RESUMO
The treatment of cancer often leads to a range of adverse effects. Encapsulating drugs can mitigate these effects and enhance drug efficacy by enabling a controlled release at the site of interest. This study details the successful synthesis of zinc oxide nanoparticles (ZnONPs) through the precipitation of Zn(NO3)2·6H2O with KOH. A Pd(II) complex drug was synthesized from a Schiff base ligand derived from 2-hydroxybenzohydrazide and (E)-1-(2-(p-tolyl)hydrazono)propan-2-one using potassium tetrachloropalladate(II). This complex was subsequently incorporated into ZnONPs. Characterization of the resulting compounds was performed using Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), Zeta Potential, Fourier Transform Infrared (FTIR) Spectroscopy, and UV-visible spectroscopy. TEM imaging revealed particle sizes of 160.69 ± 4.74 nm for ZnONPs and 185.28 ± 2.3 nm for the Pd(II) complex-encapsulated ZnONPs. The Zeta potential values were 6.53 mV for ZnONPs and 7.36 mV for Pd(II) complex-encapsulated ZnONPs. UV-visible spectroscopy showed an absorption peak at 360 nm for ZnONPs, while the Pd(II) complex-encapsulated ZnONPs exhibited a peak at 410 nm. FTIR analysis indicated the presence of the Pd(II) complex within the ZnONPs, as evidenced by a consistent Zn-O vibrational band at 832 cm-1 and a shift in another peak from 460 to 413 cm-1. Additionally, the detection of a C = N stretching vibration at 1548 cm-1 and a carbonyl stretch at 1626 cm-1 was observed. The Encapsulation Efficiency (E.E.) of the Pd(II) complex was 97.2%. A drug release experiment conducted at pH 7 showed a steady-state release pattern after 16 h, with a cumulative release of 44.3%. The cytotoxic effects of the Pd(II) complex and its encapsulated form in ZnONPs on the MCF-7 cell line were assessed via MTT test. The Pd(II) complex encapsulated within ZnONPs exhibited decreased toxicity relative to the unencapsulated drug, as evidenced by a higher IC50 value of 418.5 µg/ml. This suggests that the encapsulation facilitates a sustained release, which allows for targeted accumulation within cells. The elevated IC50 value indicates that the drug delivery system may be engineered to modulate the release of the drug in a more controlled manner, potentially resulting in a prolonged release profile rather than an immediate therapeutic impact.
Assuntos
Antineoplásicos , Paládio , Óxido de Zinco , Paládio/química , Óxido de Zinco/química , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Células MCF-7 , Espectroscopia de Infravermelho com Transformada de Fourier , Tamanho da Partícula , Nanopartículas/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Nanopartículas Metálicas/química , Sobrevivência Celular/efeitos dos fármacos , Bases de Schiff/químicaRESUMO
A novel Schiff base ligand was synthesized by the Knoevenagel condensation of ß-diketone (obtained from substituted Curcumin and Cuminaldehyde) and 4-amino antipyrine. Metal complexes were made from this Schiff base by reacting with metal salts such as Cu(II), Ni(II), Ru(III), VO(IV), and Ce(IV). Physicochemical approaches such as UV-Vis, FT-IR, NMR, EPR, and Mass spectroscopy were used to determine the geometry of the complexes. The thermodynamic stability and biological accessibility of the complexes were investigated using density functional theory (DFT) calculations at the B3LYP/6-31G(d) level. A molecular docking analysis was also performed on 1BNA receptor. Both the Schiff base ligand and metal complexes interacted well to this protein receptor. All metal complexes have a significant potential to bind to CT DNA via the intercalation mechanism. All the in vivo and in vitro screening studies showed that the complexes exhibit higher activities than the free Schiff base.Communicated by Ramaswamy H. Sarma.
Assuntos
Complexos de Coordenação , Elementos de Transição , Complexos de Coordenação/química , Bases de Schiff/química , Espectroscopia de Infravermelho com Transformada de Fourier , Simulação de Acoplamento Molecular , Ligantes , Espectroscopia de Ressonância de Spin EletrônicaRESUMO
This paper demonstrates the metal ion effects on the quercetin 2,4-dioxygenase (2,4-QD)-like reactivity. For this purpose, a series of five metal(II)-acetato complexes [MII(L)(OAc)] {M = Mn (1OAc), Co (2OAc), Ni (3OAc), Cu (4OAc), Zn (5OAc); OAc = acetate} supported with a newly designed N3O-donor carboxylato ligand L- {L- = 2-((benzyl((6'-methyl-[2,2'-bipyridin]-6-yl)methyl)amino)methyl)benzoate} has been synthesised as models for the active sites of MII-substituted 2,4-QDs. The enzyme-substrate (ES) model complexes [MII(L)(fla)] {M = Mn (1fla), Co (2fla), Ni (3fla), Cu (4fla), Zn (5fla); flaH = flavonol} have been synthesised by reacting flaH with their corresponding acetate-bound complexes in basic conditions. Detailed physicochemical properties of all the compounds are reported. Furthermore, single-crystal X-ray diffractions have been done to determine the structures of the compounds 2OAc·2H2O, 3OAc, 4OAc·CH2Cl2·2H2O, 5OAc·2H2O and 2fla·MeOH. The enzymatic reactivities of complexes 1OAc-5OAc towards the dioxygenation of flavonol have been explored in detail. All the complexes effectively catalyse the oxygenative degradation of flavonol in N,N-dimethylformamide (DMF) medium at 70 °C under multiple-turnover conditions and produce enzyme-type products. Kinetic investigations were performed to see the metal ions' effects on reactivity. The reaction rates vary with the metal ions, showing the order Co > Ni > Zn > Mn > Cu. The studies reveal that the reactivities of the [MII(L)(OAc)] complexes are governed primarily by three factors viz the ES adduct formation constant (Kf), the redox potential (Epa) of the bound fla-/flaË couple, and the degree of delocalisation of the flaË radical with the metal electrons, which are drastically influenced by the M2+ ions. In the mechanistic interpretation, a single-electron transfer (SET) from the bound-flavonolate to dioxygen has been proposed to generate the catalytically important "M(II)-flaË" radical and superoxide ion, which react further to bring about the dioxygenation reaction. The identification of the metal(II)-bound flavonoxy radical intermediate for the case of cobalt using EPR spectroscopy and the detection of superoxide ion by NBT2+ test and EPR spin-trapping experiment (DMPO test) are remarkable in envisaging the reaction pathway.
Assuntos
Complexos de Coordenação , Dioxigenases , Dioxigenases/química , Quercetina , Complexos de Coordenação/química , Superóxidos , Modelos Moleculares , Metais , Catálise , Flavonóis/química , Zinco/química , AcetatosRESUMO
Glycoconjugation is a powerful tool to improve the anticancer activity of metal complexes. Herein, we modified commercial arylphosphanes with carbohydrate-derived fragments for the preparation of novel glycoconjugated ruthenium(II) p-cymene complexes. Specifically, d-galactal and d-allal-derived vinyl epoxides (VEß and VEα) were coupled with (2-hydroxyphenyl)diphenylphosphane, affording the 2,3-unsaturated glycophosphanes 1ß and 1α. Ligand exchange with [Ru(C2O4)(η6-p-cymene)(H2O)] gave the glycoconjugated complexes Ru1ß and Ru1α which were subsequently dihydroxylated with OsO4/N-methylmorpholine N-oxide to Ru2ß and Ru2α containing O-benzyl d-mannose and d-gulose units respectively. Besides, aminoethyl tetra-O-acetyl-ß-d-glucopyranoside was condensed with borane-protected (4-diphenylphosphanyl)benzoic acid by HATU/DIPEA under MW heating, to afford the amide 3âBH3. Zemplén deacylation with MeONa/MeOH gave the deprotected d-glucopyranoside derivative 4âBH3. The glycoconjugated phosphane complexes Ru3 and Ru4 were obtained by reaction of the phosphane-boranes 3âBH3 and 4âBH3 with [Ru(C2O4)(η6-p-cymene)(H2O)]. The employed synthetic strategies were devised to circumvent unwanted phosphine oxidation. The compounds were purified by silica chromatography, isolated in high yield and purity and characterized by analytical and spectroscopic (IR and multinuclear NMR) techniques. The behaviour of the six glycoconjugated Ru complexes in aqueous solutions was assessed by NMR and MS measurements. All compounds were screened for their in vitro cytotoxicity against A2780/A2780R human ovarian and MCF7 breast cancer cell lines, revealing a significant cytotoxicity for complexes containing the 2,3-unsaturated glycosyl unit (Ru1ß, Ru1α). Additional studies on five other human cancer cells, as well as time-dependent toxicity and cell-uptake analyses on ovarian cancer cells, confirmed the prominent activity of these two compounds - higher than cisplatin - and the better performance of the ß anomer. However, Ru1ß, Ru1α did not show preferential activity against cancer cells with respect to fetal lung fibroblast and human embryonic kidney cells as models of normal cells. The effects of the two ruthenium glycoconjugated compounds in A2780 ovarian cancer cells were further investigated by cell cycle analysis, induction of apoptosis, intracellular ROS production, activation of caspases 3/7 and disruption of mitochondrial membrane potential. The latter is a relevant factor in the mechanism of action of the highly cytotoxic Ru1ß, inducing cell death by apoptosis.
Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias Ovarianas , Rutênio , Antineoplásicos/química , Linhagem Celular Tumoral , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Feminino , Humanos , Ligantes , Fosfinas , Rutênio/química , Rutênio/farmacologiaRESUMO
We have assessed the molecular role of Rutin and rutin-Zn(II) complex on osteoblast differentiation and mineralization in human dental pulp cells and zebrafish model. The biocompatibility of the rutin-Zn(II) complex was determined using MTT and chick embryotoxicity assays. Alizarin red staining and ALP measurements were performed to study the osteogenic role of Rutin and rutin-Zn(II) complex at the cellular level in hDPSCs. At molecular level, following rutin and rutin-Zn(II) exposure, the mRNA expression profile of osteoblast markers such Runx2, type 1 col, OC, and ON were investigated. In addition to this, the expression of negative regulators of osteoblast development such Smad7, Smurf1, and HDAC7 waere studied by Real time RT-PCR analysis. The osteogenic role of prepared complex under in vivo was studied by an in-house zebrafish scale model followed by osteoblast differentiation markers expression profiling and Ca:P level measurement by ICP-MS. Rutin and the rutin-Zn(II) complex were found to be non-toxic till 10 µM and increased the expression of osteoblast differentiation marker genes. It also enhanced calcium deposition in both in vitro and in vivo models. Osteogenic property of rutin-Zn(II) in hDPSCs was found be mediated by Smad7, Smurf1, and HDAC7 and enhancing Runx2 expression. Our study warrants the possible use of rutin-Zn(II) as naïve agent or in combination with other bone scaffolding systems/materials for bone tissue engineering applications.
Assuntos
Diferenciação Celular/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Osteogênese/efeitos dos fármacos , Rutina/química , Zinco/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Polpa Dentária/citologia , Humanos , Osteocalcina/genética , Osteocalcina/metabolismo , Proteína Smad7/genética , Proteína Smad7/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Peixe-Zebra/metabolismoAssuntos
Anti-Infecciosos/farmacologia , Derivados de Benzeno/farmacologia , Complexos de Coordenação/química , DNA/química , Ferro/química , Níquel/química , Triazóis/farmacologia , Anti-Infecciosos/química , Bactérias/efeitos dos fármacos , Derivados de Benzeno/química , Cátions , Complexos de Coordenação/farmacologia , Estrutura Molecular , Triazóis/química , Leveduras/efeitos dos fármacosRESUMO
BACKGROUND: Mixed ligand-metal complexes are efficient chelating agents because of their flexible donor ability. Mixed ligand complexes containing hetero atoms sulphur, nitrogen and oxygen have been probed for their biological significance. METHODS: Nine mixed ligand-metal complexes of 2-(butan-2-ylidene) hydrazinecarbothioamide (2- butanone thiosemicarbazone) with pyridine, bipyridine and 2-picoline as co-ligands were synthesized with Cu, Co and Zn salts. The complexes were tested against MDA-MB231 (MDA) and A549 cell lines. Antibacterial activity was tested against Staphylococcus aureus and Escherichia coli. The drug character of the complexes was evaluated on parameters viz. physicochemical properties, bioactivity scores, toxicity assessment and Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) profile using various automated softwares. Molecular docking was performed against Ribonucleotide Reductase (RR) and topoisomerase II (topo II). RESULTS: The mixed ligand-metal complexes were synthesized by condensation reaction for 4-5 h. The characterization was done by elemental analysis, 1H-NMR, FT-IR, molar conductance and UV spectroscopic techniques. Molecular docking results showed that [Cu(C5H11N3S)(py)2(CH3COO)2], [Zn(C5H11N3S)(bpy)(SO4)] and [Zn(C5H11N3S)(2-pic)2(SO4)] displayed the lowest binding energies with respect to RR. Against topo II [Cu(C5H11N3S)(py)2(CH3COO)2], [Cu(C5H11N3S)(bpy)(CH3COO)2] and [Zn(C5H11N3S)(2-pic)2(SO4)] had the lowest energies. The druglikness assessment was done using Leadlikeness and Lipinski's rules. Not more than two violations were obtained in case of each filtering rule showing drug-like character of the mixed ligand complexes. Some of the complexes exhibited positive bioactivity scores and almost all the complexes were predicted to be safe with no hazardous effects as predicted by the toxicity assessment. Ames test predicted the non-mutagenic nature of the complexes. CONCLUSION: In vitro activity evaluation showed that [Zn(C5H11N3S)(py)2(SO4)], [Co(C5H11N3S(bpy) (Cl)2] and [Cu(C5H11N3S)(2-pic)2(CH3COO)2] were active against MDA. Against A549 [Co(C5H11N3S)(py)2(Cl)2], [Cu(C5H11N3S)(py)2(CH3COO)2] and [Co(C5H11N3S(bpy)(Cl)2] were active. Antibacterial evaluation showed that [Co(C5H11N3S)(bpy)(Cl)2], [Zn(C5H11N3S)(2-pic)2(SO4)] and [Cu(C5H11N3S)(2-pic)2(CH3COO)2] were active against S. aureus. Against E. coli, [Zn(C5H11N3S)(2- pic)2(SO4)] showed activity at 18-20 mg dose range.
Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Hidrazinas/farmacologia , Simulação de Acoplamento Molecular , Tioamidas/farmacologia , Células A549 , Antibacterianos/síntese química , Antibacterianos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Simulação por Computador , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Relação Dose-Resposta a Droga , Desenho de Fármacos , Humanos , Hidrazinas/síntese química , Hidrazinas/química , Ligantes , Testes de Sensibilidade Microbiana , Tioamidas/síntese química , Tioamidas/químicaRESUMO
The reaction of the Schiff base ligand o-OH-C6H4-CH=N-C(CH2OH)3, H4L, with Ni(O2CMe)2â4H2O and lanthanide nitrate salts in a 4 : 2 : 1 ratio lead to the formation of the trinuclear complexes [Ni2Ln(H3L)4(O2CMe)2](NO3) (Ln = Sm (1), Eu (2), Gd (3), Tb (4)). The complex cations contain the strictly linear NiII-LnIII-NiII moiety. The central LnIII ion is bridged to each of the terminal NiII ions through two deprotonated phenolato groups from two different ligands. Each terminal NiII ion is bound to two ligands in distorted octahedral N2O4 environment. The central lanthanide ion is coordinated to four phenolato oxygen atoms from the four ligands, and four carboxylato oxygen atoms from two acetates which are bound in the bidentate chelate mode. The lattice structure of complex 4 consists of two interpenetrating, supramolecular diamond like lattices formed through hydrogen bonds among neighboring trinuclear clusters. The magnetic properties of 1-4 were studied. For 3 the best fit of the magnetic susceptibility and isothermal M(H) data gave JNiGd = +0.42 cm-1, D = +2.95 cm-1 with gNi = gGd = 1.98. The ferromagnetic nature of the intramolecular Ni···Gd interaction revealed ground state of total spin S = 11/2. The magnetocaloric effect (MCE) parameters for 3 show that the change of the magnetic entropy (-ΔSm) reaches a maximum of 14.2 J kg-1 K-1 at 2 K. A brief literature survey of complexes containing the NiII-LnIII-NiII moiety is discussed in terms of their structural properties.
Assuntos
Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Lantânio/química , Campos Magnéticos , Níquel/química , Ligantes , Estrutura Molecular , Bases de Schiff/síntese química , Bases de Schiff/químicaRESUMO
A simple and selective 'turn-on' fluorescence sensor have been developed for the determination of xanthine (XA) based on glutathione (GSH) capped copper nanoclusters (CuNCs) as the fluorescent probe. The proposed sensor possess several advantages such as sensitivity, short analysis time and requires no sample pretreatment. The conditions for the performances of the sensor have been optimized and good linear relationship was obtained between concentration and relative fluorescence intensity in the concentration range 9.0[Formula: see text]10-3 M to 8.0[Formula: see text]10-5 M with a detection limit 6.0[Formula: see text]10-6 M. The mechanism behind the fluorescence enhancement may be ascribed to the binding of XA on the surface of GSH CuNCs. The sensor have been successfully applied to determine XA in spiked physiological samples.
Assuntos
Complexos de Coordenação/química , Cobre/química , Corantes Fluorescentes/química , Glutationa/química , Xantina/análise , Complexos de Coordenação/economia , Cobre/economia , Análise Custo-Benefício , Corantes Fluorescentes/economia , Glutationa/economia , Tamanho da Partícula , Espectrometria de Fluorescência/economia , Propriedades de Superfície , Xantina/economiaRESUMO
Ruthenium-based complexes currently attract great attention as they hold promise to replace platinum-based drugs as a first line cancer treatment. Whereas ruthenium arene complexes are some of the most studied species for their potential anticancer properties, other types of ruthenium complexes have been overlooked for this purpose. Here, we report the synthesis and characterization of Ru(II) cyclopentadienyl (Cp), Ru(II) cyclooctadienyl (COD) and Ru(III) complexes bearing anastrozole or letrozole ligands, third-generation aromatase inhibitors currently used for the treatment of estrogen receptor positive (ER +) breast cancer. Among these complexes, Ru(II)Cp 2 was the only one that displayed a high stability in DMSO and in cell culture media and consequently, the only complex for which the in vitro and in vivo biological activities were investigated. Unlike anastrozole alone, complex 2 was considerably cytotoxic in vitro (IC50 values < 1 µM) in human ER + breast cancer (T47D and MCF7), triple negative breast cancer (TNBC) (MBA-MB-231), and in adrenocortical carcinoma (H295R) cells. Theoretical (docking simulation) and experimental (aromatase catalytic activity) studies suggested that an interaction between 2 and the aromatase enzyme was not likely to occur and that the bulkiness of the PPh3 ligands could be an important factor preventing the complex to reach the active site of the enzyme. Exposure of zebrafish embryos to complex 2 at concentrations around its in vitro cytotoxicity IC50 value (0.1-1 µM) did not lead to noticeable signs of toxicity over 96 h, making it a suitable candidate for further in vivo investigations. This study confirms the potential of Ru(II)Cp complexes for breast cancer therapy, more specifically against TNBCs that are usually not responsive to currently used chemotherapeutic agents.
Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Complexos de Coordenação/farmacologia , Ciclopentanos/farmacologia , Rutênio/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Ciclopentanos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Rutênio/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Peixe-Zebra/embriologiaRESUMO
The two branched peptides (AAHAWG)4-PWT2 and (HAWG)4-PWT2 where synthesized by mounting linear peptides on a cyclam-based scaffold (PWT2), provided with four maleimide chains, through a thio-Michael reaction. The purpose of this study was primarily to verify if the two branched ligands had a Cu(II) coordination behavior reproducing that of the single-chain peptides, namely AAHAWG-NH2, which bears an Amino Terminal Cu(II)- and Ni(II)-Binding (ATCUN) Motif, and HAWG-NH2, which presents a His residue as the N-terminal amino acid, in a wide pH range. The study of Cu(II) binding was performed by potentiometric, spectroscopic (UV-vis absorption, CD, fluorescence) and ESI-MS techniques. ATCUN-type ligands ((AAHAWG)4-PWT2 and AAHAWG-NH2) were confirmed to bind one Cu(II) per peptide fragment at both pH 7.4 and pH 9.0, with a [NH2, 2N-, NIm] coordination mode. On the other hand, the ligand HAWG-NH2 forms a [CuL2]2+ species at neutral pH, while, at pH 9, the formation of 1:2 Cu(II):ligand adducts is prevented by amidic nitrogen deprotonation and coordination, to give rise solely to 1:1 species. Conversely, Cu(II) binding to (HAWG)4-PWT2 resulted in the formation of 1:2 copper:peptide chain also at pH 9: hence, through the latter branched peptide we obtained, at alkaline pH, the stabilization of a specific Cu(II) coordination mode which results unachievable using the corresponding single-chain peptide. This behavior could be explained in terms of high local peptide concentration on the basis of the speciation of the Cu(II)/single-chain peptide systems.
Assuntos
Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Cobre/química , Peptídeos/química , Peptídeos/síntese químicaRESUMO
A series of five compounds TpMesMFla (TpMes = hydrotris(3-mesityl)pyrazolylborate; M = Mn, Fe, Co, Ni, Zn; Fla = 3-hydroxyflavonolate) has been synthesized as models for the 2,4-quercetin dioxygenase, QueD. The structures have been determined and the complexes proved to be isomorphous. Considering the structures more closely revealed that they differ in the degree of delocalization in the chelate ring formed through the binding of the two O donors of the flavonolate to the metal center, which is also supported by the results of UV-vis and IR spectroscopic investigations. The resulting trend (Zn/Fe > Co > Mn > Ni) is, however, not in line with the one that was found investigating the redox properties of the complexes by cyclic voltammetry (Zn > Fe > Ni > Co > Mn). Notably, from CV clear-cut information could be derived, as the complexes exhibited exceptionally well-behaved quasi-reversible redox transitions, indicating that the Tp ligand stabilizes the flavonolate radical formed in the oxidation process rather well. The fact that the rates, with which the complexes react with O2 in DMF solution, correlate with the position of the flavonolate redox couples, suggest that these reactions proceed via the initial electron transfer from the flavonolate to O2. After the O2 reaction, salicylic acid was identified as one of the products, the formation of which can be explained by the hydrolysis of the depside that should form upon a dioxygenation similar to the QueD enzyme-catalyzed reaction. 18O labeling experiments confirmed the presence of O2 derived O atoms. Mechanistic inferences based on the above results are discussed.
Assuntos
Bactérias/enzimologia , Complexos de Coordenação/química , Dioxigenases/química , Flavonóis/química , Pirazóis/química , Bactérias/química , Materiais Biomiméticos/química , Boratos/química , Catálise , Cristalografia por Raios X , Ligantes , Modelos MolecularesRESUMO
The binding of small molecule metallodrugs to discrete regions of nucleic acids is an important branch of medicinal chemistry and the nature of these interactions, allied with sequence selectivity, forms part of the backbone of modern medicinal inorganic chemistry research. In this tutorial review we describe a range of molecular methods currently employed within our laboratories to explore novel metallodrug-DNA interactions. At the outset, an introduction to DNA from a structural perspective is provided along with descriptions of non-covalent DNA recognition focusing on intercalation, insertion, and phosphate binding. Molecular methods, described from a non-expert perspective, to identify non-covalent and pre-associative nucleic acid recognition are then demonstrated using a variety of techniques including direct (non-optical) and indirect (optical) methods. Direct methods include: X-ray crystallography; NMR spectroscopy; mass spectrometry; and viscosity while indirect approaches detail: competitive inhibition experiments; fluorescence and absorbance spectroscopy; circular dichroism; and electrophoresis-based techniques. For each method described we provide an overview of the technique, a detailed examination of results obtained and relevant follow-on of advanced biophysical/analytical techniques. To achieve this, a selection of relevant copper(ii) and platinum(ii) complexes developed within our laboratories are discussed and are compared, where possible, to classical DNA binding agents. Applying these molecular methods enables us to determine structure-activity factors important to rational metallodrug design. In many cases, combinations of molecular methods are required to comprehensively elucidate new metallodrug-DNA interactions and, from a drug discovery perspective, coupling this data with cellular responses helps to inform understanding of how metallodrug-DNA binding interactions manifest cytotoxic action.
Assuntos
Complexos de Coordenação/química , DNA/química , Substâncias Intercalantes/química , Fosfatos/química , Cobre/química , Desenho de Fármacos , Humanos , Modelos Moleculares , Estrutura Molecular , Platina/químicaRESUMO
A series of Pt(II) complexes trans-[Pt(PPh2 allyl)2 (κ1 -S-SR)2 ], 1, PPh2 allyl=allyldiphenylphosphine, SR=pyridine-2-thiol (Spy, 1 a), 5-(trifluoromethyl)-pyridine-2-thiol (SpyCF3 -5, 1 b), pyrimidine-2-thiol (SpyN, 1 c), benzothiazole-2-thiol (Sbt, 1 d), benzimidazole-2-thiol (Sbi, 1 e), were synthesized. They were characterized by NMR, HR ESI-MS, and X-ray crystallography. Treatment of human cancer cell lines (A549, SKOV3, MCF-7) with these complexes resulted in promising antitumor effects in comparison with cisplatin. These compounds showed suitable selectivity between tumorigenic and non-tumorigenic (MCF-10â A) cell lines. Analyses of cell cycle progression and apoptosis were conducted for 1 a, the most cytotoxic compound, to screen dose/time response and to study the antiproliferative mechanism. An electrophoresis mobility shift assay was performed to assess the direct interaction of 1 a with DNA and the strong genotoxic ability was indicated through the comet assay method.
Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Compostos Organoplatínicos/química , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , DNA/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Compostos Organoplatínicos/síntese química , Platina/química , Piridinas/química , Pirimidinas/química , Compostos de Sulfidrila/químicaRESUMO
We report a reparameterization of PM6 parameters for fluorine and chlorine using our training set containing transition metal complexes. Spin unrestricted calculations with the resulting rPM6 (UrPM6) were examined quantitatively using two test sets: (i) the description of magnetic interactions in 25 dinuclear metal complexes and (ii) the prediction of barrier heights and reaction energies for epoxidation and fluorination reactions catalyzed by high-valent manganese-oxo species. The conventional UPM6 and UPM7 methods were also evaluated for comparison on the basis of either experimental or computational (the UB3LYP/SVP level) outcomes. The merits of UrPM6 are highlighted by both the test sets. As regards magnetic exchange coupling constants, the UrPM6 method had the smallest mean absolute errors from the experimental data (19 cm-1), followed by UPM7 (119 cm-1) and UPM6 (373 cm-1). For the epoxidation and fluorination reactions, all of the transition state searches were successful using UrPM6, while the success rates obtained by UPM6 and UPM7 were only 50%. The UrPM6-optimized stationary points also agreed well with the reference UB3LYP-optimized geometries. The accuracy for estimating reaction energies was also greatly remedied.
Assuntos
Cloro/química , Complexos de Coordenação/química , Pesquisa Empírica , Flúor/química , Modelos Moleculares , Oxirredução , TermodinâmicaRESUMO
Five silver camphor complexes of formulae [Ag2(L)(L')2] (1,3,5) or [Ag(L)2(L')] (2,4) were synthesized from silver nitrate and the suitable camphor carboxylate (L1) or camphor carboxamides (L3, L4). The complexes were characterized by elemental analysis and spectroscopic techniques (NMR, FTIR, XPS). Computational calculations support coordination of the carboxylate group to silver, in the case of complex 2 and combined mixed keto/carboxylate in the case of complex 1. The stability of the complexes highly relies on the tetrahedral geometry of the lithium ion that binds to four oxygen atoms of the camphor carboxylate ligands. The redox properties of complexes 1 and 4 studied by cyclic voltammetry confirm the facile reduction of the metal sites that depending on the experimental conditions may lead to formation of silver nanoparticles as confirmed by XPS and TEM. Complexes 1, 2 and 4 were tested for cytotoxic activities against A2780 (IC50, 11-14⯵M) and A2780 cisplatin resistant (A2780cisR) (IC50, 4-7⯵M) cells using the MTT assay. The result showed that the complexes have anticancer activity higher than cisplatin. Complex 1 was also probed for cytotoxicity against the non-tumoral human embryonic kidney (HEK 293, IC50, 62.2⯱â¯16⯵M) cells showing low toxicity in agreement with the silver camphor carboxylate complexes having a considerable selectivity for the ovarian cancer cells A2780 and cisplatin resistant A2780cisR which is a key point under pharmacological uses.
Assuntos
Cânfora , Complexos de Coordenação , Citotoxinas , Neoplasias Ovarianas/tratamento farmacológico , Prata , Cânfora/análogos & derivados , Cânfora/química , Cânfora/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HEK293 , Humanos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Prata/química , Prata/farmacologiaRESUMO
In this report, a simple, label-free and highly efficient nucleic acid amplification technique is developed for ultrasensitive detection of single-nucleotide polymorphism (SNP). Briefly, a designed padlock probe is first circularized by a DNA ligase when it perfectly complements to a mutant gene. Then, the mutant gene functions as a primer to initiate branched rolling circle amplification reaction (BRCA), generating a large number of branched DNA strands and a lot of pyrophosphate molecules which is equivalent to the number of nucleotides consumed. With the addition of a terpyridine-Zn(II) complex, pyrophosphate molecules can be sensitively detected owing to the formation of a fluorescent terpyridine-Zn(II)-pyrophosphate complex. The fluorescence intensity is directly associated with the content of the mutant gene in a sample solution. On the other hand, the circulation of the padlock probe is prohibited when it hybridizes with the wild-type gene. In this assay, the accumulative nature of the BRCA process produces a detection limit of 0.1 pM and an excellent selectivity factor of 1000 toward SNP. As little as 0.1% mutant in the wild-type gene can be successfully detected. The simple procedure, high sensitivity, and high selectivity of this assay offer a potentially viable alternative for routine SNP analysis. Graphical abstract A simple and label-free fluorescence assay for SNP detection by coupling BRCA with selective fluorescence detection of pyrophosphate using the terpyridine-Zn(II) complex.
Assuntos
DNA/genética , Fluorometria/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Polimorfismo de Nucleotídeo Único , Complexos de Coordenação/química , DNA/análise , Difosfatos/análise , Fluorescência , Fluorometria/economia , Frequência do Gene , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico/economia , Piridinas/química , Zinco/químicaRESUMO
Zirconium-89 is a positron-emitting radionuclide of high interest for medical imaging applications with positron emission tomography (PET). For the introduction of this radiometal into biologically active targeting vectors, the chelating agent desferrioxamineâ B (DFO) is commonly applied. However, DFO is known to form 89 Zr complexes of limited inâ vivo stability. Herein we describe the rational design and chemical development of a new macrocyclic four-hydroxamate-bearing chelating agent-1,10,19,28-tetrahydroxy-1,5,10,14,19,23,28,32-octaazacyclohexatriacontan-2,6,11,15,20,24,29,33-octaone (CTH36)-for the stable complexation of Zr4+ . For this purpose, we first performed computational studies to determine the optimal chelator geometry before we developed different synthesis pathways toward the target structures. The best results were obtained using an efficient solution-phase-based synthesis strategy toward the target chelating agent. To enable efficient and chemoselective conjugation to biomolecules, a tetrazine-modified variant of CTH36 was also developed. The excellent conjugation characteristics of the so-functionalized chelator were demonstrated on the example of the model peptide TCO-c(RGDfK). We determined the optimal 89 Zr radiolabeling parameters for CTH36 as well as its bioconjugate, and found that 89 Zr radiolabeling proceeds efficiently under very mild reaction conditions. Finally, we performed comparative complex stability tests for 89 Zr-CHT36-c(RGDfK) and 89 Zr-DFO-c(RGDfK), showing improved complex stability for the newly developed chelator CTH36.
Assuntos
Quelantes/química , Complexos de Coordenação/química , Desenho de Fármacos , Ácidos Hidroxâmicos/química , Zircônio/química , Complexos de Coordenação/síntese química , Marcação por Isótopo , Espectroscopia de Ressonância Magnética , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/químicaRESUMO
New copper(II) complexes of 2-alkylthio-5-arylmethylene-4H-imidazolin-4-ones: (5Z)-2-(methylsulfanyl)-3-(prop-2-en-1-yl)-5-(pyridin-2-ylmethylidene)-3,5-dihydro-4H-imidazol-4-one) (1a), (5Z,5'Z)-2,2'-(ethan-1,2-diyldisulfanyldiyl)bis(5-(2-pyridilmethylen)-3-allyl-3,5-dihydo-4Ð-imidazole-4-one) (2a) and (5Z,5'Z)-3,3'-hexan-1,6-diylbis[5-(2-pyridilmethylen)-2-methylthiotetrahydro-4Ð-imidazole-4-one)] (3a) were synthesized as possible anticancer drugs. Their structures were characterized by 1H NMR spectroscopy, elemental analysis, and X-ray crystallography. The composition of the complexes were found for 1a (Cu:L=1:1), 2a (Cu:L=2:1), and 3a (Cu:L=2:1). The chelation constants were found by competitive complexation with ethylenediamine tetraacetate: 1a (6.7±0.6)×1015M-1, 2a=(4.9±0.4)×1019M-2, and 3a (5.7±0.5)×1019M-2. Supramolecular binding with calf thymus DNA by competitive ethidium bromide quenching was made for complex 2a as the most promising anticancer model, the Stern-Volmer constants were found to be KSV=(8.0±0.4)×106M-1, Kq=(6.5±0.4)×105M-1. The binding of the complex 2a to BSA was made by the Scatchard method, the value of the constant is Kb=(1.9±0.2)×106M-1.
Assuntos
Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Cobre/química , DNA/química , Soroalbumina Bovina/química , Tioidantoínas/química , Animais , BovinosRESUMO
The interaction between a ruthenium - based water soluble oxygen probe ([Ru(Phen)3]2+, phen - phenanthroline) and human serum albumin (HSA) was investigated with the aim of describing the influence of HSA on the [Ru(Phen)3]2+ luminescence properties. Nowadays, several oxygen sensitive luminescent probes are used to determine the oxygen level in different compartments of living organisms. However, they can interact, depending on their hydrophilic/hydrophobic characters, with various serum proteins, and/or lipids, during their utilization for invivo oxygen measurement. Since HSA is the most abundant serum protein in most biological organisms, its presence may affect the spectral properties of the employed probes and, consequently, the determination of the oxygen concentration. Having this in mind, we have applied several spectroscopic and calorimetric techniques to study [Ru(Phen)3]2+ - HSA mixtures. Only a negligible effect of HSA on the absorption and luminescence spectra of [Ru(Phen)3]2+ was observed. In addition, differential scanning calorimetric studies showed that [Ru(Phen)3]2+ does not significantly influence HSA thermal stability. Importantly, [Ru(Phen)3]2+ retained a reliable luminescence lifetime sensitivity to the oxygen concentration in solutions supplemented with HSA and in U87 MG cancer cells. Finally, the biodistribution of [Ru(Phen)3]2+ in the presence of serum proteins in the blood stream of chick embryo's chorioallantoic membrane (CAM) was investigated. Fast [Ru(Phen)3]2+ and similar extravasations were observed in the presence or absence of CAM-serum. We can conclude that HSA-[Ru(Phen)3]2+ complex interaction does not significantly influence the potential of [Ru(Phen)3]2+ to be a suitable candidate for a reliable oxygen probe in living organisms.