Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Methods Mol Biol ; 2138: 277-287, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32219756

RESUMO

Coenzyme Q10 (CoQ10) plays a key role as an electron carrier in the mitochondrial respiratory chain and as a cellular antioxidant molecule. A deficit in CoQ10 status may contribute to disease pathophysiology by causing a failure mitochondrial energy metabolism as well as compromising cellular antioxidant capacity. This chapter outlines the analytical methods used for determining cellular CoQ10 status using high-pressure liquid chromatography with ultraviolet (HPLC-UV) detection. In addition, we present a pharmacological procedure for establishing a human neuronal cell model of CoQ10 deficiency, for use in research studies.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Neurônios/efeitos dos fármacos , Ubiquinona/análogos & derivados , Ataxia/metabolismo , Linhagem Celular Tumoral , Humanos , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Debilidade Muscular/metabolismo , Ubiquinona/deficiência , Ubiquinona/metabolismo , Raios Ultravioleta
2.
J Appl Physiol (1985) ; 122(4): 828-843, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28057817

RESUMO

Progressive weakness is a typical feature of Duchenne muscular dystrophy (DMD) patients and is exacerbated in the benign mdx mouse model by in vivo treadmill exercise. We hypothesized a different threshold for functional adaptation of mdx muscles in response to the duration of the exercise protocol. In vivo weakness was confirmed by grip strength after 4, 8, and 12 wk of exercise in mdx mice. Torque measurements revealed that exercise-related weakness in mdx mice correlated with the duration of the protocol, while wild-type (WT) mice were stronger. Twitch and tetanic forces of isolated diaphragm and extensor digitorum longus (EDL) muscles were lower in mdx compared with WT mice. In mdx, both muscle types exhibited greater weakness after a single exercise bout, but only in EDL after a long exercise protocol. As opposite to WT muscles, mdx EDL ones did not show any exercise-induced adaptations against eccentric contraction force drop. qRT-PCR analysis confirmed the maladaptation of genes involved in metabolic and structural remodeling, while damage-related genes remained significantly upregulated and angiogenesis impaired. Phosphorylated AMP kinase level increased only in exercised WT muscle. The severe histopathology and the high levels of muscular TGF-ß1 and of plasma matrix metalloproteinase-9 confirmed the persistence of muscle damage in mdx mice. Therefore, dystrophic muscles showed a partial degree of functional adaptation to chronic exercise, although not sufficient to overcome weakness nor signs of damage. The improved understanding of the complex mechanisms underlying maladaptation of dystrophic muscle paves the way to a better managment of DMD patients.NEW & NOTEWORTHY We focused on the adaptation/maladaptation of dystrophic mdx mouse muscles to a standard protocol of exercise to provide guidance in the development of more effective drug and physical therapies in Duchenne muscular dystrophy. The mdx muscles showed a modest functional adaptation to chronic exercise, but it was not sufficient to overcome the progressive in vivo weakness, nor to counter signs of muscle damage. Therefore, a complex involvement of multiple systems underlies the maladaptive response of dystrophic muscle.


Assuntos
Adaptação Fisiológica/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/fisiopatologia , Condicionamento Físico Animal/fisiologia , Adenilato Quinase/metabolismo , Animais , Diafragma/metabolismo , Diafragma/fisiopatologia , Modelos Animais de Doenças , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Força Muscular/fisiologia , Debilidade Muscular/metabolismo , Debilidade Muscular/fisiopatologia , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/fisiopatologia , Distrofia Muscular de Duchenne/metabolismo , Torque , Regulação para Cima/fisiologia
3.
Muscle Nerve ; 41(5): 667-78, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20082417

RESUMO

We have investigated the effects of stimulation frequency and pulse duration on fatigue and energy metabolism in rat gastrocnemius muscle during a single bout of neuromuscular electrical stimulation (NMES). Electrical pulses were delivered at 100 Hz (1-ms pulse duration) and 20 Hz (5-ms pulse duration) for the high (HF) and low (LF) frequency protocols, respectively. As a standardization procedure, the averaged stimulation intensity, the averaged total charge, the initial peak torque, the duty cycle, the contraction duration and the torque-time integral were similar in both protocols. Fatigue was assessed using two testing trains delivered at a frequency of 100 Hz and 20 Hz before and after each protocol. Metabolic changes were investigated in vivo using 31P-magnetic resonance spectroscopy (31P-MRS) and in vitro in freeze-clamped muscles. Both LF and HF NMES protocols induced the same decrease in testing trains and metabolic changes. We conclude that, under carefully controlled and comparable conditions, the use of low stimulation frequency and long pulse duration do not minimize the occurrence of muscle fatigue or affect the corresponding stimulation-induced metabolic changes so that this combination of stimulation parameters would not be adequate in the context of rehabilitation.


Assuntos
Metabolismo Energético/fisiologia , Tolerância ao Exercício/fisiologia , Contração Muscular/fisiologia , Fadiga Muscular/fisiologia , Músculo Esquelético/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Estimulação Elétrica/efeitos adversos , Estimulação Elétrica/métodos , Terapia por Estimulação Elétrica/métodos , Terapia por Estimulação Elétrica/normas , Espectroscopia de Ressonância Magnética/métodos , Masculino , Neurônios Motores/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Debilidade Muscular/metabolismo , Debilidade Muscular/fisiopatologia , Debilidade Muscular/terapia , Músculo Esquelético/inervação , Junção Neuromuscular/fisiologia , Nervos Periféricos/fisiologia , Ratos , Ratos Wistar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA