of antibody-antigen interfaces and could be suitable for other protein complexes for which structural information is available.


Assuntos
Anticorpos Monoclonais/química , Complexo Antígeno-Anticorpo/química , Receptor ErbB-2/química , Sequência de Aminoácidos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais Humanizados , Complexo Antígeno-Anticorpo/imunologia , Simulação por Computador , Desenho de Fármacos , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Receptor ErbB-2/imunologia , Trastuzumab
6.
Artigo em Inglês | MEDLINE | ID: mdl-21383422

RESUMO

Context-awareness is a characteristic in the recognition between antigens and antibodies, highlighting the reconfiguration of epitope residues when an antigen interacts with a different antibody. A coarse binary classification of antigen regions into epitopes, or nonepitopes without specifying antibodies may not accurately reflect this biological reality. Therefore, we study an antibody-specified epitope prediction problem in line with this principle. This problem is new and challenging as we pinpoint a subset of the antigenic residues from an antigen when it binds to a specific antibody. We introduce two kinds of associations of the contextual awareness: 1) residues-residues pairing preference, and 2) the dependence between sets of contact residue pairs. Preference plays a bridging role to link interacting paratope and epitope residues while dependence is used to extend the association from one-dimension to two-dimension. The paratope/epitope residues' relative composition, cooperativity ratios, and Markov properties are also utilized to enhance our method. A nonredundant data set containing 80 antibody-antigen complexes is compiled and used in the evaluation. The results show that our method yields a good performance on antibody-specified epitope prediction. On the traditional antibody-ignored epitope prediction problem, a simplified version of our method can produce a competitive, sometimes much better, performance in comparison with three structure-based predictors.


Assuntos
Anticorpos/química , Epitopos de Linfócito B/química , Complexo Antígeno-Anticorpo/química , Sítios de Ligação , Sítios de Ligação de Anticorpos , Bases de Dados de Proteínas , Mapeamento de Epitopos , Cadeias de Markov , Modelos Moleculares , Conformação Proteica
7.
Proteins ; 72(3): 993-1004, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18300245

RESUMO

Fast Fourier transform (FFT) correlation methods of protein-protein docking, combined with the clustering of low energy conformations, can find a number of local minima on the energy surface. For most complexes, the locations of the near-native structures can be constrained to the 30 largest clusters, each surrounding a local minimum. However, no reliable further discrimination can be obtained by energy measures because the differences in the energy levels between the minima are comparable with the errors in the energy evaluation. In fact, no current scoring function accounts for the entropic contributions that relate to the width rather than the depth of the minima. Since structures at narrow minima loose more entropy, some of the nonnative states can be detected by determining whether or not a local minimum is surrounded by a broad region of attraction on the energy surface. The analysis is based on starting Monte Carlo Minimization (MCM) runs from random points around each minimum, and observing whether a certain fraction of trajectories converge to a small region within the cluster. The cluster is considered stable if such a strong attractor exists, has at least 10 convergent trajectories, is relatively close to the original cluster center, and contains a low energy structure. We studied the stability of clusters for enzyme-inhibitor and antibody-antigen complexes in the Protein Docking Benchmark. The analysis yields three main results. First, all clusters that are close to the native structure are stable. Second, restricting considerations to stable clusters eliminates around half of the false positives, that is, solutions that are low in energy but far from the native structure of the complex. Third, dividing the conformational space into clusters and determining the stability of each cluster, the combined approach is less dependent on a priori information than exploring the potential conformational space by Monte Carlo minimizations.


Assuntos
Proteínas/química , Complexo Antígeno-Anticorpo/química , Inibidores Enzimáticos/química , Enzimas/química , Método de Monte Carlo , Termodinâmica
8.
J Immunoassay Immunochem ; 27(4): 341-50, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16981647

RESUMO

Human blood samples collected from local malaria clinics, hospitals, and by cross-sectional surveys in malaria endemic areas were tested by enzyme immunoassay for circulating malarial antigen, antimalarial antibody, and antigen-specific circulating immune complexes. The assays were done in serum and finger-prick blood absorbed on filter paper. The results obtained from the present study suggest their roles as effective immunometric indicators.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/sangue , Animais , Complexo Antígeno-Anticorpo/química , Reações Antígeno-Anticorpo , Humanos , Técnicas Imunoenzimáticas/métodos , Plasmodium falciparum/imunologia , Valor Preditivo dos Testes , Coelhos , Sensibilidade e Especificidade
10.
J Mol Biol ; 331(1): 281-99, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12875852

RESUMO

Protein-protein docking algorithms provide a means to elucidate structural details for presently unknown complexes. Here, we present and evaluate a new method to predict protein-protein complexes from the coordinates of the unbound monomer components. The method employs a low-resolution, rigid-body, Monte Carlo search followed by simultaneous optimization of backbone displacement and side-chain conformations using Monte Carlo minimization. Up to 10(5) independent simulations are carried out, and the resulting "decoys" are ranked using an energy function dominated by van der Waals interactions, an implicit solvation model, and an orientation-dependent hydrogen bonding potential. Top-ranking decoys are clustered to select the final predictions. Small-perturbation studies reveal the formation of binding funnels in 42 of 54 cases using coordinates derived from the bound complexes and in 32 of 54 cases using independently determined coordinates of one or both monomers. Experimental binding affinities correlate with the calculated score function and explain the predictive success or failure of many targets. Global searches using one or both unbound components predict at least 25% of the native residue-residue contacts in 28 of the 32 cases where binding funnels exist. The results suggest that the method may soon be useful for generating models of biologically important complexes from the structures of the isolated components, but they also highlight the challenges that must be met to achieve consistent and accurate prediction of protein-protein interactions.


Assuntos
Algoritmos , Modelos Moleculares , Proteínas/química , Complexo Antígeno-Anticorpo/química , Simulação por Computador , Inibidores Enzimáticos/química , Enzimas/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Método de Monte Carlo , Ligação Proteica , Conformação Proteica , Solventes
12.
Nat Struct Biol ; 1(4): 259-63, 1994 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-7656055

RESUMO

The fundamental event in biological assembly is association of two biological macromolecules. Here we present a successful, accurate ab initio prediction of the binding of uncomplexed lysozyme to the HyHel5 antibody. The prediction combines pseudo Brownian Monte Carlo minimization with a biased-probability global side-chain placement procedure. It was effected in an all-atom representation, with ECEPP/2 potentials complemented with the surface energy, side-chain entropy and electrostatic polarization free energy. The near-native solution found was surprisingly close to the crystallographic structure (root-mean-square deviation of 1.57 A for all backbone atoms of lysozyme) and had a considerably lower energy (by 20 kcal mol-1) than any other solution.


Assuntos
Complexo Antígeno-Anticorpo/química , Muramidase/química , Muramidase/imunologia , Animais , Sítios de Ligação , Eletroquímica , Modelos Moleculares , Método de Monte Carlo , Conformação Proteica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA