RESUMO
Pharmaceuticals and Personal Care Products (PPCPs) are inadvertently released into the aquatic environment, causing detrimental effects on aquatic ecosystem. There is an urgent need of an in-deep investigation on contamination information of PPCPs in aquatic environment as well as the ecological risks to the aquatic ecosystem. This study was carried out in Lipu River basin, China, to investigate the distribution pattern and ecological risks of PPCPs. Results showed that PPCPs pollution is ubiquitous, 29 out of 30 targeted PPCPs were detected in Lipu River. Fourteen PPCPs were detected with a frequency of 100% in all water samples, and ten PPCPs were detected with a frequency of more than 80%. The cumulated PPCPs concentrations ranged from 33.30 ng/L to 99.60 ng/L, with a median value of 47.20 ng/L in Lipu River. Caffeine, flumequine, nifedipine, and lomefloxacin were the predominant PPCPs in study area. Caffeine showed high ecological risk, five and seven individual PPCP showed medium and low ecological risk to algae.
Assuntos
Cosméticos , Monitoramento Ambiental , Rios , Poluentes Químicos da Água , China , Poluentes Químicos da Água/análise , Medição de Risco , Rios/química , Preparações Farmacêuticas/análise , Cosméticos/análiseRESUMO
Pharmaceuticals and personal care products (PPCPs) are a group of emerging contaminants causing detrimental effects on aquatic living organisms even at low doses. To investigate the contamination characteristics and ecological risks of PPCPs in drains flowing into the Yellow River of Ningxia, 21 PPCPs were detected and analyzed using solid phase extraction and ultra-high performance liquid chromatography-mass spectrometry in this study. All 21 targeted compounds were detected in the drains, with total concentrations ranging from 47.52 to 1 700.96 ng·L-1. Ciprofloxacin, acetaminophen, benzophenone-3, and diethyltoluamide were the more commonly detected compounds, with detection frequencies exceeding 80%. The five highest-concentration PPCPs were acetaminophen, diethyltoluamide, caffeine, benzophenone-3, and levofloxacin, with the maximum concentrations of 597.21, 563.23, 559.00, 477.28, and 473.07 ng·L-1, respectively. Spatial analysis showed that the pollution levels of PPCPs in the drains of the four cities were different, with average concentrations of ∑PPCPs in the order of Yinchuan>Shizuishan>Wuzhong>Zhongwei. The total concentration of PPCPs before flowing into the Yellow River ranged from 124.82 to 1 046.61 ng·L-1. Source analysis showed that livestock and poultry breeding wastewater was the primary source for sulfadiazine and oxytetracycline, whereas medical wastewater was the primary source for levofloxacin and ciprofloxacin. The primary sources of triclocarban and triclosan were domestic sewage and industrial wastewater, whereas the primary source of caffeine and diethyltoluamide was domestic sewage. The pollution of diciofenac, cimetidine, triclocarban, and triclosan in the drains was positively correlated with the regional population and economic development level. The ecological risk assessment indicated that levofloxacin, diclofenac, gemfibrozil, benzophenone-3, and triclocarban posed high risks to aquatic organisms in drains flowing into the Yellow River. It is worthwhile to consider the mixture risk of the PPCPs that exhibited high risk at most sampling sites.
Assuntos
Benzofenonas , Carbanilidas , Cosméticos , Triclosan , Poluentes Químicos da Água , Acetaminofen , Organismos Aquáticos , Cafeína/análise , Ciprofloxacina , Cosméticos/análise , Monitoramento Ambiental/métodos , Levofloxacino/análise , Preparações Farmacêuticas , Medição de Risco , Rios/química , Esgotos/análise , Águas Residuárias , Poluentes Químicos da Água/análiseRESUMO
The present work provides the first data on the occurrence of different classes of pharmaceuticals and personal care products (PPCPs) in surface marine sediments from an Arctic fjord (Kongsfjorden, Svalbard Islands, Norway). The target compounds included: ciprofloxacin; enrofloxacin; amoxicillin; erythromycin; sulfamethoxazole; carbamazepine; diclofenac; ibuprofen; acetylsalicylic acid; paracetamol; caffeine; triclosan; N,N-diethyl-meta-toluamide; 17ß-estradiol; 17α-ethinyl estradiol and estrone. Sampling was performed in the late summer, when high sedimentation rates occur, and over 5 years (2018-2022). Based on the environmental concentrations (MECs) found of emerging contaminants and the relative predicted no-effect concentrations (PNECs), an environmental risk assessment (ERA) for sediments was performed, including the estimation of the Risk Quotients (RQs) of selection and propagation of antimicrobial resistance (AMR) in this Arctic marine ecosystem. Sediments were extracted by Pressurized Liquid Extraction (PLE) and the extracts were purified by Solid Phase Extraction (SPE). Analytical determination was conducted with liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS). PPCPs were detected in the sediments along the fjord in all the years investigated, with overall concentrations similar in most cases to those reported in urbanized areas of the planet and ranging from a minimum of 6.85 ng/g for triclosan to a maximum of 684.5 ng/g for ciprofloxacin. This latter was the only antibiotic detected but was the most abundant compound (32 %) followed by antipyretics (16 %), hormones (14 %), anti-inflammatories (13 %), insect repellents (11 %), stimulants (9 %), and disinfectants (5 %). Highest concentrations of all PPCPs detected were found close to the Ny-Ålesund research village, where human activities and the lack of appropriate wastewater treatment technologies were recognized as primary causes of local contamination. Finally, due to the presence in the sediments of the PPCPs investigated, the ERA highlights a medium (0.1 < RQ < 1) to high risk (RQ > 1) for organisms living in this Arctic marine ecosystem, including high risk of the spread of AMR.
Assuntos
Cosméticos , Triclosan , Poluentes Químicos da Água , Humanos , Monitoramento Ambiental , Ecossistema , Svalbard , Triclosan/análise , Poluentes Químicos da Água/análise , Cosméticos/análise , Medição de Risco , Ciprofloxacina/análise , Preparações FarmacêuticasRESUMO
Toxic elements that pose a potential threat to human health are found as impurities in various cosmetic products. In this study, the inorganic profile of 19 elements (Li, B, Mg, Al, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Sb, Ba, Hg, and Pb) in 90 cosmetic products (lipsticks, lip glosses, lip pencils and eye shadows) were detected by inductively coupled plasma-mass spectrometry after microwave acid digestion method and hazard indices (HI) of 9 toxic elements (Pb, Cd, Cr, Ni, Co, As, Hg, Sb, and Al) were calculated for the assessment of theoretical health risk. Satisfactory method performance parameters were found for each analyte. The results were compared with the maximum permissible limits set by regulatory agencies; 38 of 41 lip products (92.68%) and all eye shadows (n = 49) exceeded the established limits. The HI was found to be ≥ 1 in 82.76% of lip products for oral exposure, whereas HI was ≤ 1 for dermal exposure in all lip products (n = 41) and only one eye shadow sample was ≥ 1 (2.04%). Remarkable results were also detected for 19 elements in this study, which conducted a comprehensive inorganic profiling for the first time. Wide-range concentrations of Mg, Al, Ba, Mn, Cu, Zn, and Sr elements were remarkable. HI values were firstly brought out in this study, although Al, as a well-known toxic element, has not been listed in regulations yet. In conclusion, it is obviously seen that continuous monitoring of cosmetics is crucial not only for toxic elements but also for other essential or non-toxic elements to prevent consumers from long-term exposure.
Assuntos
Cosméticos , Mercúrio , Oligoelementos , Humanos , Cádmio/análise , Chumbo/análise , Mercúrio/análise , Cosméticos/análise , Medição de Risco/métodos , Oligoelementos/análise , Monitoramento AmbientalRESUMO
Uco valley (Mendoza, Argentina) suffers the concomitant effect of climate change, anthropic pressure and water scarcity. Moreover chemical pollution to aquatic ecosystems could be another pressuring factor, but it was not studied enough to the present. In this sense, the aim of this study was to assess the occurrence of pesticides, pharmaceuticals and personal care products (PPCPs) in aquatic ecosystems of the Uco Valley and to perform an ecological risk assessment (ERA). The presence of several insecticides (mainly neonicotinoids), herbicides (atrazine, diuron, metolachlor, terbutryn) and fungicides (strobilurins, triazolic and benzimidazolic compounds) in water samples in two seasons, related to crops like vineyards, garlic or fruit trees was associated to medium and high-risk probabilities for aquatic biota. Moreover, PPCPs of the group of non-steroidal anti-inflammatory drugs, parabens and bisphenol A were detected in all the samples and their calculated risk quotients also indicated a high risk. This is the first record of pesticides and PPCPs with an ERA in this growing agricultural oasis. Despite the importance of these findings in Uco Valley for decision makers in the region, this multilevel approach could bring a wide variety of tools for similar regions in with similar productive and environmental conditions, in order to afford actions to reach Sustainable Development Goals. SYNOPSIS: Aquatic ecosystems in arid mountain regions are threatened worldwide. This study reports relevant data about chemical pollution in Central Andes, which could be a useful tool to enhance SDGs' accomplishment.
Assuntos
Cosméticos , Herbicidas , Praguicidas , Poluentes Químicos da Água , Praguicidas/análise , Ecossistema , Monitoramento Ambiental , Herbicidas/análise , Cosméticos/análise , Medição de Risco , Poluentes Químicos da Água/análise , Preparações FarmacêuticasRESUMO
The presence of pharmaceutical and personal care products (PPCPs) in domestic wastewater can potentially indicate socioeconomic status and disease burdens. However, current knowledge is limited to the correlation between specific pharmaceuticals and diseases. This study aims to explore the associations between socioeconomic status, disease burdens, and PPCP levels in domestic wastewater at a national level. Samples from 171 wastewater influents across China were used to measure PPCPs, and the per capita consumption of PPCPs was calculated. Results showed that the 31 targeted PPCPs were widely present in wastewater with varying occurrence characteristics. The mean consumption levels of different PPCPs varied greatly, ranging from 0.03 to 110723.15 µg/d/capita. While there were no significant regional differences in the overall pattern of PPCP consumption, 22 PPCPs showed regional variations between Northern China and Southern China. PPCPs with similar usage purposes exhibited similar distribution patterns. Disease burden (70.1%) was the main factor affecting most PPCP consumption compared to socioeconomic factors (26.4%). Through correlation analyses, specific types of PPCPs were identified that were highly associated with socioeconomic status and disease burdens, such as hypertension-bezafibrate, brucellosis-quinolones, sulfonamides, hepatitis-triclosan, triclocarban, socioeconomic development-fluoxetine, and people's living standards-gemfibrozil. Despite some uncertainties, this study provides valuable insights into the relationship between PPCPs in domestic wastewater and socioeconomic status and human health.
Assuntos
Cosméticos , Poluentes Químicos da Água , Humanos , Águas Residuárias , Poluentes Químicos da Água/análise , Cosméticos/análise , China , Classe Social , Efeitos Psicossociais da Doença , Preparações Farmacêuticas , Monitoramento AmbientalRESUMO
Heavy metal toxicity in environment has been an increasing issue for last decades, though now the attention has diverted to presence of heavy metals in cosmetic products. The aim of this study was to determine the concentration of selected heavy metals in cosmetic products (lipsticks and foundations) using ICP-OES. Health risk assessment was done by using hazard quotient (HQ) and hazard index (HI). HQ for lipsticks was below the safe limit (HQ = < 1) while for foundations it exceeded the safe limit (HQ = >1). Mostly, mercury (Hg) and iron (Fe) were found to be exceeding the permissible limit, the allowed limits are Hg, 1 ppm; Fe, 10 ppm; Cd, 0.3 ppm; and Cr, 1 ppm. Iron was found to be highest in lipsticks (123.86 ± 1.05 ppm) as well as in foundations (34.52 ± 0.08 ppm). Health risk assessment was done by using hazard quotient (HQ) and hazard index (HI). HQ for lipsticks was below the safe limit (HQ = < 1) while for foundations it exceeded the safe limit (HQ = >1). To understand the binding pattern of heavy metals to skin targets, molecular docking studies were carried out. This revealed the potentially harmful behavior of these heavy metals on the skin. This will provide new direction for the structural changes of consistence and activity of macromolecules in our body. Research proved that prolonged use of cosmetic products containing heavy metals can be harmful and sometimes fatal to human life as these heavy metals can penetrate through the skin and target the skin enzymes, disrupting their normal function leading to various skin related issues such as dermatitis (itching, redness, burning) hence the monitoring of cosmetic products is necessary for safety of human being.
Assuntos
Cosméticos , Mercúrio , Metais Pesados , Humanos , Simulação de Acoplamento Molecular , Monitoramento Ambiental , Metais Pesados/análise , Medição de Risco , Ferro , Cosméticos/análiseRESUMO
Hydroquinone, Mercury (Hg), and Arsenic (As) are hazardous to health upon long-term exposure. Hydroquinone, Hg, and As were analysed in skin-lightening cosmetics randomly purchased from different cosmetic outlets within the Ilorin metropolis, Nigeria. The amount of hydroquinone in the samples was determined using a UV-spectrophotometry method at 290 nm. Hg and As were quantified using atomic absorption spectrophotometry (AAS). UV-spectrophotometry method validation showed excellent linearity (r2 = 0.9993), with limits of detection (0.75 µg/mL), limits of quantification (2.28 µg/mL), relative standard deviation (0.01-0.35%), and recovery (95.85-103.56%) in the concentration range of 5-50 µg/mL. Similarly, r2, LOD, and LOQ for Hg and As were 0.9983 and 0.9991, (0.5 and 1.0 µg/L) and 1.65 and 3.3 µg/L) respectively. All the samples contained hydroquinone, Hg and As in varying amounts. The amounts of hydroquinone, Hg and As present were in the ranges of 1.9-3.3%, 0.08-2.52 µg/g and 0.07-5.30 µg/g respectively. Only three of the analysed samples contained hydroquinone within the permissible limit of 2.0% w/w in cosmetic products. All the samples analysed contained mercury and arsenic in varying amounts. The need to periodically monitor the levels of hydroquinone, mercury, and arsenic in skin-lightening cosmetics marketed in Nigeria is recommended.
Assuntos
Arsênio , Cosméticos , Mercúrio , Preparações Clareadoras de Pele , Mercúrio/análise , Arsênio/análise , Nigéria , Hidroquinonas , Cosméticos/análiseRESUMO
PPCPs (pharmaceuticals and personal care products) are widely found in the environment and can be a risk to human and ecosystem health. In this study, spatiotemporal distribution, critical risk source identification and potential risks of 14 PPCPs found in water collected from sampling points in Luoma Lake and its inflowing rivers in two seasons in 2019 and 2020 were investigated. The PPCPs concentrations ranged from 27.64 ng·L-1 to 613.08 ng·L-1 in December 2019, and from 16.67 ng·L-1 to 3287.41 ng·L-1 in April 2020. Ketoprofen (KPF) dominated the PPCPs with mean concentrations of 125.85 ng·L-1 and 640.26 ng·L-1, respectively. Analysis of sources showed that the pollution in Luoma Lake mostly originated from sewage treatment plant effluents, inflowing rivers and domestic wastewater. Among them, the inflowing rivers contributed the most (82.95%) to the concentration of total PPCPs. The results of ecological risk assessment showed that there was a moderate risk (0.1 < RQs < 1) from carbamazepine (CBZ) in December 2019 and a high risk (RQs > 1) from naproxen (NPX) in April 2020. The results of human risk assessment found that NPX posed a high risk to infant health, and we found that NPX was associated with 83 diseases according to Comparative Toxicogenomics Database. NPX was identified as a substance requiring major attention. The results provide an understanding of the concentrations and ecological risks of PPCPs in Luoma Lake. We believe the data will support environmental departments to develop management strategies and prevent PPCPs pollution.
Assuntos
Cosméticos , Poluentes Químicos da Água , Humanos , Água/análise , Lagos/análise , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Cosméticos/análise , Medição de Risco , Rios , Preparações Farmacêuticas , ChinaRESUMO
(1) The occurrence and accumulation of pharmaceuticals and personal care products in the environment are recognized scientific concerns. Many of these compounds are disposed of in an unchanged or metabolized form through sewage systems and wastewater treatment plants (WWTP). WWTP processes do not completely eliminate all active substances or their metabolites. Therefore, they systematically leach into the water system and are increasingly contaminating ground, surface, and drinking water, representing a health risk largely ignored by legislative bodies. Especially during the COVID-19 pandemic, a significantly larger amount of medicines and protective products were consumed. It is therefore likely that contamination of water sources has increased, and in the case of groundwater with a delayed effect. As a result, it is necessary to develop an accurate, rapid, and easily available method applicable to routine screening analyses of potable water to monitor and estimate their potential health risk. (2) A multi-residue UHPLC-MS/MS analytical method designed for the identification of 52 pharmaceutical products was developed and used to monitor their presence in drinking water. (3) The optimized method achieved good validation parameters, with recovery of 70-120% of most analytes and repeatability achieving results within 20%. In real samples of drinking water, at least one analyte above the limit of determination was detected in each of the 15 tap water and groundwater samples analyzed. (4) These findings highlight the need for legislation to address pharmaceutical contamination in the environment.
Assuntos
COVID-19 , Cosméticos , Água Potável , Poluentes Químicos da Água , Humanos , Água Potável/química , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Poluentes Químicos da Água/análise , Pandemias , Monitoramento Ambiental/métodos , COVID-19/epidemiologia , Cosméticos/análise , Preparações FarmacêuticasRESUMO
OBJECTIVE: The objective of this study was to evaluate some toxic levels of nail cosmetics marketed in Seoul, Korea and health risk assessment on humans. METHODS: We collected 45 random nail cosmetics and analysed for lead, cadmium, arsenic and antimony by inductively coupled plasma-optical emission spectrometry (ICP-OES). RESULTS: Four metals concentrations were Pb 0.037 ± 0.083 (Assuntos
Cosméticos
, Metais Pesados
, Humanos
, Cádmio/toxicidade
, Cádmio/análise
, Antimônio/análise
, Seul
, Chumbo/toxicidade
, Metais Pesados/toxicidade
, Metais Pesados/análise
, Cosméticos/análise
, Medição de Risco
RESUMO
Emerging contaminants and their pervasive presence in freshwater ecosystems have been widely documented, but less is known about their prevalence and the harm they cause in marine ecosystems, particularly in developing countries. This study provides data on the prevalence and risk posed by microplastics, plasticisers, pharmaceuticals and personal care products (PPCPs), and heavy metal(loid)s (HMs) along the Maharashtra coast of India. The sediment and coastal water samples were collected from 17 sampling stations, processed, and subjected to FTIR-ATR, ICP-MS, SEM-EDX, LC-MS/MS, and GC-MS for further analysis. Higher MPs abundance, combined with the pollution load index, indicates that the northern zone is a high-impact zone with pollution concerns. Plasticisers in extracted MPs and HMs adsorption on MPs surface from surrounding waters reveal their roles as a source and vector for contaminants, respectively. The mean concentration of metoprolol (53.7-306 ng L-1), tramadol (16.6-198 ng L-1), venlafaxine (24.6-234 ng L-1), and triclosan (211-433 ng L-1) in Maharashtra's coastal waters were several folds higher than in other water systems, raising major health concerns. The hazard quotient (HQ) scores revealed that >70 % of study sites pose a high to medium (1 > HQ > 0.1) ecological risk to fish, crustaceans and algae, indicating serious concern. Fish and crustaceans (35.3 % each) show a higher level of risk than algae (29.5 %). Metoprolol and venlafaxine could represent greater ecological risks than tramadol. Similarly, HQ suggests that bisphenol A has larger ecological risks than bisphenol S along the Maharashtra coast. To the best of our knowledge, this is the first in-depth investigation into emerging pollutants in Indian coastal regions. This information is crucial for better policy formulation and coastal management in India in general, and Maharashtra in particular.
Assuntos
Cosméticos , Metais Pesados , Tramadol , Poluentes Químicos da Água , Animais , Microplásticos/análise , Ecossistema , Água/análise , Plásticos/análise , Sedimentos Geológicos , Cromatografia Líquida , Metoprolol , Cloridrato de Venlafaxina , Poluentes Químicos da Água/análise , Índia , Espectrometria de Massas em Tandem , Metais Pesados/análise , Medição de Risco , Cosméticos/análise , Preparações Farmacêuticas , Monitoramento AmbientalRESUMO
Synthetic musks, as an alternative product of natural musks, are widely used in almost all fragrances of consumer products, such as perfumes, cosmetics and detergents. During the past few decades, the production of synthetic musks has been increasing year by year, subsequently followed by large concern about their adverse effects on ecosystems and human beings. Until now, several studies have reviewed the latest development of analytical methods of synthetic musks in biological samples and cosmetics products, while there is still lack of a systematic analysis of their global distribution in different environmental media. Thus, this review summarizes the occurrence of synthetic musks in the environment including biota around the world and explores their global distribution patterns. The results show that galaxolide (HHCB), tonalide (AHTN), musk xylene (MX) and musk ketone (MK) are generally the most frequently detected synthetic musks in different samples with HHCB and AHTN being predominant. Higher concentrations of HHCB and AHTN are normally found in western countries compared to Asian countries, indicating more consumptions of these musks in western countries. The persistence, bioaccumulation and toxicity (PBT) of synthetic musks (mainly for polycyclic musks and nitro musks) are also discussed. The risk quotients (RQs) of HHCB, AHTN, MX and MK in most waters and sediments are below 0.1, reflecting a low risk to aqueous and sediment-dwelling species. In some sites, e.g., close to STPs, high risks (RQs>1) are characterized. Currently, limited data are available for macrocyclic musks and alicyclic musks in terms of either occurrence or PBT properties. More studies with an expanded scope of chemical type, geographical distribution and (synergic) toxicological effects especially from a long-term point of view are needed.
Assuntos
Cosméticos , Perfumes , Poluentes Químicos da Água , Humanos , Ecossistema , Perfumes/toxicidade , Perfumes/análise , Cosméticos/toxicidade , Cosméticos/análise , Tetra-Hidronaftalenos/toxicidade , Tetra-Hidronaftalenos/análise , Xilenos/análise , Ácidos Graxos Monoinsaturados/toxicidade , Ácidos Graxos Monoinsaturados/análise , Benzopiranos/análise , Medição de Risco , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análiseRESUMO
Considering current water situation, reuse is an effective solution to meet water demand and reduce pressure on conventional water sources. However, pharmaceutical and personal care products (PPCPs) in effluents from wastewater treatment plants (WWTPs) decrease their quality and suitability. With the aim of identifying and monitoring both the influence of PPCPs and the suitability of effluents to be reused, this study proposes the development of a composite indicator (CI) related to PPCP presence in WWTPs, through the common weight multi-criteria decision analysis (MCDA)-data envelopment analysis (DEA) model. Obtaining a CI for PPCPs is a novel approach in the published literature, showing a new perspective in PPCP management and their influence in wastewater treatment. Furthermore, this study proposes an improvement on MCDA-DEA model which maintains the initial hierarchy obtained for the units analyzed. The development of CI is based on information about the technological, environmental, social, and biological issues of WWTPs. Results show that 4 of the 33 WWTPs analysed had the best CI values, meaning that their effluents have lower environmental impact. The development of a CI related to PPCPs in WWTPs suggests that further steps are needed to manage the WWTP effluents. Hence, the need to implement preventive measures in WWTPs has been shown, even though the removal of PPCPs is not yet part of European law. This work highlights the importance of considering PPCPs as priority pollutants in wastewater management and reuse frameworks, to guarantee low environmental impact and adapt wastewater reuse based on a circular economy approach. HIGHLIGHTS: Emerging contaminants (PPCPs) are used as effluent quality indicators. A composite indicator for PPCPs performance has been developed through MCDA-DEA model. Indicator obtained allow decision makers implementing concrete actions to assess effluent quality. Results show the improvement capacity of the effluents quality through PPCPs removing.
Assuntos
Cosméticos , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Cosméticos/análise , Técnicas de Apoio para a Decisão , Monitoramento Ambiental/métodos , Preparações Farmacêuticas , Águas Residuárias , Água , Poluentes Químicos da Água/análise , Purificação da ÁguaRESUMO
Phthalates are chemicals that are extensively used in the manufacturing of cosmetic products. The occurrence of phthalate esters in personal care products may pose adverse effects on consumers' health. In this work, a simple, fast and reliable GC-MS method was developed and validated for concurrent determination of phthalate esters in fragrances. Simple procedures were employed for sample preparation and clean up. The recoveries achieved were in the range of 94.9% to 105.6% with RSD ≤ 4.06. The detection limits were in the range of 0.0010 to 0.0021 µg/mL. The GC-MS method was utilized to investigate the occurrence of phthalate esters in different brands of perfumes sold in the Saudi Arabian market. Diethyl phthalate was detected in all analyzed samples, with a maximum concentration of 5766 µg/mL, and di (2-ethylhexyl) phthalate was detected in the majority of the analyzed samples (95%), with a mean concentration of 55.9 µg/mL and a highest concentration of 377.7 µg/mL. Additionally, the exposure to phthalate esters due to the consumption of perfumes was investigated among the adult Saudi population for the first time. It was found that the systemic exposure dose, measured at mean concentrations, ranged from 4.59 × 10-4 to 4.29 × 10-2 (mg/kg/day) and from 5.00 × 10-4 to 4.68 × 10-2 (mg/kg/day) for male and female users, respectively. Moreover, the non-carcinogenic risk of the investigated phthalate esters and the carcinogenic risk of DEHP were also evaluated. The non-carcinogenic risk values of the detected phthalate esters were greater than 100, which indicates that exposure to these phthalate esters is unlikely to produce non-carcinogenic health effects to consumers. However, at maximum DEHP concentrations, the carcinogenic risk values were 5.49 × 10-5 for male users and 5.98 × 10-5 for female users, which indicates the possibility of DEHP to pose a carcinogenic health effect if present at high levels. Regular monitoring of undeclared chemicals such as phthalate esters in personal care products marketed in Saudi Arabia is extremely important to ensure consumers' safety. To the best of the authors' knowledge, this is the first study to assess the health risk associated with consumption of perfumes in Saudi Arabia.
Assuntos
Cosméticos , Dietilexilftalato , Perfumes , Ácidos Ftálicos , Feminino , Masculino , Humanos , Cromatografia Gasosa-Espectrometria de Massas , Carcinógenos , Ésteres/análise , Odorantes , Arábia Saudita , Ácidos Ftálicos/análise , Cosméticos/análiseRESUMO
Global water scarcity is exacerbated by climate change, population growth, and water pollution. Over half of the world's population will be affected by water shortages for at least a month annually by 2050 due toa lack of clean water sources. Even though recycling wastewater helps meet the growing demand, new pollutants, including pharmaceuticals and personal care products (PPCPs), pose a health threat since conventional methods cannot remove them and their environmental monitoring regulations are yet in place. Therefore, the current review aims to investigate and propose eco-friendly technologies for removing PPCPs from wastewater and their implementation strategies for ecosystem safety. Findings indicated the absence of a single wastewater treatment technology that can remove all PPCPs in a single operation. Instead, biotechnological methods are one of the alternatives that can remove PPCPs from aquatic environments. In this context, community involvement and knowledge transfer are identified keys to clean water resources' long-term sustainability.
Assuntos
Cosméticos , Poluentes Químicos da Água , Águas Residuárias , Ecossistema , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Água , Cosméticos/análise , Preparações FarmacêuticasRESUMO
Pharmaceuticals and personal care products (PPCPs) are commonly seen emerging organic contaminants in aquatic environments. The transects for the occurrence and distribution of 24 PPCPs along the middle and lower reaches of the Yellow River (Henan section) were investigated in this study. All 24 targeted compounds were detected in surface water, with concentrations in the range from not detected (ND) to 527.4 ng/L. Among these PPCPs, caffeine is found to have the highest concentration and its detection frequency is 100%. The total PPCP concentration ranged from 136 ng/L to 916 ng/L (median, 319.5 ng/L). Spatial analysis showed that the pollution level of PPCPs in the trunk stream was lower than that in most tributaries in the middle and lower reaches of the Yellow River (Henan section). The ecotoxicological risk assessment indicated that norfloxacin, azithromycin, estrone, and triclosan posed high risks to aquatic organisms (RQ > 1), roxithromycin and oxytetracycline imposed moderate risks (0.1 ≤ RQ < 1), and the tributary Jindi River had the highest mixed risk (MRQ = 222).
Assuntos
Cosméticos , Preparações Farmacêuticas , Rios , Poluição Química da Água , Cosméticos/efeitos adversos , Cosméticos/análise , Preparações Farmacêuticas/análise , Medição de Risco , Rios/química , Poluição Química da Água/efeitos adversos , Poluição Química da Água/análiseRESUMO
The Bohai Bay as a typical semi-enclosed bay in northern China with poor water exchange capacity and significant coastal urbanization, is greatly influenced by land-based inputs and human activities. As a class of pseudo-persistent organic pollutants, the spatial and temporal distribution of Pharmaceuticals and Personal Care Products (PPCPs) is particularly important to the ecological environment, and it will be imperfect to assess the ecological risk of PPCPs for the lack of systematic investigation of their distribution in different season. 14 typical PPCPs were selected to analyze the spatial and temporal distribution in the Bohai Bay by combining online solid-phase extraction (SPE) and HPLC-MS/MS techniques in this study, and their ecological risks to aquatic organisms were assessed by risk quotients (RQs) and concentration addition (CA) model. It was found that PPCPs widely presented in the Bohai Bay with significant differences of spatial and seasonal distribution. The concentrations of ∑PPCPs were higher in autumn than in summer. The distribution of individual pollutants also showed significant seasonal differences. The high values were mainly distributed in estuaries and near-shore outfalls. Mariculture activities in the northern part of the Bohai Bay made a greater contribution to the input of PPCPs. Caffeine, florfenicol, enrofloxacin and norfloxacin were the main pollutants in the Bohai Bay, with detection frequencies exceeding 80 %. The ecological risk of PPCPs to algae was significantly higher than that to invertebrates and fish. CA model indicated that the potential mixture risk of total PPCPs was not negligible, with 34 % and 88 % of stations having mixture risk in summer and autumn, respectively. The temporary stagnation of productive life caused by Covid-19 weakened the input of PPCPs to the Bohai Bay, reducing the cumulative effects of the pollutants. This study was the first full-coverage investigation of PPCPs in the Bohai Bay for different seasons, providing an important basis for the ecological risk assessment and pollution prevention of PPCPs in the bay.
Assuntos
COVID-19 , Cosméticos , Poluentes Químicos da Água , Animais , Humanos , Estações do Ano , Monitoramento Ambiental/métodos , Baías , Poluentes Químicos da Água/análise , Espectrometria de Massas em Tandem , Cosméticos/análise , Medição de Risco , Preparações Farmacêuticas , ChinaRESUMO
In recent years, research on pharmaceuticals and personal care products (PPCPs) in the marine environment has attracted increasing attention worldwide. However, more work is needed to improve PPCPs detection methods, specifically for seawater environments. An analytical method based on stir bar sorptive extraction (SBSE) had been developed and fully optimized for the pretreatment and detection of ten widely used PPCPs that are commonly found in seawater samples. By optimizing several variables including the material of the stir bars, extraction temperature, extraction time, ionic strength, desorption solvent, and desorption time, the optimized method has achieved excellent results in the detection and quantification of target PPCPs with detection limits ranging from 0.03 to 1 ng/L. The distribution of target PPCPs at the mouth of Jiaozhou Bay was successfully determined by this method, and the concentrations and detection frequencies of PPCPs varied greatly from N.D. to 449.36 ng/L and from 9.1 % to 100 %, respectively. Moreover, the distributions of PPCPs were explained by the Lagrangian particle-tracking model, and the results showed that the Tuandao sewage treatment plant had the most significant impact on the study area. The environmental risk assessment results showed that several target PPCPs might pose risks to aquatic organisms. In particular, triclocarban should receive more attention and the risk quotients of the mixtures (MRQ) should not be ignored.
Assuntos
Cosméticos , Poluentes Químicos da Água , Baías , Poluentes Químicos da Água/análise , Esgotos , Cosméticos/análise , Medição de Risco , Solventes , Preparações FarmacêuticasRESUMO
Lakes, albeit ecosystems of vital importance, are insufficiently investigated with respect to the degradation of water quality due to the organic micropollutants load. As regards Greece, screening of lake waters is scarce and concerns a limited number of contaminants. However, understanding the occurrence of contaminants of emerging concern (CECs) and other micropollutants in lakes is essential to appraise their potential ecotoxicological effects. The aim of this study was to deploy a multiresidue screening approach based on liquid chromatography-high-resolution mass spectrometry (HRMS) to get a first snapshot for >470 target CECs, including pesticides, pharmaceuticals, personal care products (PPCPs), per- and polyfluoroalkyl substances (PFASs), as well as organophosphate flame retardants (OPFRs) in eighteen Greek lakes in Central, Northern and West Northern Greece. The omnipresent compounds were DEET (N,N-diethyl-meta-toluamide), caffeine and TCPP (tris (1-chloro-2-propyl) phosphate). Maximum concentrations varied among the different classes. DEET was detected at a maximum average concentration of >1000 ng/L in Lake Orestiada, while its mean concentration was estimated at 233 ng/L. The maximum total concentrations for pesticides, PPCPs, PFASs, and OPFRs were 5807, 2669, 33.1, and 1214 ng/L, respectively, indicating that Greek lakes are still threatened by the intense agricultural activity. Besides, HRMS enabled a non-target screening by exploiting the rich content of the full-scan raw data, allowing the 'discovery' of tentative candidates, such as surfactants, pharmaceuticals, and preservatives among others, without reference standards. The potential ecotoxicity was assessed by both the risk quotient method and ECOSAR (Ecological Structure Activity Relationships) revealing low risk for most of the compounds.