Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biomolecules ; 14(6)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38927105

RESUMO

Immunofluorescence with antibodies against phosphorylated forms of H2AX (γH2AX) is revolutionizing our understanding of repair and signaling of DNA double-strand breaks (DSBs). Unfortunately, the pattern of γH2AX foci depends upon a number of parameters (nature of stress, number of foci, radiation dose, repair time, cell cycle phase, gene mutations, etc…) whose one of the common points is chromatin condensation/decondensation. Here, we endeavored to demonstrate how chromatin conformation affects γH2AX foci pattern and influences immunofluorescence signal. DSBs induced in non-transformed human fibroblasts were analyzed by γH2AX immunofluorescence with sodium butyrate treatment of chromatin applied after the irradiation that decondenses chromatin but does not induce DNA breaks. Our data showed that the pattern of γH2AX foci may drastically change with the experimental protocols in terms of size and brightness. Notably, some γH2AX minifoci resulting from the dispersion of the main signal due to chromatin decondensation may bias the quantification of the number of DSBs. We proposed a model called "Christmas light models" to tentatively explain this diversity of γH2AX foci pattern that may also be considered for any DNA damage marker that relocalizes as nuclear foci.


Assuntos
Cromatina , Quebras de DNA de Cadeia Dupla , Imunofluorescência , Histonas , Histonas/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Humanos , Cromatina/metabolismo , Cinética , Núcleo Celular/metabolismo , Fibroblastos/metabolismo , Reparo do DNA
2.
Nat Genet ; 56(6): 1203-1212, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816647

RESUMO

Catalytic activity of the imitation switch (ISWI) family of remodelers is critical for nucleosomal organization and DNA binding of certain transcription factors, including the insulator protein CTCF. Here we define the contribution of individual subcomplexes by deriving a panel of isogenic mouse stem cell lines, each lacking one of six ISWI accessory subunits. Individual deletions of subunits of either CERF, RSF, ACF, WICH or NoRC subcomplexes only moderately affect the chromatin landscape, while removal of the NURF-specific subunit BPTF leads to a strong reduction in chromatin accessibility and SNF2H ATPase localization around CTCF sites. This affects adjacent nucleosome occupancy and CTCF binding. At a group of sites with reduced chromatin accessibility, CTCF binding persists but cohesin occupancy is reduced, resulting in decreased insulation. These results suggest that CTCF binding can be separated from its function as an insulator in nuclear organization and identify a specific role for NURF in mediating SNF2H localization and chromatin opening at bound CTCF sites.


Assuntos
Adenosina Trifosfatases , Fator de Ligação a CCCTC , Cromatina , Proteínas Repressoras , Fatores de Transcrição , Fator de Ligação a CCCTC/metabolismo , Fator de Ligação a CCCTC/genética , Animais , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Cromatina/metabolismo , Cromatina/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Ligação Proteica , Linhagem Celular , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Nucleossomos/metabolismo , Nucleossomos/genética , Subunidades Proteicas/metabolismo , Subunidades Proteicas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Sítios de Ligação
3.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674059

RESUMO

The oocyte competence of prepubertal females is lower compared to that of adults, mainly because they originate from small follicles. In adult females, the germinal vesicle (GV) and epidermal growth factor receptor (EGFR) have been associated with oocyte competence. This study aimed to analyze GV chromatin configuration and EGFR expression in prepubertal goat and sheep oocytes obtained from small (<3 mm) and large (≥3 mm) follicles and compare them with those from adults. GV chromatin was classified from diffuse to condensed as GV1, GVn, and GVc for goats and NSN, SN, and SNE for sheep. EGFR was quantified in cumulus cells (CCs) by Western blotting and in oocytes by immunofluorescence. Oocytes from prepubertal large follicles and adults exhibited highly condensed chromatin in goats (71% and 69% in GVc, respectively) and sheep (59% and 75% in SNE, respectively). In both species, EGFR expression in CCs and oocytes was higher in prepubertal large follicles than in small ones. In adult females, EGFR expression in oocytes was higher than in prepubertal large follicles. In conclusion, GV configuration and EGFR expression in CCs and oocytes were higher in the large than small follicles of prepubertal females.


Assuntos
Cromatina , Receptores ErbB , Cabras , Oócitos , Animais , Feminino , Cromatina/metabolismo , Células do Cúmulo/metabolismo , Receptores ErbB/metabolismo , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Ovinos
4.
Plant Commun ; 3(4): 100308, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35605196

RESUMO

Understanding how cis-regulatory elements facilitate gene expression is a key question in biology. Recent advances in single-cell genomics have led to the discovery of cell-specific chromatin landscapes that underlie transcription programs in animal models. However, the high equipment and reagent costs of commercial systems limit their applications for many laboratories. In this study, we developed a combinatorial index and dual PCR barcode strategy to profile the Arabidopsis thaliana root single-cell epigenome without any specialized equipment. We generated chromatin accessibility profiles for 13 576 root nuclei with an average of 12 784 unique Tn5 integrations per cell. Integration of the single-cell assay for transposase-accessible chromatin sequencing and RNA sequencing data sets enabled the identification of 24 cell clusters with unique transcription, chromatin, and cis-regulatory signatures. Comparison with single-cell data generated using the commercial microfluidic platform from 10X Genomics revealed that this low-cost combinatorial index method is capable of unbiased identification of cell-type-specific chromatin accessibility. We anticipate that, by removing cost, instrumentation, and other technical obstacles, this method will be a valuable tool for routine investigation of single-cell epigenomes and provide new insights into plant growth and development and plant interactions with the environment.


Assuntos
Arabidopsis , Epigenômica , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Núcleo Celular/genética , Cromatina/genética , Cromatina/metabolismo , Epigenômica/métodos , Sequências Reguladoras de Ácido Nucleico , Transposases/genética , Transposases/metabolismo
5.
Cell Rep ; 37(2): 109804, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34644563

RESUMO

Patients with activated phosphatidylinositol 3-kinase delta (PI3Kδ) syndrome (APDS) present with sinopulmonary infections, lymphadenopathy, and cytomegalvirus (CMV) and/or Epstein-Barr virus (EBV) viremia, yet why patients fail to clear certain chronic viral infections remains incompletely understood. Using patient samples and a mouse model (Pik3cdE1020K/+ mice), we demonstrate that, upon activation, Pik3cdE1020K/+ CD8+ T cells exhibit exaggerated features of effector populations both in vitro and after viral infection that are associated with increased Fas-mediated apoptosis due to sustained FoxO1 phosphorylation and Fasl derepression, enhanced mTORC1 and c-Myc signatures, metabolic perturbations, and an altered chromatin landscape. Conversely, Pik3cdE1020K/+ CD8+ cells fail to sustain expression of proteins critical for central memory, including TCF1. Strikingly, activated Pik3cdE1020K/+ CD8+ cells exhibit altered transcriptional and epigenetic circuits characterized by pronounced interleukin-2 (IL-2)/STAT5 signatures and heightened IL-2 responses that prevent differentiation to memory-like cells in IL-15. Our data position PI3Kδ as integrating multiple signaling nodes that promote CD8+ T cell effector differentiation, providing insight into phenotypes of patients with APDS.


Assuntos
Linfócitos T CD8-Positivos/enzimologia , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Memória Imunológica , Doenças da Imunodeficiência Primária/enzimologia , Transcrição Gênica , Viroses/enzimologia , Adolescente , Adulto , Animais , Apoptose , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Estudos de Casos e Controles , Criança , Cromatina/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/imunologia , Modelos Animais de Doenças , Ativação Enzimática , Proteína Ligante Fas/genética , Proteína Ligante Fas/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/imunologia , Transdução de Sinais , Viroses/genética , Viroses/imunologia
6.
Methods Mol Biol ; 2351: 229-248, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34382193

RESUMO

Chromosome conformation capture and its variants interrogate population-average chromatin structure at a higher resolution and throughput than microscopic methods. Capture Hi-C is a variant tailored for the simultaneous assessment of all interactions with thousands of specific bait sequences, so is particularly suited to genome-wide studies of promoter interactions with distal regulatory elements, such as enhancers. We present the principles and methods for Promoter Capture Hi-C (PCHi-C), from experimental design to data analysis.


Assuntos
Mapeamento Cromossômico/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Cromatina/genética , Cromatina/metabolismo , Cromossomos , Análise de Dados , Elementos Facilitadores Genéticos , Estudo de Associação Genômica Ampla
7.
Genes (Basel) ; 12(8)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34440398

RESUMO

During cell division, the duplication of the genome starts at multiple positions called replication origins. Origin firing requires the interaction of rate-limiting factors with potential origins during the S(ynthesis)-phase of the cell cycle. Origins fire as synchronous clusters which is proposed to be regulated by the intra-S checkpoint. By modelling the unchallenged, the checkpoint-inhibited and the checkpoint protein Chk1 over-expressed replication pattern of single DNA molecules from Xenopus sperm chromatin replicated in egg extracts, we demonstrate that the quantitative modelling of data requires: (1) a segmentation of the genome into regions of low and high probability of origin firing; (2) that regions with high probability of origin firing escape intra-S checkpoint regulation and (3) the variability of the rate of DNA synthesis close to replication forks is a necessary ingredient that should be taken in to account in order to describe the dynamic of replication origin firing. This model implies that the observed origin clustering emerges from the apparent synchrony of origin firing in regions with high probability of origin firing and challenge the assumption that the intra-S checkpoint is the main regulator of origin clustering.


Assuntos
Replicação do DNA , Óvulo/metabolismo , Origem de Replicação , Pontos de Checagem da Fase S do Ciclo Celular , Animais , Cromatina/metabolismo , DNA/metabolismo , Masculino , Método de Monte Carlo , Espermatozoides/metabolismo , Xenopus
8.
Phys Biol ; 18(4)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33871383

RESUMO

Chromatin loops inside the nucleus can be stable for a very long time, which remains poorly understood. Such a time is crucial for chromatin organization maintenance and stability. We explore here several physical scenarios, where loop maintenance is due to diffusing cross-linkers (cohesin stabilized by two CTCF molecules) that can bind and unbind at the base of chromatin loops. Using a Markov chain approach to coarse-grain the binding and unbinding, we consider that a stable loop disappears when the last cross-linker is unbound. We derive expressions for this last passage time that we use to quantify the loop stability for various parameters, such as the chemical rate constant or the number of cross-linkers. The present analysis suggests that the balance between binding and unbinding events regulates the number of cross-linkers in place, based on a positive feed-back mechanism that stabilizes the loop over long-time. To conclude, we found that short- and long-lasting stable loops can vary from minutes to the entire cell cycle lifetime, when the number of cross-linkers increases from 1 to 10. This result suggests that a large spectrum of loop time scales is expected with such a few numbers of cross-linkers per local binding sites.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cadeias de Markov , Ligação Proteica , Processos Estocásticos , Coesinas
9.
Circ Res ; 128(5): e84-e101, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33508947

RESUMO

RATIONALE: Mitral valve prolapse (MVP) is a common valvopathy that leads to mitral insufficiency, heart failure, and sudden death. Functional genomic studies in mitral valves are needed to better characterize MVP-associated variants and target genes. OBJECTIVE: To establish the chromatin accessibility profiles and assess functionality of variants and narrow down target genes at MVP loci. METHODS AND RESULTS: We mapped the open chromatin regions in nuclei from 11 human pathogenic and 7 nonpathogenic mitral valves by an assay for transposase-accessible chromatin with high-throughput sequencing. Open chromatin peaks were globally similar between pathogenic and nonpathogenic valves. Compared with the heart tissue and cardiac fibroblasts, we found that MV-specific assay for transposase-accessible chromatin with high-throughput sequencing peaks are enriched near genes involved in extracellular matrix organization, chondrocyte differentiation, and connective tissue development. One of the most enriched motifs in MV-specific open chromatin peaks was for the nuclear factor of activated T cells family of TFs (transcription factors) involved in valve endocardial and interstitial cell formation. We also found that MVP-associated variants were significantly enriched (P<0.05) in mitral valve open chromatin peaks. Integration of the assay for transposase-accessible chromatin with high-throughput sequencing data with risk loci, extensive functional annotation, and gene reporter assay suggest plausible causal variants for rs2641440 at the SMG6/SRR locus and rs6723013 at the IGFBP2/IGFBP5/TNS1 locus. CRISPR-Cas9 deletion of the sequence including rs6723013 in human fibroblasts correlated with increased expression only for TNS1. Circular chromatin conformation capture followed by high-throughput sequencing experiments provided evidence for several target genes, including SRR, HIC1, and DPH1 at the SMG6/SRR locus and further supported TNS1 as the most likely target gene on chromosome 2. CONCLUSIONS: Here, we describe unprecedented genome-wide open chromatin profiles from human pathogenic and nonpathogenic MVs and report specific gene regulation profiles, compared with the heart. We also report in vitro functional evidence for potential causal variants and target genes at MVP risk loci involving established and new biological mechanisms. Graphic Abstract: A graphic abstract is available for this article.


Assuntos
Cromatina/genética , Prolapso da Valva Mitral/genética , Valva Mitral/metabolismo , Polimorfismo de Nucleotídeo Único , Células Cultivadas , Cromatina/metabolismo , Fibroblastos/metabolismo , Humanos , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Prolapso da Valva Mitral/metabolismo , Telomerase/genética , Tensinas/genética , Transcriptoma
10.
Genome Res ; 30(7): 1040-1046, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32660981

RESUMO

Transcription is tightly regulated by cis-regulatory DNA elements where transcription factors (TFs) can bind. Thus, identification of TF binding sites (TFBSs) is key to understanding gene expression and whole regulatory networks within a cell. The standard approaches used for TFBS prediction, such as position weight matrices (PWMs) and chromatin immunoprecipitation followed by sequencing (ChIP-seq), are widely used but have their drawbacks, including high false-positive rates and limited antibody availability, respectively. Several computational footprinting algorithms have been developed to detect TFBSs by investigating chromatin accessibility patterns; however, these also have limitations. We have developed a footprinting method to predict TF footprints in active chromatin elements (TRACE) to improve the prediction of TFBS footprints. TRACE incorporates DNase-seq data and PWMs within a multivariate hidden Markov model (HMM) to detect footprint-like regions with matching motifs. TRACE is an unsupervised method that accurately annotates binding sites for specific TFs automatically with no requirement for pregenerated candidate binding sites or ChIP-seq training data. Compared with published footprinting algorithms, TRACE has the best overall performance with the distinct advantage of targeting multiple motifs in a single model.


Assuntos
Cromatina/metabolismo , Pegada de DNA/métodos , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo , Sítios de Ligação , Linhagem Celular , Desoxirribonucleases , Humanos , Células K562 , Cadeias de Markov , Motivos de Nucleotídeos
11.
Cell Rep ; 31(9): 107688, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32492433

RESUMO

Leukemia stem cells (LSCs) are believed to have more distinct vulnerabilities than the bulk acute myeloid leukemia (AML) cells, but their rarity and the lack of universal markers for their prospective isolation hamper their study. We report that genetically clonal induced pluripotent stem cells (iPSCs) derived from an AML patient and characterized by exceptionally high engraftment potential give rise, upon hematopoietic differentiation, to a phenotypic hierarchy. Through fate-tracking experiments, xenotransplantation, and single-cell transcriptomics, we identify a cell fraction (iLSC) that can be isolated prospectively by means of adherent in vitro growth that resides on the apex of this hierarchy and fulfills the hallmark features of LSCs. Through integrative genomic studies of the iLSC transcriptome and chromatin landscape, we derive an LSC gene signature that predicts patient survival and uncovers a dependency of LSCs, across AML genotypes, on the RUNX1 transcription factor. These findings can empower efforts to therapeutically target AML LSCs.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Leucemia Mieloide Aguda/patologia , Animais , Diferenciação Celular , Linhagem Celular , Cromatina/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/antagonistas & inibidores , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação da Expressão Gênica , Heterogeneidade Genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Cadeias de Markov , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fenótipo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , RNA-Seq , Análise de Célula Única
12.
Nat Chem Biol ; 16(6): 620-629, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32444835

RESUMO

In eukaryotes, chromatin remodeling and post-translational modifications (PTMs) shape the local chromatin landscape to establish permissive and repressive regions within the genome, orchestrating transcription, replication, and DNA repair in concert with other epigenetic mechanisms. Though cellular nutrient signaling encompasses a huge number of pathways, recent attention has turned to the hypothesis that the metabolic state of the cell is communicated to the genome through the type and concentration of metabolites in the nucleus that are cofactors for chromatin-modifying enzymes. Importantly, both epigenetic and metabolic dysregulation are hallmarks of a range of diseases, and this metabolism-chromatin axis may yield a well of new therapeutic targets. In this Perspective, we highlight emerging themes in the inter-regulation of the genome and metabolism via chromatin, including nonenzymatic histone modifications arising from chemically reactive metabolites, the expansion of PTM diversity from cofactor-promiscuous chromatin-modifying enzymes, and evidence for the existence and importance of subnucleocytoplasmic metabolite pools.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Cromatina/genética , Cromatina/metabolismo , Eucariotos/metabolismo , Redes e Vias Metabólicas , Processamento de Proteína Pós-Traducional/fisiologia , Dano ao DNA , Reparo do DNA , Enzimas/metabolismo , Epigênese Genética , Histonas/metabolismo , Humanos
13.
Nat Commun ; 11(1): 1173, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32127534

RESUMO

Chromatin interaction studies can reveal how the genome is organized into spatially confined sub-compartments in the nucleus. However, accurately identifying sub-compartments from chromatin interaction data remains a challenge in computational biology. Here, we present Sub-Compartment Identifier (SCI), an algorithm that uses graph embedding followed by unsupervised learning to predict sub-compartments using Hi-C chromatin interaction data. We find that the network topological centrality and clustering performance of SCI sub-compartment predictions are superior to those of hidden Markov model (HMM) sub-compartment predictions. Moreover, using orthogonal Chromatin Interaction Analysis by in-situ Paired-End Tag Sequencing (ChIA-PET) data, we confirmed that SCI sub-compartment prediction outperforms HMM. We show that SCI-predicted sub-compartments have distinct epigenetic marks, transcriptional activities, and transcription factor enrichment. Moreover, we present a deep neural network to predict sub-compartments using epigenome, replication timing, and sequence data. Our neural network predicts more accurate sub-compartment predictions when SCI-determined sub-compartments are used as labels for training.


Assuntos
Cromatina/genética , Gráficos por Computador , Genômica/métodos , Redes Neurais de Computação , Algoritmos , Cromatina/metabolismo , Análise por Conglomerados , Análise de Dados , Epigenoma , Expressão Gênica , Humanos , Células K562 , Cadeias de Markov , Reprodutibilidade dos Testes , Aprendizado de Máquina não Supervisionado
14.
Annu Rev Phys Chem ; 71: 101-119, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32017651

RESUMO

Chromatosomes are fundamental units of chromatin structure that are formed when a linker histone protein binds to a nucleosome. The positioning of the linker histone on the nucleosome influences the packing of chromatin. Recent simulations and experiments have shown that chromatosomes adopt an ensemble of structures that differ in the geometry of the linker histone-nucleosome interaction. In this article we review the application of Brownian, Monte Carlo, and molecular dynamics simulations to predict the structure of linker histone-nucleosome complexes, to study the binding mechanisms involved, and to predict how this binding affects chromatin fiber structure. These simulations have revealed the sensitivityof the chromatosome structure to variations in DNA and linker histone sequence, as well as to posttranslational modifications, thereby explaining the structural variability observed in experiments. We propose that a concerted application of experimental and computational approaches will reveal the determinants of chromatosome structural variability and how it impacts chromatin packing.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Animais , Galinhas , Cromatina/química , DNA/química , DNA/metabolismo , Histonas/química , Simulação de Dinâmica Molecular , Método de Monte Carlo , Nucleossomos/química
15.
Methods ; 170: 48-60, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31252062

RESUMO

Studies performed using Hi-C and other high-throughput whole-genome C-methods have demonstrated that 3D organization of eukaryotic genomes is functionally relevant. Unfortunately, ultra-deep sequencing of Hi-C libraries necessary to detect loop structures in large vertebrate genomes remains rather expensive. However, many studies are in fact aimed at determining the fine-scale 3D structure of comparatively small genomic regions up to several Mb in length. Such studies typically focus on the spatial structure of domains of coregulated genes, molecular mechanisms of loop formation, and interrogation of functional significance of GWAS-revealed polymorphisms. Therefore, a handful of molecular techniques based on Hi-C have been developed to address such issues. These techniques commonly rely on in-solution hybridization of Hi-C/3C-seq libraries with pools of biotinylated baits covering the region of interest, followed by deep sequencing of the enriched library. Here, we describe a new protocol of this kind, C-TALE (Chromatin TArget Ligation Enrichment). Preparation of hybridization probes from bacterial artificial chromosomes and an additional round of enrichment make C-TALE a cost-effective alternative to existing many-versus-all C-methods.


Assuntos
Mapeamento Cromossômico/métodos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Animais , Biotinilação , Linhagem Celular , Cromatina/química , Cromatina/genética , Cromatina/isolamento & purificação , Cromatina/metabolismo , Mapeamento Cromossômico/economia , Cromossomos Artificiais Bacterianos/genética , DNA/genética , DNA/isolamento & purificação , DNA/metabolismo , Biblioteca Gênica , Genômica/economia , Sequenciamento de Nucleotídeos em Larga Escala/economia , Humanos , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico/métodos
16.
Methods ; 170: 38-47, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31442560

RESUMO

Chromosome Conformation Capture (3C)-based technologies, such as Hi-C, have represented a significant breakthrough in investigating the structure and function of higher-order genome architecture. However, the mapping of global chromatin interactions remains challenging across many biological conditions due to high background noise and financial constraints, especially for small laboratories. Here, we describe the Bridge linker-Alul-Tn5 Hi-C (BAT Hi-C) method, which is a simple and efficient method for delineating chromatin conformational features of mouse embryonic stem (mES) cells and uncover DNA loops. This protocol combines Alul fragmentation and biotinylated linker-mediated proximity ligation to obtain kilobase (kb) resolution with a marked increase in the amount of unique read pairs. The protocol also includes chromatin isolation to reduce background noise and Tn5 tagmentation to cut down on preparation time. Importantly, with only one-third sequencing depth, our method revealed the same spectrum of chromatin contacts as in situ Hi-C. BAT Hi-C is an economical (i.e., approximately $40 for library preparation) and straightforward (total hands-on time of 3 days) tool that is ideal for the in-depth analysis of long-range chromatin looping events in a genome-wide fashion.


Assuntos
Cromatina/genética , Mapeamento Cromossômico/métodos , Genômica/métodos , Animais , Linhagem Celular , Núcleo Celular/genética , Cromatina/isolamento & purificação , Cromatina/metabolismo , Mapeamento Cromossômico/economia , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Células-Tronco Embrionárias , Biblioteca Gênica , Genômica/economia , Camundongos , Transposases/metabolismo
17.
Curr Protoc Cytom ; 91(1): e65, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31763788

RESUMO

The susceptibility of DNA in situ to denaturation is modulated by its interactions with histone and nonhistone proteins, as well as with other chromatin components related to the maintenance of the 3D nuclear structure. Measurement of DNA proclivity to denature by cytometry provides insight into chromatin structure and thus can be used to recognize cells in different phases of the cell cycle, including mitosis, quiescence (G0 ), and apoptosis, as well as to identify the effects of drugs that modify chromatin structure. Particularly useful is the method's ability to detect chromatin changes in sperm cells related to DNA fragmentation and infertility. This article presents a flow cytometric procedure for assessing DNA denaturation based on application of the metachromatic property of acridine orange (AO) to differentially stain single- versus double-stranded DNA. This approach circumvents limitations of biochemical methods of examining DNA denaturation, in particular the fact that the latter destroy higher orders of chromatin structure and that, being applied to bulk cell populations, they cannot detect heterogeneity of individual cells. Because the metachromatic properties of AO have also found application in other cytometric procedures, such as differential staining of RNA versus DNA and assessment of lysosomal proton pump including autophagy, to avert confusion between these approaches and the use of this dye in the DNA denaturation assay, these AO applications are briefly outlined in this unit as well. © 2019 by John Wiley & Sons, Inc. Basic Protocol: Differential staining of single- versus double-stranded DNA with acridine orange.


Assuntos
Cromatina/química , Marcadores Genéticos , Técnicas Genéticas , Instabilidade Genômica/genética , Desnaturação de Ácido Nucleico , Laranja de Acridina/química , Laranja de Acridina/farmacologia , Células Cultivadas , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA/análise , DNA/química , DNA/efeitos dos fármacos , DNA de Cadeia Simples/química , DNA de Cadeia Simples/efeitos dos fármacos , Citometria de Fluxo/métodos , Humanos , Conformação de Ácido Nucleico , Ligação Proteica
18.
Commun Biol ; 2: 248, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31286065

RESUMO

Comparative genomics sequence data is an important source of information for interpreting genomes. Genome-wide annotations based on this data have largely focused on univariate scores or binary elements of evolutionary constraint. Here we present a complementary whole genome annotation approach, ConsHMM, which applies a multivariate hidden Markov model to learn de novo 'conservation states' based on the combinatorial and spatial patterns of which species align to and match a reference genome in a multiple species DNA sequence alignment. We applied ConsHMM to a 100-way vertebrate sequence alignment to annotate the human genome at single nucleotide resolution into 100 conservation states. These states have distinct enrichments for other genomic information including gene annotations, chromatin states, repeat families, and bases prioritized by various variant prioritization scores. Constrained elements have distinct heritability partitioning enrichments depending on their conservation state assignment. ConsHMM conservation states are a resource for analyzing genomes and genetic variants.


Assuntos
Biologia Computacional/métodos , Genoma Humano , Genômica/métodos , Anotação de Sequência Molecular/métodos , Cromatina/metabolismo , Análise por Conglomerados , Epigenômica , Estudo de Associação Genômica Ampla , Humanos , Cadeias de Markov , Análise Multivariada , Nucleotídeos , Fenótipo , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes
19.
Sci Adv ; 5(4): eaav1472, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31001581

RESUMO

Obesity and its associated metabolic abnormalities have become a global emergency with considerable morbidity and mortality. Epidemiologic and animal model data suggest an epigenetic contribution to obesity. Nevertheless, the cellular and molecular mechanisms through which epigenetics contributes to the development of obesity remain to be elucidated. Suv420h1 and Suv420h2 are histone methyltransferases responsible for chromatin compaction and gene repression. Through in vivo, ex vivo, and in vitro studies, we found that Suv420h1 and Suv420h2 respond to environmental stimuli and regulate metabolism by down-regulating peroxisome proliferator-activated receptor gamma (PPAR-γ), a master transcriptional regulator of lipid storage and glucose metabolism. Accordingly, mice lacking Suv420h proteins activate PPAR-γ target genes in brown adipose tissue to increase mitochondria respiration, improve glucose tolerance, and reduce adipose tissue to fight obesity. We conclude that Suv420h proteins are key epigenetic regulators of PPAR-γ and the pathways controlling metabolism and weight balance in response to environmental stimuli.


Assuntos
Metabolismo Energético , Histona-Lisina N-Metiltransferase/metabolismo , PPAR gama/metabolismo , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Animais , Cromatina/metabolismo , Temperatura Baixa , Dieta Hiperlipídica , Regulação da Expressão Gênica , Teste de Tolerância a Glucose , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Obesidade/patologia , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
20.
EBioMedicine ; 43: 138-149, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31000418

RESUMO

BACKGROUND: Certain tumors rely heavily on their DNA repair capability to survive the DNA damage induced by chemotherapeutic agents. Therefore, it is important to monitor the dynamics of DNA repair in patient samples during the course of their treatment, in order to determine whether a particular drug regimen perturbs the DNA repair networks in cancer cells and provides therapeutic benefits. Quantitative measurement of proteins and/or their posttranslational modification(s) at DNA double strand breaks (DSBs) induced by laser microirradiation provides an applicable diagnostic approach to examine DNA repair and its dynamics. However, its use is restricted to adherent cell lines and not employed in suspension tumor cells that include the many hematological malignancies. METHODS: Here, we report the development of an assay to laser micro-irradiate and quantitatively measure DNA repair transactions at DSB sites in normal mononuclear cells and a variety of suspension leukemia and lymphoma cells including primary patient samples. FINDINGS: We show that global changes in the H3K27me3-ac switch modulated by inhibitors of Class I HDACs, EZH2 methyltransferase and (or) H3K27me3 demethylases do not reflect the dynamic changes in H3K27me3 that occur at double-strand break sites during DNA repair. INTERPRETATION: Results from our mechanistic studies and proof-of-principle data with patient samples together show the effectiveness of using the modified micro-laser-based assay to examine DNA repair directly in suspension cancer cells, and has important clinical implications by serving as a valuable tool to assess drug efficacies in hematological cancer cells that grow in suspension.


Assuntos
Células Sanguíneas/metabolismo , Células Sanguíneas/efeitos da radiação , Quebras de DNA de Cadeia Dupla , Epigênese Genética , Lasers , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Dano ao DNA/efeitos da radiação , Reparo do DNA , Histonas , Humanos , Terapia com Luz de Baixa Intensidade , Linfoma Difuso de Grandes Células B/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA