Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Sci Rep ; 12(1): 8754, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610248

RESUMO

Disease outbreaks have been seen as the major threat to sustainable aquaculture worldwide. Injectable vaccines have been one of the few strategies available to control the diseases, however, the adoption of this technology globally is limited. Genetic selection for disease resistance has been proposed as the alternative strategy in livestock and aquaculture. Economic analysis for such strategies is lacking and this study assesses the economic worth of using tilapia fingerlings resistant to Streptococcosis in both cage and pond production systems. The paper also assesses the profitability of paying the higher price for such fingerlings. Partial-budgeting was used to develop a stochastic simulation model that considers the benefits and costs associated with the adoption of tilapia fingerlings resistant to Streptococcosis at the farm level, in one production cycle. In both ponds and cage production systems, the use of genetically selected Streptococcus resistant tilapia fingerlings was found to be profitable where Streptococcus infection is prevalent. In the cages and ponds where Streptococcus related mortality was ≥ 10%, the Nile tilapia aquaculture was found to be profitable even if the amount paid for genetically selected Streptococcus resistant tilapia fingerlings was 100% higher than the amount paid for standard fingerlings.


Assuntos
Ciclídeos , Doenças dos Peixes , Infecções Estreptocócicas , Tilápia , Animais , Aquicultura , Ciclídeos/genética , Doenças dos Peixes/genética , Doenças dos Peixes/prevenção & controle , Malásia , Lagoas , Streptococcus agalactiae/genética , Tilápia/genética
2.
Fish Shellfish Immunol ; 106: 1095-1105, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32889098

RESUMO

This study assessed the impact of routine vaccination of Atlantic salmon pre-smolts on gene expression and the possible link to saprolegniosis on Scottish fish farms. Fish were in 4 different groups 1) 'control' - fish without handling or vaccination 2) 'vaccinated' - fish undergoing full vaccination procedure 3) 'non vaccinated' - fish undergoing full vaccination procedure but not vaccinated and 4) 'vaccinated-MH' - fish undergoing vaccination, but procedure involved minimal handling. A strong increase in cortisol and glucose levels was observed after 1 h in all groups relative to the control group. Only in the non-vaccinated group did the level decrease to near control levels by 4 h. Expression levels of six stress marker genes in general for all groups showed down regulation over a 9-day sampling period. In contrast, expression levels for immune response genes in the head kidney showed significant up-regulation for all eight genes tested for both vaccinated groups whereas the non-vaccinated group showed up-regulation for only MHC-II and IL-6b in comparison to the control. Both the vaccination procedure and the administration of the vaccine itself were factors mediating changes in gene expression consistent with fish being susceptible to natural occurring saprolegniosis following vaccination.


Assuntos
Doenças dos Peixes , Controle de Infecções , Infecções , Salmo salar , Saprolegnia , Vacinação , Animais , Aquicultura , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Regulação da Expressão Gênica , Rim Cefálico/imunologia , Infecções/genética , Infecções/imunologia , Infecções/veterinária , Salmo salar/genética , Salmo salar/imunologia , Salmo salar/microbiologia
3.
J Fish Dis ; 42(12): 1657-1666, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31591734

RESUMO

Streptococcus iniae is one of the most serious aquatic pathogens, causing significant economic losses in marine and freshwater species, including Asian seabass (Lates calcarifer). Controlling this gram-positive bacterial pathogen has been an issue in aquaculture systems, due to the combined effects of aquaculture intensification and climatic impacts. To date, there have not been any genetic parameter estimates for S. iniae resistance in Asian seabass. The main aim of this study was to examine genetic variation in S. iniae resistance and its genetic correlations with growth and cannibalism in Asian seabass families produced from a breeding programme for high growth in 2016 and 2017. The study included a total of 5,835 individual fish that were offspring of 41 sires and 60 dams (31 half-sib and 34 full-sib families). The experimental fish were challenged by intraperitoneal injection with a volume containing 105  CFU (colony-forming unit)/fish. Resistance to S. iniae was measured as survival rate at 6 hr, 3, 5, 7, 10 and 15 days post-challenge test. There were significant variations in S. iniae resistance among families at different observation periods (ranging from 24.4% to 80%). Restricted maximum-likelihood method and mixed model analysis were applied to estimate heritability for S. iniae resistance. The heritability for S. iniae resistance ranged from 7% to 18% across different statistical models used. The common full-sib effects accounted for 0.1%-2% of the total variation in resistance to S. iniae. Genetic correlations of the S. iniae resistance at 6 hr and 3 days with later post-challenge test periods were low to moderate. However, these estimates for S. iniae resistance between successive measurement times (5, 7, 10 and 15 days) were high and close to 1. The genetic correlations of resistance with body weights at 180, 270 and 360 days post-hatch were not significant as well with cannibalism. It is concluded that there is substantial additive genetic variation in resistance to S. iniae, suggesting there is potential for genetic improvement of Asian seabass for resistance to S. iniae through selective breeding.


Assuntos
Resistência à Doença/genética , Doenças dos Peixes/genética , Perciformes/genética , Infecções Estreptocócicas/veterinária , Animais , Aquicultura , Canibalismo , Feminino , Doenças dos Peixes/microbiologia , Masculino , Modelos Estatísticos , Perciformes/microbiologia , Fenótipo , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/microbiologia , Streptococcus iniae
4.
Genet Sel Evol ; 50(1): 47, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30285629

RESUMO

BACKGROUND: Macroparasites, such as ticks, lice, and helminths, are a concern in livestock and aquaculture production, and can be controlled by genetic improvement of the host population. Genetic improvement should aim at reducing the rate at which parasites spread across the farmed population. This rate is determined by the basic reproduction ratio, i.e. [Formula: see text], which is the appropriate breeding goal trait. This study aims at providing a method to derive the economic value of [Formula: see text]. METHODS: Costs of a disease are the sum of production losses and expenditures on disease control. Genetic improvement of [Formula: see text] lowers the loss-expenditure frontier. Its economic effect depends on whether the management strategy is optimized or not. The economic value may be derived either from the reduction in losses with constant expenditures or from the reduction in expenditures with constant losses. RESULTS: When [Formula: see text] ≤ 1, the economic value of a further reduction is zero because there is no risk of a major epidemic. When [Formula: see text] > 1 and management is optimized, the economic value increases with decreasing values of [Formula: see text], because both the mean number of parasites per host and frequency of treatments decrease at an increasing rate when [Formula: see text] decreases. When [Formula: see text] > 1 and management is not optimized, the economic value depends on whether genetic improvement is used for reducing expenditures or losses. For sea lice in salmon, the economic value depends on a reduction in expenditures with constant losses, and is estimated to be 0.065€/unit [Formula: see text]/kg production. DISCUSSION: Response to selection for measures of disease prevalence cannot be predicted from quantitative genetic theory alone. Moreover, many studies fail to address the issue of whether genetic improvement results in reduced losses or expenditures. Using [Formula: see text] as the breeding goal trait, weighed by its appropriate economic value, avoids these issues. CONCLUSION: When management is optimized, the economic value increases with decreasing values of [Formula: see text] (until the threshold of [Formula: see text], where it drops to zero). When management is not optimized, the economic value depends on whether genetic improvement is used for reduced expenditures or production losses. For sea lice in salmon, the economic value is estimated to be 0.065 €/unit [Formula: see text]/kg production.


Assuntos
Efeitos Psicossociais da Doença , Doenças dos Peixes/economia , Doenças Parasitárias/economia , Salmão/genética , Animais , Copépodes/patogenicidade , Doenças dos Peixes/genética , Doenças Parasitárias/genética , Reprodução , Salmão/parasitologia , Salmão/fisiologia , Seleção Artificial
5.
J Fish Dis ; 39(4): 449-66, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26763087

RESUMO

Triploid Atlantic salmon tend to develop a higher prevalence of skeletal anomalies. This tendency may be exacerbated by an inadequate rearing temperature. Early juvenile all-female diploid and triploid Atlantic salmon were screened for skeletal anomalies in consecutive experiments to include two size ranges: the first tested the effect of ploidy (0.2-8 g) and the second the effect of ploidy, temperature (14 °C and 18 °C) and their interaction (8-60 g). The first experiment showed that ploidy had no effect on skeletal anomaly prevalence. A high prevalence of opercular shortening was observed (average prevalence in both ploidies 85.8%) and short lower jaws were common (highest prevalence observed 11.3%). In the second experiment, ploidy, but not temperature, affected the prevalence of short lower jaw (diploids > triploids) and lower jaw deformity (triploids > diploids, highest prevalence observed 11.1% triploids and 2.7% diploids) with a trend indicating a possible developmental link between the two jaw anomalies in triploids. A radiological assessment (n = 240 individuals) showed that at both temperatures triploids had a significantly (P < 0.05) lower number of vertebrae and higher prevalence of deformed individuals. These findings (second experiment) suggest ploidy was more influential than temperature in this study.


Assuntos
Diploide , Doenças dos Peixes/genética , Anormalidades Maxilomandibulares/genética , Salmo salar/anormalidades , Salmo salar/genética , Coluna Vertebral/anormalidades , Triploidia , Animais , Doenças dos Peixes/diagnóstico por imagem , Doenças dos Peixes/patologia , Água Doce , Salmo salar/anatomia & histologia , Temperatura
6.
PLoS One ; 8(10): e75749, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130739

RESUMO

Selective breeding of animals for increased disease resistance is an effective strategy to reduce mortality in aquaculture. However, implementation of selective breeding programs is limited by an incomplete understanding of host resistance traits. We previously reported results of a rainbow trout selection program that demonstrated increased survival following challenge with Flavobacterium psychrophilum, the causative agent of bacterial cold water disease (BCWD). Mechanistic study of disease resistance identified a positive phenotypic correlation between post-challenge survival and spleen somatic-index (SI). Herein, we investigated the hypothesis of a genetic correlation between the two traits influenced by colocalizing QTL. We evaluated the inheritance and calculated the genetic correlation in five year-classes of odd- and even-year breeding lines. A total of 322 pedigreed families (n = 25,369 fish) were measured for disease resistance, and 251 families (n = 5,645 fish) were evaluated for SI. Spleen index was moderately heritable in both even-year (h(2)  = 0.56±0.18) and odd-year (h(2)  = 0.60±0.15) lines. A significant genetic correlation between SI and BCWD resistance was observed in the even-year line (rg  = 0.45±0.20, P = 0.03) but not in the odd-year line (rg  = 0.16±0.12, P = 0.19). Complex segregation analyses of the even-year line provided evidence of genes with major effect on SI, and a genome scan of a single family, 2008132, detected three significant QTL on chromosomes Omy19, 16 and 5, in addition to ten suggestive QTL. A separate chromosome scan for disease resistance in family 2008132 identified a significant BCWD QTL on Omy19 that was associated with time to death and percent survival. In family 2008132, Omy19 microsatellite alleles that associated with higher disease resistance also associated with increased spleen size raising the hypothesis that closely linked QTL contribute to the correlation between these traits. To our knowledge, this is the first estimation of spleen size heritability and evidence for genetic linkage with specific disease resistance in a teleost fish.


Assuntos
Cromossomos/genética , Temperatura Baixa , Oncorhynchus mykiss/microbiologia , Locos de Características Quantitativas/genética , Baço/imunologia , Animais , Resistência à Doença/genética , Resistência à Doença/imunologia , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/imunologia
7.
J Anim Sci ; 89(11): 3433-42, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21742941

RESUMO

Current aquaculture breeding programs aimed at improving resistance to diseases are based on challenge tests, where performance is recorded on sibs of candidates to selection, and on selection between families. Genome-wide evaluation (GWE) of breeding values offers new opportunities for using variation within families when dealing with such traits. However, up-to-date studies on GWE in aquaculture programs have only considered continuous traits. The objectives of this study were to extend GWE methodology, in particular the Bayes B method, to analyze dichotomous traits such as resistance to disease, and to quantify, through computer simulation, the accuracy of GWE for disease resistance in aquaculture sib-based programs, using the methodology developed. Two heritabilities (0.1 and 0.3) and 2 disease prevalences (0.1 and 0.5) were assumed in the simulations. We followed the threshold liability model, which assumes that there is an underlying variable (liability) with a continuous distribution and assumed a BayesB model for the liabilities. It was shown that the threshold liability model used fits very well with the BayesB model of GWE. The advantage of using the threshold model was clear when dealing with disease resistance dichotomous phenotypes, particularly under the conditions where linear models are less appropriate (low heritability and disease prevalence). In the testing set (where individuals are genotyped but not measured), the increase in accuracy for the simulated schemes when using the threshold model ranged from 4 (for heritability equal to 0.3 and prevalence equal to 0.5) to 16% (for heritability and prevalence equal to 0.1) when compared with the linear model.


Assuntos
Aquicultura/métodos , Cruzamento/métodos , Doenças dos Peixes/genética , Modelos Genéticos , Modelos Estatísticos , Animais , Teorema de Bayes , Simulação por Computador , Feminino , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/prevenção & controle , Peixes , Variação Genética , Masculino , Cadeias de Markov , Método de Monte Carlo , Prevalência , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA