Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Photosynth Res ; 159(2-3): 303-320, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466456

RESUMO

Photosystem II (PSII) is one of the main pigment-protein complexes of photosynthesis which is highly sensitive to unfavorable environmental factors. The heterogeneity of PSII properties is essential for the resistance of autotrophic organisms to stress factors. Assessment of the PSII heterogeneity may be used in environmental monitoring for on-line detection of contamination of the environment. We propose an approach to assess PSII oxygen-evolving complex and light-harvesting antenna heterogeneity that is based on mathematical modeling of the shape of chlorophyll a fluorescence rise of 3-(3,4-dichlorophenyl)-1,1-dimethylurea-treated samples. The hierarchy of characteristic times of the processes considered in the model makes it possible to reduce the model to a system of three ordinary differential equations. The analytic solution of the reduced three-state model is expressed as a sum of two exponential functions, and it exactly reproduces the solution of the complete system within the time range from microseconds to hundreds of milliseconds. The combination of several such models for reaction centers with different properties made it possible to use it as an instrument to study PSII heterogeneity. PSII heterogeneity was studied for Chlamydomonas at different intensities of actinic light, for Scenedesmus under short-term heating, and for Chlorella grown in nitrate-enriched and nitrate-depleted media.


Assuntos
Chlorella , Complexo de Proteína do Fotossistema II , Complexo de Proteína do Fotossistema II/metabolismo , Clorofila A , Diurona , Clorofila , Chlorella/metabolismo , Nitratos , Fotossíntese , Modelos Teóricos , Complexos de Proteínas Captadores de Luz/metabolismo , Luz
2.
Elife ; 112022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36053269

RESUMO

Two species of photosynthetic cyanobacteria can thrive in far-red light but they either become less resilient to photodamage or less energy efficient.


Assuntos
Cianobactérias , Complexo de Proteína do Fotossistema II , Cianobactérias/metabolismo , Luz , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo
3.
New Phytol ; 235(2): 446-456, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35451127

RESUMO

Photosystem II (PSII), which splits water molecules at minimal excess photochemical potential, is inevitably photoinactivated during photosynthesis, resulting in compromised photosynthetic efficiency unless it is repaired. The energy cost of PSII repair is currently uncertain, despite attempts to calculate it. We experimentally determined the energy cost of repairing each photoinactivated PSII in cotton (Gossypium hirsutum) leaves, which are capable of repairing PSII in darkness. As an upper limit, 24 000 adenosine triphosphate (ATP) molecules (including any guanosine triphosphate synthesized at the expense of ATP) were required to repair one entire PSII complex. Further, over a 7-h illumination period at 526-1953 µmol photons m-2 s-1 , the ATP requirement for PSII repair was on average up to 4.6% of the ATP required for the gross carbon assimilation. Each of these two measures of ATP requirement for PSII repair is two- to three-fold greater than the respective reported calculated value. Possible additional energy sinks in the PSII repair cycle are discussed.


Assuntos
Gossypium , Complexo de Proteína do Fotossistema II , Trifosfato de Adenosina/metabolismo , Clorofila , Gossypium/metabolismo , Luz , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo
4.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35409126

RESUMO

Functions of the photosynthetic apparatus of C3 (Pisum sativum L.) and C4 (Zea mays L.) plants under physiological conditions and after treatment with different NaCl concentrations (0-200 mM) were investigated using chlorophyll a fluorescence (pulse-amplitude-modulated (PAM) and JIP test) and P700 photooxidation measurement. Data revealed lower density of the photosynthetic structures (RC/CSo), larger relative size of the plastoquinone (PQ) pool (N) and higher electron transport capacity and photosynthetic rate (parameter RFd) in C4 than in C3 plants. Furthermore, the differences were observed between the two studied species in the parameters characterizing the possibility of reduction in the photosystem (PSI) end acceptors (REo/RC, REo/CSo and δRo). Data revealed that NaCl treatment caused a decrease in the density of the photosynthetic structures and relative size of the PQ pool as well as decrease in the electron transport to the PSI end electron acceptors and the probability of their reduction as well as an increase in the thermal dissipation. The effects were stronger in pea than in maize. The enhanced energy losses after high salt treatment in maize were mainly from the increase in the regulated energy losses (ΦNPQ), while in pea from the increase in non-regulated energy losses (ΦNO). The reduction in the electron transport from QA to the PSI end electron acceptors influenced PSI activity. Analysis of the P700 photooxidation and its decay kinetics revealed an influence of two PSI populations in pea after treatment with 150 mM and 200 mM NaCl, while in maize the negligible changes were registered only at 200 mM NaCl. The experimental results clearly show less salt tolerance of pea than maize.


Assuntos
Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema II , Clorofila , Clorofila A , Transporte de Elétrons/fisiologia , Fluorescência , Pisum sativum/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Plastoquinona , Estresse Salino , Cloreto de Sódio/farmacologia , Zea mays/metabolismo
5.
J Phys Chem B ; 125(36): 10097-10107, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34463499

RESUMO

Broken symmetry density functional theory (BS-DFT) calculations on large models of Nature's water oxidizing complex (WOC) are used to investigate the electronic structure and associated magnetic interactions of this key intermediate state. The electronic origins of the ferromagnetic and antiferromagnetic couplings between neighboring Mn ions are investigated and illustrated by using corresponding orbital transformations. Protonation of the O4 and/or O6 atoms leads to large variation in the distribution of spin around the complex with associated changes in its magnetic resonance properties. Models for Sr2+ exchange and methanol addition indicate minor perturbations reflected in slightly altered spin projection coefficients for the Mn1 and Mn2 ions. These are shown to account for the observed changes observed experimentally via electron paramagnetic resonance methods and suggest a reinterpretation of the experimental findings. By comparison with experimental determinations, we show that the spin projections and resulting calculated 55Mn hyperfine couplings support the open cubane form of an oxo (O5)-hydroxo (O6) cluster in all cases with no need to invoke a closed cubane intermediate. The implications of these findings for the water oxidation mechanism are discussed.


Assuntos
Complexo de Proteína do Fotossistema II , Água , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução , Oxigênio , Complexo de Proteína do Fotossistema II/metabolismo
6.
Sensors (Basel) ; 21(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804000

RESUMO

Plants naturally contain high levels of the stress-responsive fluorophore chlorophyll. Chlorophyll fluorescence imaging (CFI) is a powerful tool to measure photosynthetic efficiency in plants and provides the ability to detect damage from a range of biotic and abiotic stresses before visible symptoms occur. However, most CFI systems are complex, expensive systems that use pulse amplitude modulation (PAM) fluorometry. Here, we test a simple CFI system, that does not require PAM fluorometry, but instead simply images fluorescence emitted by plants. We used this technique to visualize stress induced by the photosystem II-inhibitory herbicide atrazine. After applying atrazine as a soil drench, CFI and color images were taken at 15-minute intervals, alongside measurements from a PAM fluorometer and a leaf reflectometer. Pixel intensity of the CFI images was negatively correlated with the quantum yield of photosystem II (ΦPSII) (p < 0.0001) and positively correlated with the measured reflectance in the spectral region of chlorophyll fluorescence emissions (p < 0.0001). A fluorescence-based stress index was developed using the reflectometer measurements based on wavelengths with the highest (741.2 nm) and lowest variability (548.9 nm) in response to atrazine damage. This index was correlated with ΦPSII (p < 0.0001). Low-cost CFI imaging can detect herbicide-induced stress (and likely other stressors) before there is visual damage.


Assuntos
Atrazina , Clorofila , Atrazina/toxicidade , Fluorescência , Imagem Óptica , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo
7.
J Phycol ; 56(3): 818-829, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32130730

RESUMO

Temperature and nutrient supply are key factors that control phytoplankton ecophysiology, but their role is commonly investigated in isolation. Their combined effect on resource allocation, photosynthetic strategy, and metabolism remains poorly understood. To characterize the photosynthetic strategy and resource allocation under different conditions, we analyzed the responses of a marine cyanobacterium (Synechococcus PCC 7002) to multiple combinations of temperature and nutrient supply. We measured the abundance of proteins involved in the dark (RuBisCO, rbcL) and light (Photosystem II, psbA) photosynthetic reactions, the content of chlorophyll a, carbon and nitrogen, and the rates of photosynthesis, respiration, and growth. We found that rbcL and psbA abundance increased with nutrient supply, whereas a temperature-induced increase in psbA occurred only in nutrient-replete treatments. Low temperature and abundant nutrients caused increased RuBisCO abundance, a pattern we observed also in natural phytoplankton assemblages across a wide latitudinal range. Photosynthesis and respiration increased with temperature only under nutrient-sufficient conditions. These results suggest that nutrient supply exerts a stronger effect than temperature upon both photosynthetic protein abundance and metabolic rates in Synechococcus sp. and that the temperature effect on photosynthetic physiology and metabolism is nutrient dependent. The preferential resource allocation into the light instead of the dark reactions of photosynthesis as temperature rises is likely related to the different temperature dependence of dark-reaction enzymatic rates versus photochemistry. These findings contribute to our understanding of the strategies for photosynthetic energy allocation in phytoplankton inhabiting contrasting environments.


Assuntos
Fotossíntese , Synechococcus , Clorofila A , Luz , Nutrientes , Complexo de Proteína do Fotossistema II/metabolismo , Alocação de Recursos , Synechococcus/metabolismo , Temperatura
8.
Proc Natl Acad Sci U S A ; 117(1): 141-145, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31848244

RESUMO

Knowledge of the manganese oxidation states of the oxygen-evolving Mn4CaO5 cluster in photosystem II (PSII) is crucial toward understanding the mechanism of biological water oxidation. There is a 4 decade long debate on this topic that historically originates from the observation of a multiline electron paramagnetic resonance (EPR) signal with effective total spin of S = 1/2 in the singly oxidized S2 state of this cluster. This signal implies an overall oxidation state of either Mn(III)3Mn(IV) or Mn(III)Mn(IV)3 for the S2 state. These 2 competing assignments are commonly known as "low oxidation (LO)" and "high oxidation (HO)" models of the Mn4CaO5 cluster. Recent advanced EPR and Mn K-edge X-ray spectroscopy studies converge upon the HO model. However, doubts about these assignments have been voiced, fueled especially by studies counting the number of flash-driven electron removals required for the assembly of an active Mn4CaO5 cluster starting from Mn(II) and Mn-free PSII. This process, known as photoactivation, appeared to support the LO model since the first oxygen is reported to evolve already after 7 flashes. In this study, we improved the quantum yield and sensitivity of the photoactivation experiment by employing PSII microcrystals that retained all protein subunits after complete manganese removal and by oxygen detection via a custom built thin-layer cell connected to a membrane inlet mass spectrometer. We demonstrate that 9 flashes by a nanosecond laser are required for the production of the first oxygen, which proves that the HO model provides the correct description of the Mn4CaO5 cluster's oxidation states.


Assuntos
Manganês/metabolismo , Oxigênio/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Cianobactérias , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Lasers , Luz , Compostos de Manganês , Modelos Químicos , Oxirredução , Óxidos , Complexo de Proteína do Fotossistema II/química , Thermosynechococcus , Água/química
9.
Environ Int ; 133(Pt A): 105175, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31629173

RESUMO

Herbicides have been increasingly used worldwide and a large amount of herbicide residue eventually enters the ocean via groundwater or surface run-off every year. However, the global coastal pollution status of herbicides and their negative impact on marine life (especially phytoplankton) in natural environmental concentrations are poorly understood except for few special environments (e.g. the Great Barrier Reef, Australia). Our field investigation of the distribution of ten triazine herbicides in the Bohai Sea and the Yellow Sea of China revealed that the concentrations of triazine herbicides exceeded the "No Observed Effect Concentrations" for phytoplankton. Their total concentrations could be as high as 6.61 nmol L-1. Based on the concentration addition model, the toxicity of herbicide homologues is usually cumulative, and the combined toxicity of these ten triazine herbicides could cause 13.2% inhibition on the chlorophyll a fluorescence intensity of a representative diatom species Phaeodactylum tricornutum Pt-1, which corresponds roughly to the toxicity of atrazine in an equivalent concentration of 14.08 nmol L-1. Atrazine in this equivalent-effect concentration could greatly inhibit the growth of cells, the maximum quantum efficiency of photosystem II (Fv/Fm), and nutrient absorption of Phaeodactylum tricornutum Pt-1. Transcriptome analysis revealed that multiple metabolic pathways (Calvin cycle, tricarboxylic acid (TCA) cycle, glycolysis/gluconeogenesis, etc.) related with photosynthesis and carbon metabolism were greatly disturbed, which might ultimately influence the primary productivity of coastal waters. Moreover, with the values of its bioaccumulation factor ranging from 69.6 to 118.9, atrazine was found to be accumulated in algal cells, which indicates that herbicide pollution might eventually affect the marine food web and even threaten the seafood safety of human beings.


Assuntos
Herbicidas/toxicidade , Fitoplâncton/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Atrazina/toxicidade , China , Clorofila A/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Fitoplâncton/metabolismo , Medição de Risco
10.
Biochem J ; 476(9): 1377-1386, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31036714

RESUMO

Photoinhibition is the light-induced down-regulation of photosynthetic efficiency, the primary target of which is photosystem II (PSII). Currently, there is no clear consensus on the exact mechanism of this process. However, it is clear that inhibition can occur through limitations on both the acceptor- and donor side of PSII. The former mechanism is caused by electron transport limitations at the PSII acceptor side. Whilst, the latter mechanism relies on the disruption of the oxygen-evolving complex. Both of these mechanisms damage the PSII reaction centre (RC). Using a novel chlorophyll fluorescence methodology, RC photoinactivation can be sensitively measured and quantified alongside photoprotection in vivo This is achieved through estimation of the redox state of QA, using the parameter of photochemical quenching in the dark (qPd). This study shows that through the use of PSII donor-side inhibitors, such as UV-B and Cd2+, there is a steeper gradient of photoinactivation in the systems with a weakened donor side, independent of the level of NPQ attained. This is coupled with a concomitant decline in the light tolerance of PSII. The native light tolerance is partially restored upon the use of 1,5-diphenylcarbazide (DPC), a PSII electron donor, allowing for the balance between the inhibitory pathways to be sensitively quantified. Thus, this study confirms that the impact of donor-side inhibition can be detected alongside acceptor-side photoinhibition using the qPd parameter and confirms qPd as a valid, sensitive and unambiguous parameter to sensitively quantify the onset of photoinhibition through both acceptor- or donor-side mechanisms.


Assuntos
Arabidopsis/enzimologia , Complexo de Proteína do Fotossistema II/metabolismo , Raios Ultravioleta , Cádmio/farmacocinética , Clorofila/metabolismo
11.
Mar Pollut Bull ; 135: 617-629, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30301080

RESUMO

Increased plant mortality in temperate seagrass populations has been recently observed after summer heatwaves, although the underlying causes of plant death are yet unknown. The potential energetic constrains resulting from anomalous thermal events could be the reason that triggered seagrass mortality, as demonstrated for benthic invertebrates. To test this hypothesis, the carbon balance of Posidonia oceanica and Cymodocea nodosa plants from contrasting thermal environments was investigated during a simulated heatwave, by analyzing their photosynthetic performance, carbon balance (ratio photosynthesis:respiration), carbohydrates content, growth and mortality. Both species were able to overcome and recover from the thermal stress produced by the six-week exposure to temperatures 4 °C above mean summer levels, albeit plants from cold waters were more sensitive to warming than plants from warm waters as reflected by their inability to maintain their P:R ratio unaltered. The strategies through which plants tend to preserve their energetic status varied depending on the biology of the species and the thermal origin of plants. These included respiratory homeostasis (P. oceanica warm-plants), carbon diversion from growth to respiration (C. nodosa cold-plants) or storage (P. oceanica warm-plants) and changes in biomass allocation (C. nodosa warm-plants). Findings suggest an important geographic heterogeneity in the overall response of Mediterranean seagrasses to warming with potential negative impacts on the functions and services offered by seagrass meadows including among others their capacity for carbon sequestration and carbon export to adjacent ecosystems.


Assuntos
Alismatales/fisiologia , Carbono/metabolismo , Fotossíntese/fisiologia , Alismatales/química , Organismos Aquáticos , Biomassa , Metabolismo dos Carboidratos , Carboidratos/análise , Ecossistema , Mar Mediterrâneo , Complexo de Proteína do Fotossistema II/metabolismo , Estações do Ano , Temperatura
12.
PLoS One ; 13(4): e0195638, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29641568

RESUMO

Trichodesmium plays a significant role in the oligotrophic oceans, fixing nitrogen in an area corresponding to half of the Earth's surface, representing up to 50% of new production in some oligotrophic tropical and subtropical oceans. Whilst Trichodesmium blooms at the surface exhibit a strong dependence on diazotrophy, colonies at depth or at the surface after a mixing event could be utilising additional N-sources. We conducted experiments to establish how acclimation to varying N-sources affects the growth, elemental composition, light absorption coefficient, N2 fixation, PSII electron transport rate and the relationship between net and gross photosynthetic O2 exchange in T. erythraeum IMS101. To do this, cultures were acclimated to growth medium containing NH4+ and NO3- (replete concentrations) or N2 only (diazotrophic control). The light dependencies of O2 evolution and O2 uptake were measured using membrane inlet mass spectrometry (MIMS), while PSII electron transport rates were measured from fluorescence light curves (FLCs). We found that at a saturating light intensity, Trichodesmium growth was ~ 10% and 13% lower when grown on N2 than with NH4+ and NO3-, respectively. Oxygen uptake increased linearly with net photosynthesis across all light intensities ranging from darkness to 1100 µmol photons m-2 s-1. The maximum rates and initial slopes of light response curves for C-specific gross and net photosynthesis and the slope of the relationship between gross and net photosynthesis increased significantly under non-diazotrophic conditions. We attribute these observations to a reduced expenditure of reductant and ATP for nitrogenase activity under non-diazotrophic conditions which allows NADPH and ATP to be re-directed to CO2 fixation and/or biosynthesis. The energy and reductant conserved through utilising additional N-sources could enhance Trichodesmium's productivity and growth and have major implications for its role in ocean C and N cycles.


Assuntos
Fixação de Nitrogênio , Trichodesmium/fisiologia , Absorção Fisico-Química , Transporte de Elétrons , Luz , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Trichodesmium/citologia , Trichodesmium/metabolismo , Trichodesmium/efeitos da radiação
13.
New Phytol ; 218(3): 986-998, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29520959

RESUMO

Extra ATP required in C4 photosynthesis for the CO2 -concentrating mechanism probably comes from cyclic electron transport (CET). As metabolic ATP : NADPH requirements in mesophyll (M) and bundle-sheath (BS) cells differ among C4 subtypes, the subtypes may differ in the extent to which CET operates in these cells. We present an analytical model for cell-type-specific CET and linear electron transport. Modelled NADPH and ATP production were compared with requirements. For malic-enzyme (ME) subtypes, c. 50% of electron flux is CET, occurring predominantly in BS cells for standard NADP-ME species, but in a ratio of c. 6 : 4 in BS : M cells for NAD-ME species. Some C4 acids follow a secondary decarboxylation route, which is obligatory, in the form of 'aspartate-malate', for the NADP-ME subtype, but facultative, in the form of phosphoenolpyruvate-carboxykinase (PEP-CK), for the NAD-ME subtype. The percentage for secondary decarboxylation is c. 25% and that for 3-phosphoglycerate reduction in BS cells is c. 40%; but these values vary with species. The 'pure' PEP-CK type is unrealistic because its is impossible to fulfil ATP : NADPH requirements in BS cells. The standard PEP-CK subtype requires negligible CET, and thus has the highest intrinsic quantum yields and deserves further studies in the context of improving canopy productivity.


Assuntos
Carbono/metabolismo , Metabolismo Energético , Modelos Biológicos , Fotossíntese , Trifosfato de Adenosina/metabolismo , Dióxido de Carbono/metabolismo , Respiração Celular/efeitos da radiação , Descarboxilação , Transporte de Elétrons/efeitos da radiação , Elétrons , Metabolismo Energético/efeitos da radiação , Luz , Malato Desidrogenase/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Zea mays/metabolismo , Zea mays/efeitos da radiação
14.
Plant Cell Environ ; 41(3): 589-604, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29243271

RESUMO

A dynamic model of leaf CO2 assimilation was developed as an extension of the canonical steady-state model, by adding the effects of energy-dependent non-photochemical quenching (qE), chloroplast movement, photoinhibition, regulation of enzyme activity in the Calvin cycle, metabolite concentrations, and dynamic CO2 diffusion. The model was calibrated and tested successfully using published measurements of gas exchange and chlorophyll fluorescence on Arabidopsis thaliana ecotype Col-0 and several photosynthetic mutants and transformants affecting the regulation of Rubisco activity (rca-2 and rwt43), non-photochemical quenching (npq4-1 and npq1-2), and sucrose synthesis (spsa1). The potential improvements on CO2 assimilation under fluctuating irradiance that can be achieved by removing the kinetic limitations on the regulation of enzyme activities, electron transport, and stomatal conductance were calculated in silico for different scenarios. The model predicted that the rates of activation of enzymes in the Calvin cycle and stomatal opening were the most limiting (up to 17% improvement) and that effects varied with the frequency of fluctuations. On the other hand, relaxation of qE and chloroplast movement had a strong effect on average low-irradiance CO2 assimilation (up to 10% improvement). Strong synergies among processes were found, such that removing all kinetic limitations simultaneously resulted in improvements of up to 32%.


Assuntos
Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Modelos Biológicos , Folhas de Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calibragem , Clorofila/metabolismo , Transporte de Elétrons , Luz , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Mutação , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Estômatos de Plantas/fisiologia , Ribulose-Bifosfato Carboxilase/economia , Ribulose-Bifosfato Carboxilase/metabolismo
15.
Biotechnol Prog ; 32(6): 1601-1608, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27801554

RESUMO

The results of a numerical study on the simulation of pulse amplitude modulated (PAM) fluorometry within dense suspensions of photosynthetic microorganisms are presented. The Monte Carlo method was used to solve the radiative transfer equation in an algae-filled cuvette, taking into account absorption, anisotropic scattering, and fluorescence, as well as Fresnel reflections at interfaces. This method was used to simulate the transport of excitation and fluorescence light in a common laboratory fluorometer. In this fluorometer, detected fluorescence originates from a multitude of locations within the algal suspension, which can be exposed to very different fluence rates. The fluorescence-weighted fluence rate is reported, which is the local fluence rate of actinic light, averaged over all locations from which detected fluorescence originated. A methodology is reported for recovering the fluorescence-weighted fluence rate as a function of the transmittance of measuring light and actinic light through the sample, which are easily measured with common laboratory fluorometers. The fluorescence-weighted fluence rate can in turn be used as a correction factor for recovering intrinsic physiological parameters, such as the functional cross section of Photosystem II, from apparent (experimental) values. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1601-1615, 2016.


Assuntos
Clorófitas/crescimento & desenvolvimento , Fluorometria , Clorófitas/metabolismo , Fluorescência , Método de Monte Carlo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo
16.
Plant Sci ; 250: 105-114, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27457988

RESUMO

Rice sheath blight disease, caused by the fungus Rhizoctonia solani, is considered the second most important disease of rice after blast. NPR1 (non expressor of PR1) is the central regulator of systemic acquired resistance (SAR) conferring broad spectrum resistance to various pathogens. Previous reports have indicated that constitutive expression of the Arabidopsis thaliana NPR1 (AtNPR1) gene results in disease resistance in rice but has a negative impact on growth and agronomic traits. Here, we report that green tissue-specific expression of AtNPR1 in rice confers resistance to the sheath blight pathogen, with no concomitant abnormalities in plant growth and yield parameters. Elevated levels of NPR1 activated the defence pathway in the transgenic plants by inducing expression of endogenous genes such as PR1b, RC24, and PR10A. Enhanced sheath blight resistance of the transgenic plants was evaluated using three different bioassay systems. A partially isolated toxin from R. solani was used in the bioassays to measure the resistance level. Studies of the phenotype and yield showed that the transgenic plants did not exhibit any kind of phenotypic imbalances. Our results demonstrate that green tissue-specific expression of AtNPR1 is an effective strategy for controlling the sheath blight pathogen. The present work in rice can be extended to other crop plants severely damaged by the pathogen.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Oryza/imunologia , Complexo de Proteína do Fotossistema II/genética , Doenças das Plantas/genética , Rhizoctonia/fisiologia , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Resistência à Doença , Especificidade de Órgãos , Oryza/genética , Oryza/metabolismo , Oryza/microbiologia , Complexo de Proteína do Fotossistema II/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Análise de Sequência de DNA
17.
Artigo em Inglês | MEDLINE | ID: mdl-26982211

RESUMO

The majority of the population in the Philippines relies on herbal products as their primary source for their healthcare needs. After the recognition of Vitex negundo L. (lagundi) as an important and effective alternative medicine for cough, sore throat, asthma and fever by the Philippine Department of Health (DOH), there was an increase in the production of lagundi-based herbal products in the form of teas, capsules and syrups. The efficiency of these products is greatly reliant on the use of authentic plant material, and to this day no standard protocol has been established to authenticate plant materials. DNA barcoding offers a quick and reliable species authentication tool, but its application to plant material has been less successful due to (1) lack of a standard DNA barcoding loci in plants and (2) poor DNA yield from powderised plant products. This study reports the successful application of DNA barcoding in the authentication of five V. negundo herbal products sold in the Philippines. Also, the first standard reference material (SRM) herbal library for the recognition of authentic V. negundo samples was established using 42 gene accessions of ITS, psbA-trnH and matK barcoding loci. Authentication of the herbal products utilised the SRM following the BLASTn and maximum-likelihood (ML) tree construction criterion. Barcode sequences were retrieved for ITS and psbA-trnH of all products tested and the results of the study revealed that only one out of five herbal products satisfied both BLASTn and ML criterion and was considered to contain authentic V. negundo. The results prompt the urgent need to utilise DNA barcoding in authenticating herbal products available in the Philippine market. Authentication of these products will secure consumer health by preventing the negative effects of adulteration, substitution and contamination.


Assuntos
Suplementos Nutricionais/análise , Contaminação de Alimentos/prevenção & controle , Inspeção de Alimentos/métodos , Biblioteca Gênica , Genes de Plantas , Preparações de Plantas/análise , Vitex/genética , Antiasmáticos/análise , Antiasmáticos/economia , Antiasmáticos/normas , Antipiréticos/análise , Antipiréticos/economia , Antipiréticos/normas , Antitussígenos/análise , Antitussígenos/economia , Antitussígenos/normas , Código de Barras de DNA Taxonômico , DNA Intergênico/metabolismo , Suplementos Nutricionais/economia , Suplementos Nutricionais/normas , Loci Gênicos , Filipinas , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Preparações de Plantas/economia , Preparações de Plantas/normas , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/genética , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Controle de Qualidade , Padrões de Referência , Chás de Ervas/análise , Chás de Ervas/normas , Vitex/crescimento & desenvolvimento , Vitex/metabolismo
18.
Plant Biol (Stuttg) ; 17(4): 870-6, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25565351

RESUMO

A decrease in photosynthetic efficiency may indicate the toxic effects of environmental pollutants on higher plants. Measurement of chlorophyll (Chl) a fluorescence to assess the performance of photosystem II (PSII) was used as an bioindicator of toxicity of the polycyclic aromatic hydrocarbon (PAH) anthracene (ANT) in soybean plants. The results revealed that ANT treatment caused a reduction in quantum yield of PSII, damage to the oxygen evolving complex, as well as a significant reduction in performance index of PSII. However, change in performance index was more prominent, and it seems that the performance index is a more sensitive parameter to environmental contaminants. Moreover, a change in heterogeneity of PSII was also observed. The number of active reaction centres decreased with increasing concentration of ANT, as secondary plastoquinone reducing centres were converted into non-reducing centres, and PSIIα centres were converted into PSIIß and PSIIγ centres. The influence of ANT on PSII heterogeneity could be an important reason for reductions in the PSII performance.


Assuntos
Antracenos/farmacologia , Glycine max/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Clorofila/metabolismo , Clorofila A , Fluorescência , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Glycine max/metabolismo
19.
Photosynth Res ; 125(1-2): 179-89, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25613087

RESUMO

In their natural environment, plants are exposed to varying light conditions, which can lead to a build-up of excitation energy in photosystem (PS) II. Non-photochemical quenching (NPQ) is the primary defence mechanism employed to dissipate this excess energy. Recently, we developed a fluorescence-quenching analysis procedure that enables the protective effectiveness of NPQ in intact Arabidopsis leaves to be determined. However, pulse-amplitude modulation measurements do not currently allow distinguishing between PSII and PSI fluorescence levels. Failure to account for PSI contribution is suggested to lead to inaccurate measurements of NPQ and, particularly, maximum PSII yield (F v/F m). Recently, Pfündel et al. (Photosynth Res 114:189-206, 2013) proposed a method that takes into account PSI contribution in the measurements of F o fluorescence level. However, when PSI contribution was assumed to be constant throughout the induction of NPQ, we observed lower values of the measured minimum fluorescence level ([Formula: see text]) than those calculated according to the formula of Oxborough and Baker (Photosynth Res 54:135-142 1997) ([Formula: see text]), regardless of the light intensity. Therefore, in this work, we propose a refined model to correct for the presence of PSI fluorescence, which takes into account the previously observed NPQ in PSI. This method efficiently resolves the discrepancies between measured and calculated F o' produced by assuming a constant PSI fluorescence contribution, whilst allowing for the correction of the maximum PSII yield.


Assuntos
Arabidopsis/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Arabidopsis/efeitos da radiação , Clorofila/metabolismo , Fluorescência , Luz , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema I/efeitos da radiação , Complexo de Proteína do Fotossistema II/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação
20.
New Phytol ; 205(2): 533-43, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25256155

RESUMO

With each cellular generation, oxygenic photoautotrophs must accumulate abundant protein complexes that mediate light capture, photosynthetic electron transport and carbon fixation. In addition to this net synthesis, oxygenic photoautotrophs must counter the light-dependent photoinactivation of Photosystem II (PSII), using metabolically expensive proteolysis, disassembly, resynthesis and re-assembly of protein subunits. We used growth rates, elemental analyses and protein quantitations to estimate the nitrogen (N) metabolism costs to both accumulate the photosynthetic system and to maintain PSII function in the diatom Thalassiosira pseudonana, growing at two pCO2 levels across a range of light levels. The photosynthetic system contains c. 15-25% of total cellular N. Under low growth light, N (re)cycling through PSII repair is only c. 1% of the cellular N assimilation rate. As growth light increases to inhibitory levels, N metabolite cycling through PSII repair increases to c. 14% of the cellular N assimilation rate. Cells growing under the assumed future 750 ppmv pCO2 show higher growth rates under optimal light, coinciding with a lowered N metabolic cost to maintain photosynthesis, but then suffer greater photoinhibition of growth under excess light, coincident with rising costs to maintain photosynthesis. We predict this quantitative trait response to light will vary across taxa.


Assuntos
Dióxido de Carbono/análise , Diatomáceas/metabolismo , Nitrogênio/metabolismo , Fotossíntese , Água do Mar/química , Mudança Climática , Monitoramento Ambiental , Previsões , Oceanos e Mares , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA