RESUMO
Bazooka/Par-3 (Baz) is an evolutionarily conserved scaffold protein that functions as a master regulator for the establishment and maintenance of cell polarity in many different cell types. In the vast majority of published research papers Baz has been reported to localize at the cell cortex and at intercellular junctions. However, there have also been several reports showing localization and function of Baz at additional subcellular sites, in particular the nuclear envelope and the neuromuscular junction. In this study we have re-assessed the localization of Baz to these subcellular sites in a systematic manner. We used antibodies raised in different host animals against different epitopes of Baz for confocal imaging of Drosophila tissues. We tested the specificity of these antisera by mosaic analysis with null mutant baz alleles and tissue-specific RNAi against baz. In addition, we used a GFP-tagged gene trap line for Baz and a bacterial artificial chromosome (BAC) expressing GFP-tagged Baz under control of its endogenous promoter in a baz mutant background to compare the subcellular localization of the GFP-Baz fusion proteins to the staining with anti-Baz antisera. Together, these experiments did not provide evidence for specific localization of Baz to the nucleus or the neuromuscular junction.
Assuntos
Núcleo Celular , Proteínas de Drosophila , Drosophila melanogaster , Junção Neuromuscular , Animais , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Junção Neuromuscular/metabolismo , Transporte Proteico , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismoRESUMO
Sodium benzoate (SB), the sodium salt of benzoic acid, is a food preservative with wide applications in the food, cosmetic and pharmaceutical industries due to its ability to kill many microorganisms effectively. Experimental evidence however suggests that excessive intake of SB poses detrimental health risks among consumers in the population. The present study investigated the toxic effects of various concentrations of SB using Drosophila melanogaster as a model. Adult wild-type flies of Canton S strain (1- to 3-days old) was orally exposed to SB (0, 0.5, 1.0, 2.0 and 5.0 mg/5 g diet) to evaluate survival rates for 21 days. Thereafter, we evaluated markers of oxidative stress, antioxidant status and behavioral activity in D. melanogaster exposed to SB for seven (7) days. We observed that SB (2.0 and 5.0 mg/5 g diet) decreased the survival of D. melanogaster. Also, SB inhibited glutathione-S-transferase activity and depleted total thiols and nonprotein thiols contents. Moreover, SB (5 mg/5 g diet) increased nitric oxide (nitrite/nitrate) level and reduced flies' emergence rate. Conclusively, findings from this study revealed that exposure to high concentrations of SB reduced survival rate and induced toxicity via the induction of oxidative stress and inhibition of antioxidant enzymes in D. melanogaster.
Assuntos
Antioxidantes , Drosophila melanogaster , Animais , Drosophila melanogaster/metabolismo , Antioxidantes/farmacologia , Benzoato de Sódio/toxicidade , Estresse Oxidativo , Compostos de SulfidrilaRESUMO
Atomic-level information is essential to explain the formation of specific protein complexes in terms of structure and dynamics. The set of Dpr and DIP proteins, which play a key role in the neuromorphogenesis in the nervous system of Drosophila melanogaster, offer a rich paradigm to learn about protein-protein recognition. Many members of the DIP subfamily cross-react with several members of the Dpr family and vice versa. While there exists a total of 231 possible Dpr-DIP heterodimer complexes from the 21 Dpr and 11 DIP proteins, only 57 "cognate" pairs have been detected by surface plasmon resonance (SPR) experiments, suggesting that the remaining 174 pairs have low or unreliable binding affinity. Our goal is to assess the performance of computational approaches to characterize the global set of interactions between Dpr and DIP proteins and identify the specificity of binding between each DIP with their corresponding Dpr binding partners. In addition, we aim to characterize how mutations influence the specificity of the binding interaction. In this work, a wide range of knowledge-based and physics-based approaches are utilized, including mutual information, linear discriminant analysis, homology modeling, molecular dynamics simulations, Poisson-Boltzmann continuum electrostatics calculations, and alchemical free energy perturbation to decipher the origin of binding specificity of the Dpr-DIP complexes examined. Ultimately, the results show that those two broad strategies are complementary, with different strengths and limitations. Biological inter-relations are more clearly revealed through knowledge-based approaches combining evolutionary and structural features, the molecular determinants controlling binding specificity can be predicted accurately with physics-based approaches based on atomic models.
Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Proteínas de Drosophila/química , Drosophila melanogaster/metabolismo , Ligação ProteicaRESUMO
Loss-of-function mutations in parkin is associated with onset of juvenile Parkinson's disease (PD). Resveratrol is a polyphenolic stilbene with neuroprotective activity. Here, we evaluated the rescue action of resveratrol in parkin mutant D. melanogaster. The control flies (w1118) received diet-containing 2% ethanol (vehicle), while the PD flies received diets-containing resveratrol (15, 30 and 60 mg/kg diet) for 21 days to assess survival rate. Consequently, similar treatments were carried out for 10 days to evaluate locomotor activity, oxidative stress and antioxidant markers. We also determined mRNA levels of Superoxide dismutase 1 (Sod1, an antioxidant gene) and ple, which encodes tyrosine hydroxylase, the rate-limiting step in dopamine synthesis. Our data showed that resveratrol improved survival rate and climbing activity of PD flies compared to untreated PD flies. Additionally, resveratrol protected against decreased activities of acetylcholinesterase and catalase and levels of non-protein thiols and total thiols displayed by PD flies. Moreover, resveratrol mitigated against parkin mutant-induced accumulations of hydrogen peroxide, nitric oxide and malondialdehyde. Resveratrol attenuated downregulation of ple and Sod1 and reduction in mitochondrial fluorescence intensity displayed by PD flies. Overall, resveratrol alleviated oxidative stress and locomotor deficit associated with parkin loss-of-function mutation and therefore might be useful for the management of PD.
Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Estresse Oxidativo , Resveratrol/farmacologia , Compostos de Sulfidrila , Superóxido Dismutase-1 , Ubiquitina-Proteína Ligases/genéticaRESUMO
Sirt6 is a multifunctional enzyme that regulates diverse cellular processes such as metabolism, DNA repair, and aging. Overexpressing Sirt6 extends lifespan in mice, but the underlying cellular mechanisms are unclear. Drosophila melanogaster are an excellent model to study genetic regulation of lifespan; however, despite extensive study in mammals, very little is known about Sirt6 function in flies. Here, we characterized the Drosophila ortholog of Sirt6, dSirt6, and examined its role in regulating longevity; dSirt6 is a nuclear and chromatin-associated protein with NAD+-dependent histone deacetylase activity. dSirt6 overexpression (OE) in flies produces robust lifespan extension in both sexes, while reducing dSirt6 levels shortens lifespan. dSirt6 OE flies have normal food consumption and fertility but increased resistance to oxidative stress and reduced protein synthesis rates. Transcriptomic analyses reveal that dSirt6 OE reduces expression of genes involved in ribosome biogenesis, including many dMyc target genes. dSirt6 OE partially rescues many effects of dMyc OE, including increased nuclear size, up-regulation of ribosome biogenesis genes, and lifespan shortening. Last, dMyc haploinsufficiency does not convey additional lifespan extension to dSirt6 OE flies, suggesting dSirt6 OE is upstream of dMyc in regulating lifespan. Our results provide insight into the mechanisms by which Sirt6 OE leads to longer lifespan.
Assuntos
Longevidade/genética , Sirtuínas/metabolismo , Envelhecimento/fisiologia , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Haploinsuficiência/genética , Histona Desacetilases/economia , Histona Desacetilases/metabolismo , Masculino , Sirtuínas/genéticaRESUMO
To study the behavior of Drosophila, it is often necessary to restrain and mount individual flies. This requires removal from food, additional handling, anesthesia, and physical restraint. We find a strong positive correlation between the length of time flies are mounted and their subsequent reflexive feeding response, where one hour of mounting is the approximate motivational equivalent to ten hours of fasting. In an attempt to explain this correlation, we rule out anesthesia side-effects, handling, additional fasting, and desiccation. We use respirometric and metabolic techniques coupled with behavioral video scoring to assess energy expenditure in mounted and free flies. We isolate a specific behavior capable of exerting large amounts of energy in mounted flies and identify it as an attempt to escape from restraint. We present a model where physical restraint leads to elevated activity and subsequent faster nutrient storage depletion among mounted flies. This ultimately further accelerates starvation and thus increases reflexive feeding response. In addition, we show that the consequences of the physical restraint profoundly alter aerobic activity, energy depletion, taste, and feeding behavior, and suggest that careful consideration is given to the time-sensitive nature of these highly significant effects when conducting behavioral, physiological or imaging experiments that require immobilization.
Assuntos
Drosophila melanogaster/metabolismo , Metabolismo Energético , Comportamento Alimentar , Animais , Feminino , Restrição FísicaRESUMO
Spatial boundaries formed during animal development originate from the pre-patterning of tissues by signaling molecules, called morphogens. The accuracy of boundary location is limited by the fluctuations of morphogen concentration that thresholds the expression level of target gene. Producing more morphogen molecules, which gives rise to smaller relative fluctuations, would better serve to shape more precise target boundaries; however, it incurs more thermodynamic cost. In the classical diffusion-depletion model of morphogen profile formation, the morphogen molecules synthesized from a local source display an exponentially decaying concentration profile with a characteristic length λ. Our theory suggests that in order to attain a precise profile with the minimal cost, λ should be roughly half the distance to the target boundary position from the source. Remarkably, we find that the profiles of morphogens that pattern the Drosophila embryo and wing imaginal disk are formed with nearly optimal λ. Our finding underscores the cost-effectiveness of precise morphogen profile formation in Drosophila development.
Assuntos
Padronização Corporal , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Modelos Biológicos , Animais , Difusão , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Discos Imaginais/metabolismo , Transdução de Sinais , Fatores de Tempo , Asas de Animais/embriologia , Asas de Animais/metabolismoRESUMO
In this work, the design, construction, and testing of the most cost-effective digital lensless holographic microscope to date are presented. The architecture of digital lensless holographic microscopy (DLHM) is built by means of a 3D-printed setup and utilizing off-the-shelf materials to produce a DLHM microscope costing US$52.82. For the processing of the recorded in-line holograms, an open-source software specifically developed to process this type of recordings is utilized. The presented DLHM setup has all the degrees of freedom needed to achieve different fields of view, levels of spatial resolution, and 2D scanning of the sample. The feasibility of the presented platform is tested by imaging non-bio and bio samples; the resolution test targets, a section of the head of a Drosophila melanogaster fly, red blood cells, and cheek cells are imaged on the built microscope.
Assuntos
Holografia/instrumentação , Microscopia/instrumentação , Animais , Bochecha/diagnóstico por imagem , Análise Custo-Benefício , Drosophila melanogaster/metabolismo , Eritrócitos/metabolismo , Cabeça/diagnóstico por imagem , Holografia/métodos , Microscopia/métodos , Impressão TridimensionalRESUMO
Parasites cause harm to their hosts and represent pervasive causal agents of natural selection. Understanding host proximate responses during interactions with parasites can help predict which genes and molecular pathways are targets of this selection. In the current study, we examined transcriptional changes arising from interactions between Drosophila melanogaster and their naturally occurring ectoparasitic mite, Gamasodes queenslandicus. Shifts in host transcript levels associated with behavioural avoidance revealed the involvement of genes underlying nutrient metabolism. These genetic responses were reflected in altered body lipid and glycogen levels in the flies. Mite infestation triggered a striking immune response, while male accessory gland protein transcript levels were simultaneously reduced, suggesting a trade-off between host immune responses to parasite challenge and reproduction. Comparison of transcriptional analyses during mite infestation to those during nematode and parasitoid attack identified host genes similarly expressed in flies during these interactions. Validation of the involvement of specific genes with RNA interference lines revealed candidates that may directly mediate fly-ectoparasite interactions. Our physiological and molecular characterization of the Drosophila-Gamasodes interface reveals new proximate mechanisms underlying host-parasite interactions, specifically host transcriptional shifts associated with behavioural avoidance and infestation. The results identify potential general mechanisms underlying host resistance and evolutionarily relevant trade-offs.
Assuntos
Drosophila melanogaster , Interações Hospedeiro-Parasita , Ácaros , Animais , Evolução Biológica , Drosophila melanogaster/imunologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/parasitologia , Glicogênio/metabolismo , Imunidade , Metabolismo dos Lipídeos , Infestações por Ácaros , Parasitos , Reprodução , TranscriptomaRESUMO
The biomedical demand of the nanomaterials is continuously increasing due to their wide range of applications in the field. However, before the implementation of these nanomaterials, toxicity assessment is essential for its safe usage. In the present study, the toxicity of carbon nanoparticles (CNPs) was investigated which was derived from candle soot and compared with commercially available multi-walled carbon nanotubes (CNTs) by using Drosophila melanogaster as a model system. First instar Drosophila larvae were exposed to CNPs as well as CNTs, and the toxic effects of these nanomaterials were compared. The result shows that both nanomaterials enhance the level of reactive oxygen species and oxidative stress in the Drosophila, which leads to the upregulation of heat shock proteins that may cause cytotoxicity in exposed Drosophila larvae. In contrast, exposure to CNPs and CNTs did not affect the developmental period of the larvae. Morphology of the internal organs, brain, gut and Malpighian tubules was also not altered in the exposed larvae. Similarly, no change observed in the cytoskeleton (F-actin) of these organs. Reproductive performance was slightly reduced in the case of CNPs compare to control. However, CNTs exposure did not show any significant effect on the reproductive performance of the flies that emerged from exposed larvae in comparison to control. Hence the study concludes that exposure to CNPs and CNTs cause a moderate level of cytotoxicity in Drosophila. The study also indicates that the inexpensive CNPs may use as an alternative to expensive CNTs for biomedical and biological applications.
Assuntos
Drosophila melanogaster/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Fuligem/toxicidade , Animais , Drosophila melanogaster/metabolismo , Proteínas de Choque Térmico/metabolismo , Modelos Animais , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismoRESUMO
Eggs of oviparous animals must be prepared to develop rapidly and robustly until hatching. The balance between sugars, fats, and other macromolecules must therefore be carefully considered when loading the egg with nutrients. Clearly, packing too much or too little fuel would lead to suboptimal conditions for development. While many studies have measured the overall energy utilization of embryos, little is known of the identity of the molecular-level processes that contribute to the energy budget in the first place [1]. Here, we introduce Drosophila embryos as a platform to study the energy budget of embryogenesis. We demonstrate through three orthogonal measurements - respiration, calorimetry, and biochemical assays - that Drosophila melanogaster embryogenesis utilizes 10 mJ of energy generated by the oxidation of the maternal glycogen and triacylglycerol (TAG) stores (Figure 1). Normalized for mass, this is comparable to the resting metabolic rates of insects [2]. Interestingly, alongside data from earlier studies, our results imply that protein, RNA, and DNA polymerization require less than 10% of the total ATPs produced in the early embryo.
Assuntos
Drosophila melanogaster/metabolismo , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Metabolismo Energético , Animais , Calorimetria , Drosophila melanogaster/embriologia , RespiraçãoRESUMO
Mitophagy has been implicated in mitochondrial quality control and in various human diseases. However, the study of in vivo mitophagy remains limited. We previously explored in vivo mitophagy using a transgenic mouse expressing the mitochondria-targeted fluorescent protein Keima (mt-Keima). Here, we generated mt-Keima Drosophila to extend our efforts to study mitophagy in vivo. A series of experiments confirmed that mitophagy can be faithfully and quantitatively measured in mt-Keima Drosophila. We also showed that alterations in mitophagy upon environmental and genetic perturbation can be measured in mt-Keima Drosophila. Analysis of different tissues revealed a variation in basal mitophagy levels in Drosophila tissues. In addition, we found a significant increase in mitophagy levels during Drosophila embryogenesis. Importantly, loss-of-function genetic analysis demonstrated that the phosphatase and tensin homolog-induced putative kinase 1 (PINK1)-Parkin pathway is essential for the induction of mitophagy in vivo in response to hypoxic exposure and rotenone treatment. These studies showed that the mt-Keima Drosophila system is a useful tool for understanding the role and molecular mechanism of mitophagy in vivo. In addition, we demonstrated the essential role of the PINK1-Parkin pathway in mitophagy induction in response to mitochondrial dysfunction.-Kim, Y. Y., Um, J.-H., Yoon, J.-H., Kim, H., Lee, D.-Y., Lee, Y. J., Jee, H. J., Kim, Y. M., Jang, J. S., Jang, Y.-G., Chung, J., Park, H. T., Finkel, T., Koh, H., Yun, J. Assessment of mitophagy in mt-Keima Drosophila revealed an essential role of the PINK1-Parkin pathway in mitophagy induction in vivo.
Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Mitofagia/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Genótipo , Proteínas Serina-Treonina Quinases/genética , Ubiquitina-Proteína Ligases/genéticaRESUMO
Recent studies have indicated that nucleosome turnover is rapid, occurring several times per cell cycle. To access the effect of nucleosome turnover on the epigenetic landscape, we investigated H3K79 methylation, which is produced by a single methyltransferase (Dot1l) with no known demethylase. Using chemical-induced proximity (CIP), we find that the valency of H3K79 methylation (mono-, di-, and tri-) is determined by nucleosome turnover rates. Furthermore, propagation of this mark is predicted by nucleosome turnover simulations over the genome and accounts for the asymmetric distribution of H3K79me toward the transcriptional unit. More broadly, a meta-analysis of other conserved histone modifications demonstrates that nucleosome turnover models predict both valency and chromosomal propagation of methylation marks. Based on data from worms, flies, and mice, we propose that the turnover of modified nucleosomes is a general means of propagation of epigenetic marks and a determinant of methylation valence.
Assuntos
Metilação de DNA , Epigênese Genética , Genoma , Histonas/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Nucleossomos/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Montagem e Desmontagem da Cromatina , Simulação por Computador , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células HEK293 , Histona-Lisina N-Metiltransferase , Histonas/genética , Humanos , Células Jurkat , Cinética , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Modelos Genéticos , Método de Monte Carlo , Nucleossomos/genéticaRESUMO
Metazoans viability depends on their ability to regulate metabolic processes and also to respond to harmful challenges by mounting anti-stress responses; these adaptations were fundamental forces during evolution. Central to anti-stress responses are a number of short-lived transcription factors that by functioning as stress sensors mobilize genomic responses aiming to eliminate stressors. We show here that increased expression of nuclear factor erythroid 2-related factor (Nrf2) in Drosophila activated cytoprotective modules and enhanced stress tolerance. However, while mild Nrf2 activation extended lifespan, high Nrf2 expression levels resulted in developmental lethality or, after inducible activation in adult flies, in altered mitochondrial bioenergetics, the appearance of Diabetes Type 1 hallmarks and aging acceleration. Genetic or dietary suppression of Insulin/IGF-like signaling (IIS) titrated Nrf2 activity to lower levels, largely normalized metabolic pathways signaling, and extended flies' lifespan. Thus, prolonged stress signaling by otherwise cytoprotective short-lived stress sensors perturbs IIS resulting in re-allocation of resources from growth and longevity to somatic preservation and stress tolerance. These findings provide a reasonable explanation of why most (if not all) cytoprotective stress sensors are short-lived proteins, and it also explains the build-in negative feedback loops (shown here for Nrf2); the low basal levels of these proteins, and why their suppressors were favored by evolution.
Assuntos
Adaptação Fisiológica , Envelhecimento/fisiologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Fisiológico , Animais , Citoproteção , Proteínas de Drosophila/metabolismo , Metabolismo Energético , Insulina/metabolismo , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Fenótipo , Transdução de Sinais , Somatomedinas/metabolismoRESUMO
In vertebrates, planar polarization of ciliary basal bodies has been associated with actin polymerization that occurs downstream of the Frizzled-planar cell polarity (Fz-PCP) pathway. In Drosophila wing epithelial cells, which do not have cilia, centrioles also polarize in a Fz-PCP-dependent manner, although the relationship with actin polymerization remains unknown. By combining existing and new quantitative methods, we unexpectedly found that known PCP effectors linked to actin polymerization phenotypes affect neither final centriole polarization nor apical centriole distribution. But actin polymerization is required upstream of Fz-PCP to maintain the centrioles in restricted areas in the apical-most planes of those epithelial cells before and after the actin-based hair is formed. Furthermore, in the absence of proper core Fz-PCP signalling, actin polymerization is insufficient to drive this off-centred centriole migration. Altogether, the results reveal that there are at least two pathways controlling centriole positioning in Drosophila pupal wings - an upstream actin-dependent mechanism involved in centriole distribution that is PCP independent, and an unknown mechanism that links core Fz-PCP and centriole polarization.
Assuntos
Polaridade Celular , Centríolos/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Asas de Animais/citologia , Asas de Animais/metabolismo , Actinas/metabolismo , Animais , Polaridade Celular/efeitos dos fármacos , Centríolos/efeitos dos fármacos , Citocalasina D/farmacologia , Proteínas de Drosophila/genética , Drosophila melanogaster/efeitos dos fármacos , Mutação com Ganho de Função/genética , Mutação com Perda de Função/genética , Fenótipo , PolimerizaçãoRESUMO
Intrinsically disordered proteins (IDPs) make up a large class of proteins that lack stable structures in solution, existing instead as dynamic conformational ensembles. To perform their biological functions, many IDPs bind to other proteins or nucleic acids. Although IDPs are unstructured in solution, when they interact with binding partners, they fold into defined three-dimensional structures via coupled binding-folding processes. Because they frequently underlie IDP function, the mechanisms of this coupled binding-folding process are of great interest. However, given the flexibility inherent to IDPs and the sparse populations of intermediate states, it is difficult to reveal binding-folding pathways at atomic resolution using experimental methods. Computer simulations are another tool for studying these pathways at high resolution. Accordingly, we have applied 40 µs of unbiased molecular dynamics simulations and Markov state modeling to map the complete binding-folding pathway of a model IDP, the 59-residue C-terminal portion of the DNA binding domain of Drosophila melanogaster transcription factor Brinker (BrkDBD). Our modeling indicates that BrkDBD binds to its cognate DNA and folds in â¼50 µs by an induced fit mechanism, acquiring most of its stable secondary and tertiary structure only after it reaches the final binding site on the DNA. The protein follows numerous pathways en route to its bound and folded conformation, occasionally becoming stuck in kinetic traps. Each binding-folding pathway involves weakly bound, increasingly folded intermediate states located at different sites on the DNA surface. These findings agree with experimental data and provide additional insight into the BrkDBD folding mechanism and kinetics.
Assuntos
DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Dobramento de Proteína , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , DNA/química , Proteínas de Drosophila/química , Drosophila melanogaster/química , Proteínas Intrinsicamente Desordenadas/química , Cadeias de Markov , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Repressoras/química , TermodinâmicaRESUMO
While single stress responses are fairly well researched, multiple, interactive stress responses are not-despite the obvious importance thereof. Here, using D. melanogaster, we investigated the effects of simultaneous exposures to low O2 (hypoxia) and varying thermal conditions on mortality rates, estimates of thermal tolerance and the transcriptome. We used combinations of 21 (normoxia), 10 or 5kPa O2 with control (23°C), cold (4°C) or hot (31°C) temperature exposures before assaying chill coma recovery time (CCRT) and heat knock down time (HKDT) as measures of cold and heat tolerance respectively. We found that mortality was significantly affected by temperature, oxygen partial pressure (PO2) and the interaction between the two. Cold treatments resulted in low mortality (<5%), regardless of PO2 treatment; while hot treatments resulted in higher mortality (â¼20%), especially at 5kPa O2 which was lethal for most flies (â¼80%). Both CCRT and HKDT were significantly affected by temperature, but not PO2, of the treatments, and the interaction of temperature and PO2 was non-significant. Hot treatments led to significantly longer CCRT, and shorter HKDT in comparison to cold treatments. Global gene expression profiling provided the first transcriptome level response to the combined stress of PO2 and temperature, showing that stressful treatments resulted in higher mortality and induced transcripts that were associated with protein kinases, catabolic processes (proteases, hydrolases, peptidases) and membrane function. Several genes and pathways that may be responsible for the protective effects of combined PO2 and cold treatments were identified. We found that urate oxidase was upregulated in all three cold treatments, regardless of the PO2. Small heat shock proteins Hsp22 and Hsp23 were upregulated after both 10 and 21kPa O2-hot treatments. Collectively, the data from PO2-hot treatments suggests that hypoxia does exacerbate heat stress, through an as yet unidentified mechanism. Hsp70B and an unannotated transcript (CG6733) were significantly differentially expressed after 5kPa O2-cold and 10kPa O2-hot treatments relative to their controls. Downregulation of these transcripts was correlated with reduced thermal tolerance (longer CCRT and shorter HKDT), suggesting that these genes may be important candidates for future research.
Assuntos
Drosophila melanogaster/metabolismo , Oxigênio/fisiologia , Estresse Fisiológico , Termotolerância , Transcriptoma , Animais , Masculino , Mortalidade , FenótipoRESUMO
Amphotericin B (AmB) is an antifungal antibiotic extracted from Streptomyces nodosus. Its fungicidal activity depends primarily on its binding to the sterol group that is present in fungal membranes. In view of the toxicity of this drug, the purpose of this study was to evaluate its mutagenic, carcinogenic, and recombinogenic activity, based on the wing somatic mutation and recombination test (SMART) and the epithelial tumor detection test (wts) applied to Drosophila melanogaster. Larvae were chronically treated with different concentrations of AmB (0.01, 0.02, and 0.04 mg/mL). The results revealed that AmB is a promutagen exhibiting increase in the number of spots on individuals from high bioactivation (HB) cross with a high level of cytochrome P450. The results also indicate that the main genotoxic event induced by AmB is recombinogenicity. Homologous recombination can act as a determinant at different stages of carcinogenesis. For verification of carcinogenic potential of this compound, larvae from the wts/mwh and wts/ORR, flr3 were treated with the same three AmB concentrations used in the SMART assay. The results did not provide evidence that AmB has carcinogenic potential in wts/mwh individuals. However, individuals from wts/ORR, flr3 developed tumors at the highest concentration tested.
Assuntos
Anfotericina B/toxicidade , Antifúngicos/toxicidade , Transformação Celular Neoplásica/induzido quimicamente , Proteínas de Drosophila/genética , Drosophila melanogaster/efeitos dos fármacos , Recombinação Homóloga/efeitos dos fármacos , Mutação , Neoplasias/induzido quimicamente , Asas de Animais/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Relação Dose-Resposta a Droga , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação Neoplásica da Expressão Gênica , Genótipo , Larva/efeitos dos fármacos , Larva/genética , Larva/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Fenótipo , Medição de Risco , Asas de Animais/metabolismoRESUMO
The impact that research has on shaping the future of societies is perhaps as significant as never before. One of the problems for most regions in Africa is poor quality and quantity of research-based education, as well as low level of funding. Hence, African researchers produce only around one percent of the world's research. We believe that research with Drosophila melanogaster can contribute to changing that. As seen before in other places, Drosophila can be used as a powerful and cost-effective model system to scale-up and improve both academia and research output. The DrosAfrica project was founded to train and establish a connected community of researchers using Drosophila as a model system to investigate biomedical problems in Africa. Since founding, the project has trained eighty scientists from numerous African countries, and continues to grow. Here, we describe the DrosAfrica project, its conception and its mission. We also give detailed insights into DrosAfrica's approaches to achieve its aims, as well as future perspectives, and opportunities beyond Africa.
Assuntos
Pesquisa Biomédica/educação , Drosophila melanogaster/genética , Educação/organização & administração , Comunicação Interdisciplinar , Pesquisa Translacional Biomédica/educação , África , Animais , Pesquisa Biomédica/economia , Pesquisa Biomédica/métodos , Modelos Animais de Doenças , Drosophila melanogaster/metabolismo , Humanos , Rede Social , Crescimento Sustentável , Pesquisa Translacional Biomédica/economia , Pesquisa Translacional Biomédica/métodosRESUMO
Solute carriers (SLCs) are vital as they are responsible for a major part of the molecular transport over lipid bilayers. At present, there are 430 identified SLCs, of which 28 are called atypical SLCs of major facilitator superfamily (MFS) type. These are MFSD1, 2A, 2B, 3, 4A, 4B, 5, 6, 6 L, 7, 8, 9, 10, 11, 12, 13A, 14A and 14B; SV2A, SV2B and SV2C; SVOP and SVOPL; SPNS1, SPNS2 and SPNS3; and UNC93A and UNC93B1. We studied their fundamental properties, and we also included CLN3, an atypical SLC not yet belonging to any protein family (Pfam) clan, because its involvement in the same neuronal degenerative disorders as MFSD8. With phylogenetic analyses and bioinformatic sequence comparisons, the proteins were divided into 15 families, denoted atypical MFS transporter families (AMTF1-15). Hidden Markov models were used to identify orthologues from human to Drosophila melanogaster and Caenorhabditis elegans Topology predictions revealed 12 transmembrane segments (for all except CLN3), corresponding to the common MFS structure. With single-cell RNA sequencing and in situ proximity ligation assay on brain cells, co-expressions of several atypical SLCs were identified. Finally, the transcription levels of all genes were analysed in the hypothalamic N25/2 cell line after complete amino acid starvation, showing altered expression levels for several atypical SLCs.