Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 359
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 333: 118496, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38936643

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Schinus terebinthifolia Raddi (Anacardiaceae), known as Brazilian pepper tree, stands out as a medicinal plant widely used in traditional medicine. The leaves are popularly used as anti-inflammatory agent and to relieve inflammatory conditions such as bronchitis, ulcers, and wounds, for example. AIM OF THE STUDY: The present study evaluated the acute toxicity, genotoxicity, and anti-inflammatory activity of S. terebinthifolia leaf lectin (SteLL) in mice (Mus musculus). MATERIALS AND METHODS: In the acute toxicity assay, the animals were treated intraperitoneally (i.p.) or orally (per os) with a single dose of 100 mg/kg. Genotoxicity was assessed by the comet and micronucleus assays. Carrageenan-induced peritonitis and paw edema models were used to evaluate the anti-inflammatory effects of SteLL (1, 5 and 10 mg/kg, i.p.). RESULTS: No animal died and no signs of intoxication or histopathological damage were observed in the acute toxicity assay. Genotoxic effect was not detected. In peritonitis assay, SteLL reduced in 56-69% leukocyte migration to the peritoneal cavity; neutrophil count decreased by 25-32%, while mononuclear cell count increased by 67-74%. SteLL promoted a notable reduction of paw edema after 4 h (61.1-63.4%). Morphometric analysis showed that SteLL also decreased the thickness of epidermal edema (30.2-40.7%). Furthermore, SteLL decreased MPO activity, plasma leakage, NO release, and modulated cytokines in both peritoneal fluid and paw homogenate. CONCLUSION: SteLL did not induce acute toxicity or genotoxicity in mice and stands out as a promising candidate in the development of new phytopharmaceuticals with anti-inflammatory action.


Assuntos
Anacardiaceae , Anti-Inflamatórios , Edema , Extratos Vegetais , Folhas de Planta , Animais , Anacardiaceae/química , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , Masculino , Edema/tratamento farmacológico , Edema/induzido quimicamente , Extratos Vegetais/farmacologia , Lectinas de Plantas/farmacologia , Lectinas de Plantas/isolamento & purificação , Testes de Toxicidade Aguda , Peritonite/tratamento farmacológico , Peritonite/induzido quimicamente , Testes para Micronúcleos , Feminino , Carragenina , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Schinus
2.
BMC Vet Res ; 20(1): 262, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890656

RESUMO

BACKGROUND: In recent years, anthropogenic activities have released heavy metals and polluted the aquatic environment. This study investigated the ability of the silica-stabilized magnetite (Si-M) nanocomposite materials to dispose of lead nitrate (Pb(NO3)2) toxicity in Nile tilapia and African catfish. RESULTS: Preliminary toxicity tests were conducted and determined the median lethal concentration (LC50) of lead nitrate (Pb(NO3)2) to Nile tilapia and African catfish to be 5 mg/l. The sublethal concentration, equivalent to 1/20 of the 96-hour LC50 Pb(NO3)2, was selected for our experiment. Fish of each species were divided into four duplicated groups. The first group served as the control negative group, while the second group (Pb group) was exposed to 0.25 mg/l Pb(NO3)2 (1/20 of the 96-hour LC50). The third group (Si-MNPs) was exposed to silica-stabilized magnetite nanoparticles at a concentration of 1 mg/l, and the fourth group (Pb + Si-MNPs) was exposed simultaneously to Pb(NO3)2 and Si-MNPs at the same concentrations as the second and third groups. Throughout the experimental period, no mortalities or abnormal clinical observations were recorded in any of the treated groups, except for melanosis and abnormal nervous behavior observed in some fish in the Pb group. After three weeks of sublethal exposure, we analyzed hepatorenal indices, oxidative stress parameters, and genotoxicity. Values of alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), urea, and creatinine were significantly higher in the Pb-intoxicated groups compared to the control and Pb + Si-MNPs groups in both fish species. Oxidative stress parameters showed a significant decrease in reduced glutathione (GSH) concentration, along with a significant increase in malondialdehyde (MDA) and protein carbonyl content (PCC) concentrations, as well as DNA fragmentation percentage in the Pb group. However, these values were nearly restored to control levels in the Pb + Si-MNPs groups. High lead accumulation was observed in the liver and gills of the Pb group, with the least accumulation in the muscles of tilapia and catfish in the Pb + Si-MNPs group. Histopathological analysis of tissue samples from Pb-exposed groups of tilapia and catfish revealed brain vacuolation, gill fusion, hyperplasia, and marked hepatocellular and renal necrosis, contrasting with Pb + Si-MNP group, which appeared to have an apparently normal tissue structure. CONCLUSIONS: Our results demonstrate that Si-MNPs are safe and effective aqueous additives in reducing the toxic effects of Pb (NO3)2 on fish tissue through the lead-chelating ability of Si-MNPs in water before being absorbed by fish.


Assuntos
Peixes-Gato , Ciclídeos , Chumbo , Fígado , Nitratos , Estresse Oxidativo , Dióxido de Silício , Poluentes Químicos da Água , Animais , Chumbo/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Dióxido de Silício/química , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Poluentes Químicos da Água/toxicidade , Nanocompostos/química , Nanocompostos/toxicidade , Quelantes/farmacologia , Rim/efeitos dos fármacos , Rim/patologia , Bioacumulação , Brânquias/efeitos dos fármacos , Brânquias/patologia , Dano ao DNA/efeitos dos fármacos
3.
Environ Mol Mutagen ; 65(3-4): 129-136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38717101

RESUMO

Chronic exposure to high (20,000 ppm) concentrations of tert-butyl alcohol (TBA) in drinking water, equivalent to ~2100 mg/kg bodyweight per day, is associated with slight increases in the incidence of thyroid follicular cell adenomas and carcinomas in mice, with no other indications of carcinogenicity. In a recent toxicological review of TBA, the U.S. EPA determined that the genotoxic potential of TBA was inconclusive, largely based on non-standard studies such as in vitro comet assays. As such, the potential role of genotoxicity in the mode of action of thyroid tumors and therefore human relevance was considered uncertain. To address the potential role of genotoxicity in TBA-associated thyroid tumor formation, CD-1 mice were exposed up to a maximum tolerated dose of 1500 mg/kg-day via oral gavage for two consecutive days and DNA damage was assessed with the comet assay in the thyroid. Blood TBA levels were analyzed by headspace GC-MS to confirm systemic tissue exposure. At study termination, no significant increases (DNA breakage) or decreases (DNA crosslinks) in %DNA tail were observed in TBA exposed mice. In contrast, oral gavage of the positive control ethyl methanesulfonate significantly increased %DNA tail in the thyroid. These findings are consistent with most genotoxicity studies on TBA and provide mechanistic support for non-linear, threshold toxicity criteria for TBA. While the mode of action for the thyroid tumors remains unclear, linear low dose extrapolation methods for TBA appear more a matter of policy than science.


Assuntos
Ensaio Cometa , Dano ao DNA , Glândula Tireoide , terc-Butil Álcool , Animais , Ensaio Cometa/métodos , Camundongos , terc-Butil Álcool/toxicidade , Dano ao DNA/efeitos dos fármacos , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/induzido quimicamente , Neoplasias da Glândula Tireoide/patologia , Mutagênicos/toxicidade , Masculino , Feminino
4.
Artigo em Inglês | MEDLINE | ID: mdl-38821670

RESUMO

Human epidemiological studies with biomarkers of effect play an invaluable role in identifying health effects with chemical exposures and in disease prevention. Effect biomarkers that measure genetic damage are potent tools to address the carcinogenic and/or mutagenic potential of chemical exposures, increasing confidence in regulatory risk assessment decision-making processes. The micronucleus (MN) test is recognized as one of the most successful and reliable assays to assess genotoxic events, which are associated with exposures that may cause cancer. To move towards the next generation risk assessment is crucial to establish bridges between standard approaches, new approach methodologies (NAMs) and tools for increase the mechanistically-based biological plausibility in human studies, such as the adverse outcome pathways (AOPs) framework. This paper aims to highlight the still active role of MN as biomarker of effect in the evolution and applicability of new methods and approaches in human risk assessment, with the positive consequence, that the new methods provide a deeper knowledge of the mechanistically-based biology of these endpoints.


Assuntos
Biomarcadores , Testes para Micronúcleos , Humanos , Medição de Risco/métodos , Testes para Micronúcleos/métodos , Dano ao DNA/efeitos dos fármacos , Mutagênicos/toxicidade , Animais
5.
Toxicol Ind Health ; 40(6): 337-351, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38597775

RESUMO

Gasoline station attendants are exposed to numerous chemicals that might have genotoxic and carcinogenic potential, such as benzene in fuel vapor and particulate matter and polycyclic aromatic hydrocarbons in vehicle exhaust emission. According to IARC, benzene and diesel particulates are Group 1 human carcinogens, and gasoline has been classified as Group 2A "possibly carcinogenic to humans." At gas stations, self-service is not implemented in Turkey; fuel-filling service is provided entirely by employees, and therefore they are exposed to those chemicals in the workplace during all working hours. Genetic monitoring of workers with occupational exposure to possible genotoxic agents allows early detection of cancer. We aimed to investigate the genotoxic damage due to exposures in gasoline station attendants in Turkey. Genotoxicity was evaluated by the Comet, chromosomal aberration, and cytokinesis-block micronucleus assays in peripheral blood lymphocytes. Gasoline station attendants (n = 53) had higher tail length, tail intensity, and tail moment values than controls (n = 61). In gasoline station attendants (n = 46), the frequencies of chromatid gaps, chromosome gaps, and total aberrations were higher compared with controls (n = 59). Increased frequencies of micronuclei and nucleoplasmic bridges were determined in gasoline station attendants (n = 47) compared with controls (n = 40). Factors such as age, duration of working, and smoking did not have any significant impact on genotoxic endpoints. Only exposure increased genotoxic damage in gasoline station attendants independently from demographic and clinical characteristics. Occupational exposure-related genotoxicity risk may increase in gasoline station attendants who are chronically exposed to gasoline and various chemicals in vehicle exhaust emissions.


Assuntos
Aberrações Cromossômicas , Dano ao DNA , Gasolina , Testes para Micronúcleos , Exposição Ocupacional , Humanos , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Gasolina/toxicidade , Adulto , Masculino , Turquia , Aberrações Cromossômicas/induzido quimicamente , Dano ao DNA/efeitos dos fármacos , Pessoa de Meia-Idade , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/toxicidade , Ensaio Cometa , Biomarcadores , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Linfócitos/efeitos dos fármacos , Feminino , Mutagênicos/toxicidade , Benzeno/toxicidade , Benzeno/análise
6.
J Ethnopharmacol ; 330: 118206, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38636572

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Croton argyrophyllus Kunth., commonly known as "marmeleiro" or "cassetinga," is widely distributed in the Brazilian Northeast region. Its leaves and flowers are used in traditional medicine as tranquilizers to treat flu and headaches. AIM OF THE STUDY: This study was conducted to determine the chemical composition and toxicological safety of essential oil from C. argyrophyllus leaves using in vitro and in vivo models. MATERIALS AND METHODS: The chemical composition of the essential oil was determined using a gas chromatograph coupled to a mass spectrometer. Cytotoxicity was tested in the HeLa, HT-29, and MCF-7 cell lines derived from human cells (Homo sapiens) and Vero cell lines derived from monkeys (Cercopithecus aethiops) using the MTT method. Acute toxicity, genotoxicity. Mutagenicity tests were performed in Swiss mice (Mus musculus), which were administered essential oil orally in a single dose of 2000 mg/kg by gavage. RESULTS: The main components of the essential oil were p-mentha-2-en-1-ol, α-terpineol, ß-caryophyllene, and ß-elemene. The essential oil exhibited more than 90% cytotoxicity in all cell lines tested. No deaths or behavioral, hematological, or biochemical changes were observed in mice, revealing no acute toxicity. In genotoxic and mutagenic analyses, there was no increase in micronuclei in polychromatic erythrocytes or in the damage and index in the comet assay. CONCLUSIONS: The essential oil was cytotoxic towards the tested cell lines but did not exert toxic effects or promote DNA damage when administered orally at a single dose of 2000 mg/kg in mice.


Assuntos
Croton , Óleos Voláteis , Folhas de Planta , Animais , Croton/química , Óleos Voláteis/toxicidade , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Humanos , Chlorocebus aethiops , Camundongos , Células Vero , Testes de Mutagenicidade , Administração Oral , Células HeLa , Células HT29 , Células MCF-7 , Masculino , Feminino , Sobrevivência Celular/efeitos dos fármacos , Testes de Toxicidade Aguda , Dano ao DNA/efeitos dos fármacos
7.
Toxicol Mech Methods ; 34(5): 584-595, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38347751

RESUMO

High Fructose Corn Syrup (HFCS) and Fructose (FR) are widely used sweeteners in many foods and beverages. This study aimed at investigating the cytotoxic effects of HFCS (5%-30%) and FR (62.5-2000 µg/mL) using MTT assay in Human Hepatocellular Carcinoma (HepG2) cells, and genotoxic effects of using Chromosome Aberrations (CAs), Sister Chromatid Exchanges (SCEs), Micronuclei (MN) and comet assays in human lymphocytes. HFCS significantly reduced the cell viability in HepG2 cells at between 7.5% and 30% for 24 and 48 h. 30% HFCS caused a very significant toxic effect. FR had a cytotoxic effect in HepG2 cells at all treatments. However, as fructose concentration decreased, the cell viability decreased. HFCS (10%-20%) and FR (250-2000 µg/mL) decreased the mitotic index at higher concentrations. IC50 value was found to be a 15% for 48 h. IC50 value of FR was detected as 62.5 µg/mL for 24 h and 48 h. HFCS significantly increased CAs frequency at 15% and 20%. FR significantly increased the frequency of CAs at 250, 1000, and 2000 µg/mL for 48 h. Both sweeteners increased the frequency of SCEs at all concentrations. HFCS (15% and 20%) and FR (250, 1000, and 2000 µg/mL) induced MN frequency at higher concentrations. HFCS caused DNA damage in comet assay at 10% -30%. FR increased tail intensity and moment at 125-2000 µg/mL and tail length at 62.5, 250 and 500 µg/mL. Therefore, HFCS and FR are clearly seen to be cytotoxic and genotoxic, especially at higher concentrations.


HFCS and FR exhibited cytotoxic effect at HepG2 and human lymphocytes at higher concentrations.Both sweeteners increased the frequencies of CAs and SCEs at higher concentrations.HFCS caused DNA damage at 10% -30% concentrations.HFCS (15% and 20%) and FR (250, 1000, and 2000 µg/mL) induced MN frequency.


Assuntos
Sobrevivência Celular , Ensaio Cometa , Frutose , Xarope de Milho Rico em Frutose , Edulcorantes , Humanos , Edulcorantes/toxicidade , Xarope de Milho Rico em Frutose/toxicidade , Xarope de Milho Rico em Frutose/efeitos adversos , Frutose/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Dano ao DNA/efeitos dos fármacos , Troca de Cromátide Irmã/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Linfócitos/patologia , Aberrações Cromossômicas/induzido quimicamente , Testes para Micronúcleos , Relação Dose-Resposta a Droga , Mutagênicos/toxicidade , Masculino , Medição de Risco
8.
Int J Toxicol ; 43(3): 243-252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38183303

RESUMO

This work investigated the safety of extracts obtained from plants growing in Colombia, which have previously shown UV-filter/antigenotoxic properties. The compounds in plant extracts obtained by the supercritical fluid (CO2) extraction method were identified using gas chromatography coupled to mass spectrometry (GC/MS) analysis. Cytotoxicity measured as cytotoxic concentration 50% (CC50) and genotoxicity of the plant extracts and some compounds were studied in human fibroblasts using the trypan blue exclusion assay and the Comet assay, respectively. The extracts from Pipper eriopodon and Salvia aratocensis species and the compound trans-ß-caryophyllene were clearly cytotoxic to human fibroblasts. Conversely, Achyrocline satureioides, Chromolaena pellia, and Lippia origanoides extracts were relatively less cytotoxic with CC50 values of 173, 184, and 89 µg/mL, respectively. The C. pellia and L. origanoides extracts produced some degree of DNA breaks at cytotoxic concentrations. The cytotoxicity of the studied compounds was as follows, with lower CC50 values representing the most cytotoxic compounds: resveratrol (91 µM) > pinocembrin (144 µM) > quercetin (222 µM) > titanium dioxide (704 µM). Quercetin was unique among the compounds assayed in being genotoxic to human fibroblasts. Our work indicates that phytochemicals can be cytotoxic and genotoxic, demonstrating the need to establish safe concentrations of these extracts for their potential use in cosmetics.


Assuntos
Sobrevivência Celular , Fibroblastos , Extratos Vegetais , Protetores Solares , Humanos , Protetores Solares/toxicidade , Protetores Solares/química , Extratos Vegetais/toxicidade , Extratos Vegetais/química , Fibroblastos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Salvia/química , Dano ao DNA/efeitos dos fármacos , Células Cultivadas , Lippia/química , Cromatografia Gasosa-Espectrometria de Massas
9.
Environ Sci Pollut Res Int ; 30(41): 94205-94217, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37526819

RESUMO

To reveal the influence of the phosphorus chemical industry (PCI) on regional water environmental quality and safety, the water quality and ecotoxicological effects of a stream near a phosphorus chemical plant (PCP) in Guizhou Province, southwestern China, were investigated based on water samples collected from the stream. The results showed that the average concentrations of NH3-N, TN, P, F-, Hg, Mn, and Ni were 3.14 mg/L, 30.09 mg/L, 3.34 mg/L, 1.18 mg/L, 1.06 µg/L, 45.82 µg/L, and 11.30 µg/L, respectively. The overall water quality of the stream was in the heavily polluted category, and NH3-N, TN, P, F-, and Hg were the main pollution factors. The degree of pollution was in the order of rainy period > transitional period > dry period, and the most polluted sample site was 1100 m from the PCP. After 28 days of exposure to stream water, there was no significant change in the growth parameters of zebrafish. The gills of zebrafish showed a small amount of epithelial cell detachment and a small amount of inflammatory cell infiltration, and the liver tissue displayed a large amount of hepatocyte degeneration with loose and lightly stained cytoplasm. Compared with the control group, the %DNA in tail, tail length, tail moment, and olive tail moment were significantly increased (p < 0.05), indicating that the water sample caused DNA damage in the peripheral blood erythrocytes of zebrafish. The stream water in the PCI area was found to be polluted and exhibited significant toxicity to zebrafish, which could pose a threat to regional ecological security.


Assuntos
Indústria Química , Rios , Poluentes da Água , Poluição Química da Água , Poluentes da Água/análise , Poluentes da Água/toxicidade , Qualidade da Água , Peixe-Zebra/crescimento & desenvolvimento , Animais , China , Distribuição Aleatória , Rios/química , Brânquias/efeitos dos fármacos , Fígado/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Amônia/análise , Fósforo/análise , Estações do Ano
10.
Chem Biol Interact ; 382: 110382, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36754223

RESUMO

As part of a systematic review of the non-cancer and cancer hazards of propylene dichloride (PDC), with a focus on potential carcinogenicity in workers following inhalation exposures, we determined that a mode of action (MOA)-centric framing of cancer effects was warranted. In our MOA analysis, we systematically reviewed the available mechanistic evidence for PDC-induced carcinogenesis, and we mapped biologically plausible MOA pathways and key events (KEs), as guided by the International Programme on Chemical Safety (IPCS)-MOA framework. For the identified pathways and KEs, biological concordance, essentiality of KEs, concordance of empirical observations among KEs, consistency, and analogy were evaluated. The results of this analysis indicate that multiple biologically plausible pathways may contribute to the cancer MOA for PDC, but that the relevant pathways vary by exposure route and level, tissue type, and species; further, more than one pathway may occur concurrently at high exposure levels. While several important data gaps exist, evidence from in vitro mechanistic studies, in vivo experimental animal studies, and ex vivo human tumor tissue analyses indicates that the predominant MOA pathway likely involves saturation of cytochrome p450 2E1 (CYP2E1)-glutathione (GSH) detoxification (molecular initiating event; MIE), accumulation of CYP2E1-oxidative metabolites, cytotoxicity, chronic tissue damage and inflammation, and ultimately tumor formation. Tumors may occur through several subsets of inflammatory KEs, including inflammation-induced aberrant expression of activation-induced cytidine deaminase (AID), which causes DNA strand breaks and mutations and can lead to tumors with a characteristic mutational signature found in occupational cholangiocarcinoma. Dose concordance analysis showed that low-dose mutagenicity (from any pathway) is not a driving MOA, and that prevention of target tissue damage and inflammation (associated with saturation of CYP2E1-GSH detoxification) is expected to also prevent the cascade of processes responsible for tumor formation.


Assuntos
Colangiocarcinoma , Propano , Propano/toxicidade , Humanos , Dano ao DNA/efeitos dos fármacos , Carcinógenos/toxicidade , Inflamação/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Redes e Vias Metabólicas , Carcinogênese , Animais , Colangiocarcinoma/induzido quimicamente , Glutationa/metabolismo
11.
Sci Rep ; 12(1): 2195, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140281

RESUMO

The present study aimed to assess the toxic effects of pendimethalin herbicide and protective role of curcumin using the Allium test on cytological, biochemical and physiological parameters. The effective concentration (EC50) of pendimethalin was determined at 12 mg/L by the root growth inhibition test as the concentration reducing the root length by 50%. The roots of Allium cepa L. was treated with tap water (group I), 5 mg/L curcumin (group II), 10 mg/L curcumin (group III), 12 mg/L pendimethalin (group IV), 12 mg/L pendimethalin + 5 mg/L curcumin (group V) and 12 mg/L pendimethalin + 10 mg/L curcumin (group VI). The cytological (mitotic index, chromosomal abnormalities and DNA damage), physiological (rooting percentage, root length, growth rate and weight gain) and oxidative stress (malondialdehyde level, superoxide dismutase level, catalase level and glutathione reductase level) indicators were determined after 96 h of treatment. The results revealed that pendimethalin treatment reduced rooting percentage, root length, growth rate and weight gain whereas induced chromosomal abnormalities and DNA damage in roots of A. cepa L. Further, pendimethalin exposure elevated malondialdehyde level followed by antioxidant enzymes. The activities of superoxide dismutase and catalase were up-regulated and glutathione reductase was down-regulated. The molecular docking supported the antioxidant enzymes activities result. However, a dose-dependent reduction of pendimethalin toxicity was observed when curcumin was supplied with pendimethalin. The maximum recovery of cytological, physiological and oxidative stress parameters was recorded at 10 mg/L concentration of curcumin. The correlation studies also revealed positive relation of curcumin with rooting percentage, root length, weight gain, mitotic activity and glutathione reductase enzyme level while an inverse correlation was observed with chromosomal abnormalities, DNA damage, superoxide dismutase and catalase enzyme activities, and lipid peroxidation indicating its protective effect.


Assuntos
Compostos de Anilina/toxicidade , Curcumina/farmacologia , Herbicidas/toxicidade , Cebolas/genética , Raízes de Plantas/genética , Substâncias Protetoras/farmacologia , Aberrações Cromossômicas/efeitos dos fármacos , Correlação de Dados , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Peroxidação de Lipídeos/efeitos dos fármacos , Simulação de Acoplamento Molecular , Cebolas/efeitos dos fármacos , Cebolas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/efeitos dos fármacos , Oxirredutases/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo
12.
Basic Clin Pharmacol Toxicol ; 130(2): 301-319, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34738321

RESUMO

Pendimethalin (PND) is a dinitroaniline herbicide widely used to control broadleaf and annual grasses. Although the acute oral toxicity of PND is >5 g/kg b.wt. in humans (LD50 for rats >5000 g/kg b.wt.), it has been classified as a possible human carcinogen. It is still used in agriculture so agricultural workers and their families, as well as consumers, can be exposed to this herbicide. The present study is the first report investigating the dose-response effect using the benchmark dose (BMD) and the adverse effects of exposure to PND at low dose via apoptosis responses linked to the expression of tumour necrosis factor-α (TNF-α), FAS and BAX proteins; oxidative stress; and DNA and liver damage in female rats. The rats were exposed to PND via drinking water at doses equivalent to no-observed-adverse-effect level (NOAEL = 100 mg/kg b.wt.), 200 and 400 mg/kg b.wt. for 28 days. PND caused the overexpression of TNF-α, FAS and BAX; increased the levels of serum liver biomarkers; and increased oxidative stress in the liver and erythrocytes. Furthermore, it induced DNA and liver damage in a dose-dependent manner. The BMD showed that serum alkaline phosphatase (ALP) and total antioxidant capacity (78.4 and 30.1 mg/kg b.wt./day, respectively), lipid peroxidation in liver tissue (30.9 mg/kg b.wt./day), catalase in erythrocytes (14.0 mg/kg b.wt./day) and FAS expression in liver tissue (6.89 mg/kg b.wt./day) were highly sensitive biomarkers of PND toxicity. Our findings suggest the generation of reactive oxygen species as a possible mechanism of PND-induced gene overexpression of tumour necrosis factor-α (TNF-α), FAS and BAX proteins, oxidative stress and DNA and liver damage in female rats.


Assuntos
Compostos de Anilina/toxicidade , Dano ao DNA/efeitos dos fármacos , Herbicidas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Compostos de Anilina/administração & dosagem , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Benchmarking , Biomarcadores/metabolismo , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Herbicidas/administração & dosagem , Peroxidação de Lipídeos/efeitos dos fármacos , Nível de Efeito Adverso não Observado , Ratos , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/genética , Proteína X Associada a bcl-2/economia , Receptor fas/genética
14.
Food Chem Toxicol ; 159: 112659, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34801651

RESUMO

Mintlactone (chemical name 3,6-dimethyl-5,6,7,7a-tetrahydro-1-benzofuran-2(4H)-one, CAS Number 13341-72-5) is a fragrance and flavor ingredient with reported uses in many different cosmetics, personal care, and household products. In order to evaluate the genotoxic potential of mintlactone, in vitro and in vivo genotoxicity tests were conducted. Results from bacterial mutagenicity tests varied across different batches of differing purity with positive results observed in TA98 only. An in vivo comet assay was also considered to be positive in livers of female mice but negative in male mice. In contrast, in vitro and in vivo micronucleus tests, as well as 3D skin comet/micronucleus tests, were negative, indicating no chromosomal or DNA damage. The underlying causes for these contradictory results are not clear. It appears that the purity and/or stability of the test material may be an issue. In the absence of dependable scientific information on the purity and/or storage stability of mintlactone, its safety for use as a fragrance ingredient cannot be substantiated.


Assuntos
Dano ao DNA/efeitos dos fármacos , Lactonas/toxicidade , Mutagênicos/toxicidade , Terpenos/toxicidade , Animais , Ensaio Cometa , Feminino , Aromatizantes , Masculino , Camundongos , Testes para Micronúcleos , Testes de Mutagenicidade , Perfumes
15.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34884434

RESUMO

Prostate cancer ranks fifth in cancer-related mortality in men worldwide. DNA damage is implicated in cancer and DNA damage response (DDR) pathways are in place against this to maintain genomic stability. Impaired DDR pathways play a role in prostate carcinogenesis and germline or somatic mutations in DDR genes have been found in both primary and metastatic prostate cancer. Among these, BRCA mutations have been found to be especially clinically relevant with a role for germline or somatic testing. Prostate cancer with DDR defects may be sensitive to poly(ADP-ribose) polymerase (PARP) inhibitors which target proteins in a process called PARylation. Initially they were used to target BRCA-mutated tumor cells in a process of synthetic lethality. However, recent studies have found potential for PARP inhibitors in a variety of other genetic settings. In this review, we explore the mechanisms of DNA repair, potential for genomic analysis of prostate cancer and therapeutics of PARP inhibitors along with their safety profile.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Mutação , Neoplasias da Próstata/genética , Ensaios Clínicos como Assunto , Dano ao DNA/efeitos dos fármacos , Reparo do DNA , Mutação em Linhagem Germinativa , Humanos , Masculino , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico
16.
Toxicology ; 463: 152983, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34627991

RESUMO

This paper assessed the potential of trans-placental and -lactational genotoxicity and oxidative stress induction of tembotrione, a naturally derived allelopathic herbicide. Several treatment protocols were applied to measure primary DNA damage by alkaline comet assay in leucocytes and liver. To address the oxidative stress induction, TBARS, ROS, SOD, CA, GSH-Px activity were recorded. The dams were treated from the first gestation day and pups sacrificed after birth. The second treatment protocol comprised treating the dams during gestation and lactation and sacrificing the pups at weaning. The third group of pups comprised offspring of dams that were treated in gestation and lactation and sacrificed in puberty. To address translactational genotoxicity, dams were treated in lactation only. Dams treated in gestation and lactation were sacrificed after reentering the estrous cycle and analyzed for DNA damage and oxidative stress. Tembotrione doses encountered in everyday human exposure, as estimated by the EFSA, were applied in dam treatment in consecutive days (ADI: 0.0004 mg/kg b.w./day, AOEL: 0.0007 mg/kg b.w./day, 1/500 LD50 4.0 mg/kg b.w./day). Although we observed mitigated DNA integrity at the dose of 4.0 mg/kg/b.w./day in female pubertal rats, we can conclude that at the conditions employed in the study low doses of tembotrione do not pose a risk for DNA damage of the offspring of treated dams. Contrary to this, the highest dose significantly affected all the oxidative stress parameters in the liver and plasma of pubertal females, CAT and GSH-Px in the liver of males and ROS and CAT of dams.


Assuntos
Cicloexanonas/toxicidade , Dano ao DNA/efeitos dos fármacos , Herbicidas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Sulfonas/toxicidade , Animais , Ensaio Cometa , Cicloexanonas/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Herbicidas/administração & dosagem , Lactação , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Placenta/metabolismo , Gravidez , Ratos , Ratos Wistar , Sulfonas/administração & dosagem
17.
Mutagenesis ; 36(5): 380-387, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34459491

RESUMO

The main bactericidal components of cold atmospheric plasma (CAP) are thought to be reactive oxygen and nitrogen species (RONS) and UV-radiation, both of which have the capacity to cause DNA damage and mutations. Here, the mutagenic effects of CAP on Escherichia coli were assessed in comparison to X- and UV-irradiation. DNA damage and mutagenesis were screened for using a diffusion-based DNA fragmentation assay and modified Ames test, respectively. Mutant colonies obtained from the latter were quantitated and sequenced. CAP was found to elicit a similar mutation spectrum to X-irradiation, which did not resemble that for UV implying that CAP-produced RONS are more likely the mutagenic component of CAP. CAP treatment was also shown to promote resistance to the antibiotic ciprofloxacin. Our data suggest that CAP treatment has mutagenic effects that may have important phenotypic consequences.


Assuntos
Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Mutagênicos/farmacologia , Mutação/efeitos dos fármacos , Gases em Plasma/farmacologia , Dano ao DNA/efeitos dos fármacos , Fragmentação do DNA , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana , Mutagênese/efeitos dos fármacos , Raios Ultravioleta , Raios X
18.
Artigo em Inglês | MEDLINE | ID: mdl-34454694

RESUMO

Formal requirements for genotoxicity testing of drug candidates to support clinical entry have been in place since the issue of initial regulatory guidance over 25 years ago and subsequent update a decade ago. An evaluation of such testing, supporting first clinical entry of 108 small molecule drug candidates over the last decade, showed that the most common approach (75 % of tested compounds) was for a Good Laboratory Practice test battery in the form of 2 in vitro (a bacterial reverse mutation and a mammalian cell) assays and one in vivo assay. The majority of other tested compounds involved in vitro testing only in bacterial reverse mutation and mammalian cell assays. Testing using a bacterial reverse mutation assay and an in vivo assessment of genotoxicity with 2 different tissues was limited to 2 occasions. For in vitro mammalian cell testing, the chromosome aberration test was most commonly used (70 % occasions), followed by a micronucleus test (16 % occasions) or a mouse lymphoma assay (14 % occasions). For in vivo evaluation, the most common test was a rodent bone marrow micronucleus test (87 % occasions). A positive in vitro mammalian cell assay result was seen on 13 % occasions but was not confirmed with further in vivo testing and the drug candidates were taken into the clinic. In conclusion, the present evaluation showed that the current test battery paradigm for genotoxicity testing has an integral part in supporting clinical entry to confirm candidate drugs taken into the clinic are unlikely to have genotoxic activity.


Assuntos
Desenvolvimento de Medicamentos/métodos , Testes para Micronúcleos/métodos , Testes de Mutagenicidade/métodos , Bibliotecas de Moléculas Pequenas/toxicidade , Animais , Medula Óssea/efeitos dos fármacos , Carcinógenos/toxicidade , Aberrações Cromossômicas/induzido quimicamente , Dano ao DNA/efeitos dos fármacos , Drogas em Investigação/toxicidade , Feminino , Humanos , Técnicas In Vitro/métodos , Linfoma/induzido quimicamente , Masculino , Camundongos , Mutação/efeitos dos fármacos , Ratos , Roedores
19.
Mutagenesis ; 36(5): 331-338, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34216473

RESUMO

Genotoxicity testing plays an important role in the safety assessment of pharmaceuticals, pesticides and chemical substances. Among the guidelines for various genotoxicity tests, the in vitro genotoxicity test battery comprises the bacterial Ames test and mammalian cell assays. Several chemicals exhibit conflicting results for the bacterial Ames test and mammalian cell genotoxicity studies, which may stem from the differences in DNA repair capacity or metabolism, between different cell types or species. For better understanding the mechanistic implications regarding conflict outcomes between different assay systems, it is necessary to develop in vitro genotoxicity testing approaches with higher specificity towards DNA-damaging reagents. We have recently established an improved thymidine kinase (TK) gene mutation assay (TK assay) i.e. deficient in DNA excision repair system using human lymphoblastoid TK6 cells lacking XRCC1 and XPA (XRCC1-/-/XPA-/-), the core factors of base excision repair (BER) and nucleotide excision repair (NER), respectively. This DNA repair-deficient TK6 cell line is expected to specifically evaluate the genotoxic potential of chemical substances based on the DNA damage. We focussed on four reagents, N-(1-naphthyl)ethylenediamine dihydrochloride (NEDA), p-phenylenediamine (PPD), auramine and malachite green (MG) as the Ames test-positive chemicals. In our assay, assessment using XRCC1-/-/XPA-/- cells revealed no statistically significant increase in the mutant frequencies after treatment with NEDA, PPD and MG, suggesting the chemicals to be non-genotoxic in humans. The observations were consistent with that of the follow-up in vivo studies. In contrast, the mutant frequency was markedly increased in XRCC1-/-/XPA-/- cells after treatment with auramine. The results suggest that auramine is the genotoxic reagent that preferentially induces DNA damages resolved by BER and/or NER in mammals. Taken together, BER/NER-deficient cell-based genotoxicity testing will contribute to elucidate the mechanism of genotoxicity and therefore play a pivotal role in the accurate safety assessment of chemical substances.


Assuntos
Dano ao DNA/efeitos dos fármacos , Reparo do DNA , Testes de Mutagenicidade , Mutagênicos/toxicidade , Mutação/efeitos dos fármacos , Timidina Quinase/genética , Carcinógenos/química , Carcinógenos/toxicidade , Linhagem Celular , Distúrbios no Reparo do DNA , Relação Dose-Resposta a Droga , Humanos , Testes de Mutagenicidade/métodos , Mutagênicos/química
20.
Artigo em Inglês | MEDLINE | ID: mdl-34266625

RESUMO

Deoxynivalenol (DON), zearalenone (ZEN), and fumonisin B1 (FB1), as the main mycotoxins contaminating rice, often coexist in food. Thus, we have measured the genotoxicity of the three rice fungal contaminants, singly and in different combinations, with a 28-day multi-endpoint (Pig-a assay + in vivo micronucleus [MN] test + comet assay) genotoxicity platform. Male Sprague-Dawley rats received the agents orally via gavage for 28 consecutive days, before performing the abovementioned tests. Results indicated that low dose of a single mycotoxin did not show significant genotoxicity. However, some of these mycotoxins in combination induced significant genotoxicity in the peripheral blood and tissues, at sacrifice. In the peripheral blood, the binary combination of DON and FB1 significantly induced MN. In the liver, ZEN might aggravate the DNA-damaging effects of DON and FB1. Therefore, the genotoxicity of sub-chronic exposure to mycotoxins in combination cannot be ignored.


Assuntos
Micotoxinas/toxicidade , Oryza/toxicidade , Animais , Ensaio Cometa/métodos , Dano ao DNA/efeitos dos fármacos , Fumonisinas/toxicidade , Masculino , Ratos , Ratos Sprague-Dawley , Tricotecenos/toxicidade , Zearalenona/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA