Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 820
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 300, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637728

RESUMO

Cigarette butts (CBs) have become the most ubiquitous form of anthropogenic litter globally. CBs contain various hazardous chemicals that persist in the environment for longer period. These substances are susceptible to leaching into the environment through waterways. The recent study was aimed to evaluate the effects of disposed CBs on the growth and development of Azolla pinnata, an aquatic plant. It was found that after a span of 6 days, the root length, surface area, number of fronds, and photosynthetic efficacy of plant were considerably diminished on the exposure of CBs (concentrations 0 to 40). The exposure of CBs led to a decrease in the FM, FV/F0, and φP0, in contrast, the φD0 increased in response to CBs concentration. Moreover, ABS/CSm, TR0/CSm, and ET0/CSm displayed a negative correlation with CB-induced chemical stress. The performance indices were also decreased (p-value ≤ 0.05) at the highest concentration of CBs. LD50 and LD90 represent the lethal dose, obtained value for LD50 is 20.30 CBs and LD90 is 35.26 CBs through probit analysis. Our results demonstrate that the CBs cause irreversible damage of photosynthetic machinery in plants and also reflect the efficacy of chlorophyll a fluorescence analysis and JIP test for assessing the toxicity of CBs in plants.


Assuntos
Fotossíntese , Produtos do Tabaco , Clorofila A , Fotossíntese/fisiologia , Ecotoxicologia
2.
Sci Total Environ ; 927: 171804, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38513865

RESUMO

Waste disposal in landfills remains a global concern. Despite technological developments, landfill leachate poses a hazard to ecosystems and human health since it acts as a secondary reservoir for legacy and emerging pollutants. This study provides a systematic and scientometric review of the nature and toxicity of pollutants generated by landfills and means of assessing their potential risks. Regarding human health, unregulated waste disposal and pathogens in leachate are the leading causes of diseases reported in local populations. Both in vitro and in vivo approaches have been employed in the ecotoxicological risk assessment of landfill leachate, with model organisms ranging from bacteria to birds. These studies demonstrate a wide range of toxic effects that reflect the complex composition of leachate and geographical variations in climate, resource availability and management practices. Based on bioassay (and other) evidence, categories of persistent chemicals of most concern include brominated flame retardants, per- and polyfluorinated chemicals, pharmaceuticals and alkyl phenol ethoxylates. However, the emerging and more general literature on microplastic toxicity suggests that these particles might also be problematic in leachate. Various mitigation strategies have been identified, with most focussing on improving landfill design or leachate treatment, developing alternative disposal methods and reducing waste volume through recycling or using more sustainable materials. The success of these efforts will rely on policies and practices and their enforcement, which is seen as a particular challenge in developing nations and at the international (and transboundary) level. Artificial intelligence and machine learning afford a wide range of options for evaluating and reducing the risks associated with leachates and gaseous emissions from landfills, and various approaches tested or having potential are discussed. However, addressing the limitations in data collection, model accuracy, real-time monitoring and our understanding of environmental impacts will be critical for realising this potential.


Assuntos
Inteligência Artificial , Ecotoxicologia , Instalações de Eliminação de Resíduos , Humanos , Monitoramento Ambiental/métodos , Política Ambiental , Eliminação de Resíduos/métodos , Medição de Risco , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
3.
Environ Sci Pollut Res Int ; 31(19): 27817-27828, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38517631

RESUMO

Water and several chemicals, including dyestuffs, surfactants, acids, and salts, are required during textile dyeing processes. Surfactants are harmful to the aquatic environment and induce several negative biological effects in exposed biota. In this context, the present study aimed to assess acute effects of five surfactants, comprising anionic and nonionic classes, and other auxiliary products used in fiber dyeing processes to aquatic organisms Vibrio fischeri (bacteria) and Daphnia similis (cladocerans). The toxicities of binary surfactant mixtures containing the anionic surfactant dodecylbenzene sulfonate + nonionic fatty alcohol ethoxylate and dodecylbenzene sulfonate + nonionic alkylene oxide were also evaluated. Nonionic surfactants were more toxic than anionic compounds for both organisms. Acute nonionic toxicity ranged from 1.3 mg/L (fatty alcohol ethoxylate surfactant) to 2.6 mg/L (ethoxylate surfactant) for V. fischeri and from 1.9 mg/L (alkylene oxide surfactant) to 12.5 mg/L (alkyl aryl ethoxylated and aromatic sulfonate surfactant) for D. similis, while the anionic dodecylbenzene sulfonate EC50s were determined as 66.2 mg/L and 19.7 mg/L, respectively. Both mixtures were very toxic for the exposed organisms: the EC50 average in the anionic + fatty alcohol ethoxylate mixture was of 1.0 mg/L ± 0.11 for V. fischeri and 4.09 mg/L ± 0.69 for D. similis. While the anionic + alkylene oxide mixture, EC50 of 3.34 mg/L for D. similis and 3.60 mg/L for V. fischeri. These toxicity data suggested that the concentration addition was the best model to explain the action that is more likely to occur for mixture for the dodecylbenzene sulfonate and alkylene oxide mixtures in both organisms. Our findings also suggest that textile wastewater surfactants may interact and produce different responses in aquatic organisms, such as synergism and antagonism. Ecotoxicological assays provide relevant information concerning hazardous pollutants, which may then be adequately treated and suitably managed to reduce toxic loads, associated to suitable management plans.


Assuntos
Aliivibrio fischeri , Benzenossulfonatos , Daphnia , Tensoativos , Águas Residuárias , Poluentes Químicos da Água , Tensoativos/toxicidade , Poluentes Químicos da Água/toxicidade , Águas Residuárias/química , Aliivibrio fischeri/efeitos dos fármacos , Animais , Daphnia/efeitos dos fármacos , Ecotoxicologia , Têxteis
4.
J Environ Sci Health B ; 59(4): 170-182, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425027

RESUMO

For the European risk assessment (RA) for soil organisms exposed to plant protection products (PPPs) endpoints from ecotoxicological laboratory studies are compared with predicted environmental concentrations in soil (PECSOIL) at first tier. A safety margin must be met; otherwise, a higher tier RA is triggered (usually soil organism field studies). A new tiered exposure modeling guidance was published by EFSA to determine PECSOIL. This work investigates its potential impact on future soil RA. PECSOIL values for >50 active substances and metabolites were calculated and compared with the respective endpoints for soil organisms to calculate the RA failure rate. Compared to the current (FOCUS) exposure modeling, PECSOIL values for all EU regulatory zones considerably increased, e.g., resulting in active substance RA failure rates of 67%, 58% and 36% for modeling Tier-1, Tier-2 and Tier-3A, respectively. The main driving factors for elevated PECSOIL were soil bulk density, crop interception and wash-off, next to obligatory modeling and scenario adjustment factors. Spatial PECSOIL scenario selection procedures result in agronomically atypical soil characteristics (e.g., soil bulk density values in Tier-3A scenarios far below typical European agricultural areas). Consequently, exposure modeling and ecotoxicological study characteristics are inconsistent, which hinders scientifically reasonable comparison of both in the RA.


Assuntos
Monitoramento Ambiental , Solo , Monitoramento Ambiental/métodos , Agricultura , Ecotoxicologia , Medição de Risco/métodos
5.
Environ Sci Process Impacts ; 26(4): 686-699, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38372577

RESUMO

An environmental toxicological assessment of fourteen furanic compounds serving as valuable building blocks produced from biomass was performed. The molecules selected included well studied compounds serving as control examples to compare the toxicity exerted against a variety of highly novel furans which have been additionally targeted as potential or current alternatives to biofuels, building blocks and polymer monomers. The impact of the furan platform chemicals targeted on widely applied ecotoxicity model organisms was determined employing the marine bioluminescent bacterium Aliivibrio fischeri and the freshwater green microalgae Raphidocelis subcapitata, while their ecotoxicity effects on plants were assessed using dicotyledonous plants Sinapis alba and Lepidium sativum. Regarding the specific endpoints evaluated, the furans tested were slightly toxic or practically nontoxic for A. fischeri following 5 and 15 min of exposure. Moreover, most of the building blocks did not affect the growth of L. sativum and S. alba at 150 mg L-1 for 72 h of exposure. Specifically, 9 and 11 out of the 14 furan platform chemicals tested were non-effective or stimulant for L. sativum and S. alba respectively. Given that furans comprise common inhibitors in biorefinery fermentations, the growth inhibition of the specific building blocks was studied using the industrial workhorse yeast Saccharomyces cerevisiae, demonstrating insignificant inhibition on eukaryotic cell growth following 6, 12 and 16 h of exposure at a concentration of 500 mg L-1. The study provides baseline information to unravel the ecotoxic effects and to confirm the green aspects of a range of versatile biobased platform molecules.


Assuntos
Aliivibrio fischeri , Biomassa , Furanos , Furanos/toxicidade , Aliivibrio fischeri/efeitos dos fármacos , Lepidium sativum/efeitos dos fármacos , Lepidium sativum/crescimento & desenvolvimento , Ecotoxicologia/métodos , Bioensaio/métodos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Testes de Toxicidade/métodos , Sinapis/efeitos dos fármacos , Microalgas/efeitos dos fármacos
6.
Sci Total Environ ; 919: 170745, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340832

RESUMO

Various types of pollutants widely present in environmental media, including synthetic and natural chemicals, physical pollutants such as radioactive substances, ultraviolet rays, and noise, as well as biological organisms, pose a huge threat to public health. Therefore, it is crucial to accurately and effectively explore the human physiological responses and toxicity mechanisms of pollutants to prevent diseases caused by pollutants. The emerging toxicological testing method biomimetic microfluidic chips (BMCs) exhibit great potential in environmental pollutant toxicity assessment due to their superior biomimetic properties. The BMCs are divided into cell-on-chips and organ-on-chips based on the distinctions in bionic simulation levels. Herein, we first summarize the characteristics, emergence and development history, composition and structure, and application fields of BMCs. Then, with a focus on the toxicity mechanisms of pollutants, we review the applications and advances of the BMCs in the toxicity assessment of physical, chemical, and biological pollutants, respectively, highlighting its potential and development prospects in environmental toxicology testing. Finally, the opportunities and challenges for further use of BMCs are discussed.


Assuntos
Poluentes Ambientais , Humanos , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise , Biomimética , Microfluídica , Saúde Pública , Ecotoxicologia
7.
Environ Sci Technol ; 58(4): 1877-1881, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38245867

RESUMO

Environmental risk assessment traditionally relies on a wide range of in vivo testing to assess the potential hazards of chemicals in the environment. These tests are often time-consuming and costly and can cause test organisms' suffering. Recent developments of reliable low-cost alternatives, both in vivo- and in silico-based, opened the door to reconsider current toxicity assessment. However, many of these new approach methodologies (NAMs) rely on high-quality annotated genomes for surrogate species of regulatory risk assessment. Currently, a lack of genomic information slows the process of NAM development. Here, we present a phylogenetically resolved overview of missing genomic resources for surrogate species within a regulatory ecotoxicological risk assessment. We call for an organized and systematic effort within the (regulatory) ecotoxicological community to provide these missing genomic resources. Further, we discuss the potential of a standardized genomic surrogate species landscape to enable a robust and nonanimal-reliant ecotoxicological risk assessment in the systems ecotoxicology era.


Assuntos
Ecotoxicologia , Genômica , Medição de Risco/métodos
8.
Environ Toxicol Chem ; 43(3): 513-525, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37067359

RESUMO

The extrapolation of biological data across species is a key aspect of biomedical research and drug development. In this context, comparative biology considerations are applied with the goal of understanding human disease and guiding the development of effective and safe medicines. However, the widespread occurrence of pharmaceuticals in the environment and the need to assess the risk posed to wildlife have prompted a renewed interest in the extrapolation of pharmacological and toxicological data across the entire tree of life. To address this challenge, a biological "read-across" approach, based on the use of mammalian data to inform toxicity predictions in wildlife species, has been proposed as an effective way to streamline the environmental safety assessment of pharmaceuticals. Yet, how effective has this approach been, and are we any closer to being able to accurately predict environmental risk based on known human risk? We discuss the main theoretical and experimental advancements achieved in the last 10 years of research in this field. We propose that a better understanding of the functional conservation of drug targets across species and of the quantitative relationship between target modulation and adverse effects should be considered as future research priorities. This pharmacodynamic focus should be complemented with the application of higher-throughput experimental and computational approaches to accelerate the prediction of internal exposure dynamics. The translation of comparative (eco)toxicology research into real-world applications, however, relies on the (limited) availability of experts with the skill set needed to navigate the complexity of the problem; hence, we also call for synergistic multistakeholder efforts to support and strengthen comparative toxicology research and education at a global level. Environ Toxicol Chem 2024;43:513-525. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Ecotoxicologia , Mamíferos , Animais , Humanos , Medição de Risco/métodos , Ecotoxicologia/métodos , Preparações Farmacêuticas
9.
Integr Environ Assess Manag ; 20(2): 367-383, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38084033

RESUMO

The Society of Environmental Toxicology and Chemistry (SETAC) convened a Pellston workshop in 2022 to examine how information on climate change could be better incorporated into the ecological risk assessment (ERA) process for chemicals as well as other environmental stressors. A major impetus for this workshop is that climate change can affect components of ecological risks in multiple direct and indirect ways, including the use patterns and environmental exposure pathways of chemical stressors such as pesticides, the toxicity of chemicals in receiving environments, and the vulnerability of species of concern related to habitat quality and use. This article explores a modeling approach for integrating climate model projections into the assessment of near- and long-term ecological risks, developed in collaboration with climate scientists. State-of-the-art global climate modeling and downscaling techniques may enable climate projections at scales appropriate for the study area. It is, however, also important to realize the limitations of individual global climate models and make use of climate model ensembles represented by statistical properties. Here, we present a probabilistic modeling approach aiming to combine projected climatic variables as well as the associated uncertainties from climate model ensembles in conjunction with ERA pathways. We draw upon three examples of ERA that utilized Bayesian networks for this purpose and that also represent methodological advancements for better prediction of future risks to ecosystems. We envision that the modeling approach developed from this international collaboration will contribute to better assessment and management of risks from chemical stressors in a changing climate. Integr Environ Assess Manag 2024;20:367-383. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Modelos Climáticos , Ecossistema , Teorema de Bayes , Mudança Climática , Ecotoxicologia , Medição de Risco
10.
Integr Environ Assess Manag ; 20(1): 248-262, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37435836

RESUMO

The built environment, even at its "greenest," inevitably entails changing ecosystem structure and function. Multiple sustainable development tools and approaches are available to reduce environmental harm from built development. However, the reality that society exists within fully integrated socioecological systems, wholly interdependent on supporting ecosystems, is not yet adequately represented in regulation or supporting tools. Regenerative development seeks to address this interdependence in part by improving the health of supporting socioecological systems through the development process. We demonstrate the relevance of a series of approaches-Local Nature-Related Planning Policy (LNRPP), Biodiversity Net Gain (BNG), the Environmental Benefits from Nature Tool (EBN Tool), Nature Assessment Tool for Urban and Rural Environments (NATURE Tool), and Rapid Assessment of Wetland Ecosystem Services+ (RAWES+)-for their ability to meet their stated aims and objectives and how these relate to wider regenerative themes. A comparative analysis of the five approaches is done by applying them to a practical case study site, resulting in policy- and practice-relevant learning and recommendations. The research reveals current gaps in methodology, which can lead to adverse outcomes for sustainability. This is particularly clear for the spatial and temporal scales across which each approach operates. In addition, this research discusses the inherent limitations of taking a reductionist approach to examining complex systems. Integr Environ Assess Manag 2024;20:248-262. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Ecossistema , Monitoramento Ambiental , Monitoramento Ambiental/métodos , Biodiversidade , Ecotoxicologia , Áreas Alagadas , Medição de Risco/métodos
11.
Integr Environ Assess Manag ; 20(1): 263-278, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37340847

RESUMO

Natural and seminatural habitats of soil living organisms in cultivated landscapes can be subject to unintended exposure by active substances of plant protection products (PPPs) used in adjacent fields. Spray-drift deposition and runoff are considered major exposure routes into such off-field areas. In this work, we develop a model (xOffFieldSoil) and associated scenarios to estimate exposure of off-field soil habitats. The modular model approach consists of components, each addressing a specific aspect of exposure processes, for example, PPP use, drift deposition, runoff generation and filtering, estimation of soil concentrations. The approach is spatiotemporally explicit and operates at scales ranging from local edge-of-field to large landscapes. The outcome can be aggregated and presented to the risk assessor in a way that addresses the dimensions and scales defined in specific protection goals (SPGs). The approach can be used to assess the effect of mitigation options, for example, field margins, in-field buffers, or drift-reducing technology. The presented provisional scenarios start with a schematic edge-of-field situation and extend to real-world landscapes of up to 5 km × 5 km. A case study was conducted for two active substances of different environmental fate characteristics. Results are presented as a collection of percentiles over time and space, as contour plots, and as maps. The results show that exposure patterns of off-field soil organisms are of a complex nature due to spatial and temporal variabilities combined with landscape structure and event-based processes. Our concepts and analysis demonstrate that more realistic exposure data can be meaningfully consolidated to serve in standard-tier risk assessments. The real-world landscape-scale scenarios indicate risk hot-spots that support the identification of efficient risk mitigation. As a next step, the spatiotemporally explicit exposure data can be directly coupled to ecological effect models (e.g., for earthworms or collembola) to conduct risk assessments at biological entity levels as required by SPGs. Integr Environ Assess Manag 2024;20:263-278. © 2023 Applied Analysis Solutions LLC and WSC Scientific GmbH and Bayer AG and The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Ecossistema , Solo , Medição de Risco , Ecotoxicologia , Modelos Teóricos
12.
Integr Environ Assess Manag ; 20(2): 337-358, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37452668

RESUMO

There is increasing interest in further developing the plant protection product (PPP) environmental risk assessment, particularly within the European Union, to include the assessment of soil microbial community composition, as measured by metabarcoding approaches. However, to date, there has been little discussion as to how this could be implemented in a standardized, reliable, and robust manner suitable for regulatory decision-making. Introduction of metabarcoding-based assessments of the soil microbiome into the PPP risk assessment would represent a significant increase in the degree of complexity of the data that needs to be processed and analyzed in comparison to the existing risk assessment on in-soil organisms. The bioinformatics procedures to process DNA sequences into community compositional data sets currently lack standardization, while little information exists on how these data should be used to generate regulatory endpoints and the ways in which these endpoints should be interpreted. Through a thorough and critical review, we explore these challenges. We conclude that currently, we do not have a sufficient degree of standardization or understanding of the required bioinformatics and data analysis procedures to consider their use in an environmental risk assessment context. However, we highlight critical knowledge gaps and the further research required to understand whether metabarcoding-based assessments of the soil microbiome can be utilized in a statistically and ecologically relevant manner within a PPP risk assessment. Only once these challenges are addressed can we consider if and how we should use metabarcoding as a tool for regulatory decision-making to assess and monitor ecotoxicological effects on soil microorganisms within an environmental risk assessment of PPPs. Integr Environ Assess Manag 2024;20:337-358. © 2023 SETAC.


Assuntos
Microbiota , Solo , Ecotoxicologia , Medição de Risco/métodos
13.
Integr Environ Assess Manag ; 20(2): 433-453, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38044542

RESUMO

The environmental management cycles for chemicals and climate change (EMC4 ) is a suggested conceptual framework for integrating climate change aspects into chemical risk management. The interaction of climate change and chemical risk brings together complex systems that are imperfectly understood by science. Making management decisions in this context is therefore difficult and often exacerbated by a lack of data. The consequences of poor decision-making can be significant for both environmental and human health. This article reflects on the ways in which existing chemicals management systems consider climate change and proposes the EMC4 conceptual framework, which is a tool for decision-makers operating at different spatial scales. Also presented are key questions raised by the tool to help the decision-maker identify chemical risks from climate change, management options, and, importantly, the different types of actors that are instrumental in managing that risk. Case studies showing decision-making at different spatial scales are also presented highlighting the conceptual framework's applicability to multiple scales. The United Nations Environment Programme's development of an intergovernmental Science Policy Panel on Chemicals and Waste has presented an opportunity to promote and generate research highlighting the impacts of chemicals and climate change interlinkages. Integr Environ Assess Manag 2024;20:433-453. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Humanos , Medição de Risco , Gestão de Riscos , Ecotoxicologia
14.
Environ Toxicol Chem ; 43(2): 440-449, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38051527

RESUMO

The extrapolation of effects from controlled standard laboratory tests to real environmental conditions is a major challenge facing ecological risk assessment (ERA) of chemicals. Toxicokinetic-toxicodynamic (TKTD) models, such as those based on dynamic energy budget (DEB) theory, can play an important role in filling this gap. Through the years, different practical TKTD models have been derived from DEB theory, ranging from the full "standard" DEB animal model to simplified "DEBtox" models. It is currently unclear what impact a different level of model complexity can have on the regulatory risk assessment. In the present study, we compare the performance of two DEB-TKTD models with different levels of complexity, focusing on model calibration on standard test data and on forward predictions for untested time-variable exposure profiles. The first model is based on the standard DEB model with primary parameters, whereas the second is a reduced version with compound parameters, based on DEBkiss. After harmonization of the modeling choices, we demonstrate that these two models can achieve very similar performances both in the calibration step and in the forward prediction step. With the data presented in the present study, selection of the most suitable TKTD model for ERA therefore cannot be based alone on goodness-of-fit or on the precision of model predictions (within current ERA procedures for pesticides) but would likely be based on the trade-off between ease of use and model flexibility. We also stress the importance of modeling choices, such as how to fill gaps in the information content of experimental toxicity data and how to accommodate differences in growth and reproduction between different data sets for the same chemical-species combination. Environ Toxicol Chem 2024;43:440-449. © 2023 ibacon GmbH. Bayer AG and The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Praguicidas , Animais , Medição de Risco , Praguicidas/toxicidade , Ecotoxicologia
15.
Integr Environ Assess Manag ; 20(2): 359-366, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38124219

RESUMO

The impacts of global climate change are not yet well integrated with the estimates of the impacts of chemicals on the environment. This is evidenced by the lack of consideration in national or international reports that evaluate the impacts of climate change and chemicals on ecosystems and the relatively few peer-reviewed publications that have focused on this interaction. In response, a 2011 Pellston Workshop® was held on this issue and resulted in seven publications in Environmental Toxicology and Chemistry. Yet, these publications did not move the field toward climate change and chemicals as important factors together in research or policy-making. Here, we summarize the outcomes of a second Pellston Workshop® on this topic held in 2022 that included climate scientists, environmental toxicologists, chemists, and ecological risk assessors from 14 countries and various sectors. Participants were charged with assessing where climate models can be applied to evaluating potential exposure and ecological effects at geographical and temporal scales suitable for ecological risk assessment, and thereby be incorporated into adaptive risk management strategies. We highlight results from the workshop's five publications included in the special series "Incorporating Global Climate Change into Ecological Risk Assessments: Strategies, Methods and Examples." We end this summary with the overall conclusions and recommendations from participants. Integr Environ Assess Manag 2024;20:359-366. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Poluentes Ambientais , Humanos , Poluentes Ambientais/análise , Ecossistema , Modelos Climáticos , Mudança Climática , Ecotoxicologia , Medição de Risco/métodos , Gestão de Riscos
16.
Chemosphere ; 342: 140167, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37717917

RESUMO

Among emerging layered materials, 2D transition metal dichalcogenides (TMDs) nanosheets (n-sheets) have received increasing attention for optoelectronics, energy storage, and, recently, for bioremediation and advanced biomedical applications; however, a lack of ecotoxicological in vivo studies is evident. Herein, for the first time, the potential nanotoxicity of liquid phase exfoliated Group VI TMDs n-sheets (MoS2, WS2, WSe2, and MoSe2) was comparatively investigated using zebrafish embryos (Z-EBs) as an in-vivo model. The 2D n-sheets were produced directly in aqueous-medium, the obtained n-sheets were characterized by scanning electron microscopy, Raman and visible spectroscopy, and their potential nanotoxicity was investigated by fish embryo test OECD TG 236. Chorionated and dechorionated embryos were used to assess the severity of TMD exposure. The survival rate, sublethal alteration during embryogenesis, hatching rate, and mortality were evaluated. TMDs n-sheets tend to adhere to the Z-EBs surface depending on their chemistry. Despite this, TMDs did not show lethal effects; weak sublethal effects were found for MoS2 and WSe2, while slight hatching delays were registered for MoSe2 and WSe2. The observed effects are attributable to the TMDs' tendency to interact with Z-EBs, because of the different chemistry. This work demonstrates how water-dispersed TMDs are potential eco/biocompatible materials.


Assuntos
Molibdênio , Peixe-Zebra , Animais , Molibdênio/toxicidade , Materiais Biocompatíveis , Ecotoxicologia , Metais
17.
Environ Toxicol Chem ; 42(11): 2302-2316, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37589402

RESUMO

Per- and polyfluorinated substances (PFAS) are a group of thousands of ubiquitously applied persistent industrial chemicals. The field of PFAS environmental research is developing rapidly, but suffers from substantial biases toward specific compounds, environmental compartments, and organisms. The aim of our study was therefore to highlight current developments and to identify knowledge gaps and subsequent research needs that would contribute to a comprehensive environmental risk assessment for PFAS. To this end, we consulted the open literature and databases and found that knowledge of the environmental fate of PFAS is based on the analysis of <1% of the compounds categorized as PFAS. Moreover, soils and suspended particulate matter remain largely understudied. The bioavailability, bioaccumulation, and food web transfer studies of PFAS also focus on a very limited number of compounds and are biased toward aquatic biota, predominantly fish, and less frequently aquatic invertebrates and macrophytes. The available ecotoxicity data revealed that only a few PFAS have been well studied for their environmental hazards, and that PFAS ecotoxicity data are also strongly biased toward aquatic organisms. Ecotoxicity studies in the terrestrial environment are needed, as well as chronic, multigenerational, and community ecotoxicity research, in light of the persistency and bioaccumulation of PFAS. Finally, we identified an urgent need to unravel the relationships among sorption, bioaccumulation, and ecotoxicity on the one hand and molecular descriptors of PFAS chemical structures and physicochemical properties on the other, to allow predictions of exposure, bioaccumulation, and toxicity. Environ Toxicol Chem 2023;42:2302-2316. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Ecotoxicologia , Fluorocarbonos , Animais , Invertebrados , Medição de Risco , Pesquisa , Fluorocarbonos/toxicidade
18.
Crit Rev Toxicol ; 53(6): 339-371, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37554099

RESUMO

Following the European Commission Endocrine Disruptor Criteria, substances shall be considered as having endocrine disrupting properties if they (a) elicit adverse effects, (b) have endocrine activity, and (c) the two are linked by an endocrine mode-of-action (MoA) unless the MoA is not relevant for humans. A comprehensive, structured approach to assess whether substances meet the Endocrine Disruptor Criteria for the thyroid modality (EDC-T) is currently unavailable. Here, the European Centre for Ecotoxicology and Toxicology of Chemicals Thyroxine Task Force and CropLife Europe propose a Thyroid Function-Related Neurodevelopmental Toxicity Testing and Assessment Scheme (Thyroid-NDT-TAS). In Tier 0, before entering the Thyroid-NDT-TAS, all available in vivo, in vitro and in silico data are submitted to weight-of-evidence (WoE) evaluations to determine whether the substance of interest poses a concern for thyroid disruption. If so, Tier 1 of the Thyroid-NDT-TAS includes an initial MoA and human relevance assessment (structured by the key events of possibly relevant adverse outcome pathways) and the generation of supportive in vitro/in silico data, if relevant. Only if Tier 1 is inconclusive, Tier 2 involves higher-tier testing to generate further thyroid- and/or neurodevelopment-related data. Tier 3 includes the final MoA and human relevance assessment and an overarching WoE evaluation to draw a conclusion on whether, or not, the substance meets the EDC-T. The Thyroid-NDT-TAS is based on the state-of-the-science, and it has been developed to minimise animal testing. To make human safety assessments more accurate, it is recommended to apply the Thyroid-NDT-TAS during future regulatory assessments.


Assuntos
Disruptores Endócrinos , Glândula Tireoide , Animais , Humanos , Disruptores Endócrinos/toxicidade , Testes de Toxicidade , Ecotoxicologia , Hormônios Tireóideos , Medição de Risco
19.
Sci Total Environ ; 897: 165418, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37433332

RESUMO

Sublethal effects are becoming more relevant in ecotoxicological test methods due to their higher sensitivity compared to lethal endpoints and their preventive nature. Such a promising sublethal endpoint is the movement behavior of invertebrates which is associated with the direct maintenance of various ecosystem processes, hence being of special interest for ecotoxicology. Disturbed movement behavior is often related to neurotoxicity and can affect drift, mate-finding, predator avoidance, and therefore population dynamics. We show the practical implementation of the ToxmateLab, a new device that allows monitoring the movement behavior of up to 48 organisms simultaneously, for behavioral ecotoxicology. We quantified behavioral reactions of Gammarus pulex (Amphipoda, Crustacea) after exposure to two pesticides (dichlorvos and methiocarb) and two pharmaceuticals (diazepam and ibuprofen) at sublethal, environmentally relevant concentrations. We simulated a short-term pulse contamination event that lasted 90 min. Within this short test period, we successfully identified behavioral patterns that were most pronounced upon exposure to the two pesticides: Methiocarb initially triggered hyperactivity, after which baseline behavior was restored. On the other hand, dichlorvos induced hypoactivity starting at a moderate concentration of 5 µg/L - a pattern we also found at the highest concentration of ibuprofen (10 µg/L). An additional acetylcholine esterase inhibition assay revealed no significant impact of the enzyme activity that would explain the altered movement behavior. This suggests that in environmentally realistic scenarios chemicals can induce stress - apart from mode-of-action - that affects non-target organisms' behavior. Overall, our study proves the practical applicability of empirical behavioral ecotoxicological approaches and thus represents a next step towards routine practical use.


Assuntos
Anfípodes , Metiocarb , Praguicidas , Poluentes Químicos da Água , Animais , Ecossistema , Ibuprofeno , Diclorvós/farmacologia , Metiocarb/farmacologia , Ecotoxicologia , Invertebrados , Praguicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Anfípodes/fisiologia
20.
Integr Environ Assess Manag ; 19(5): 1188-1191, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37421247

RESUMO

The weight of evidence (WoE) approach conflates the aspects of quality, reliability, relevance, and consistency of data and information to systematically strengthen the body of evidence and enable credible communication and decision-making on chemical risk assessment. Between 2015 and 2019, the Society of Environmental Toxicology and Chemistry (SETAC) held several workshops in all the geographical units with scientists and managers from academia, government, and business sectors focusing on the chemical risk-assessment approach. This article summarizes the knowledge that informs the needs concerning application of WoE, especially in the context of developing countries. This effort supports the use of existing data and test strategies for assessing chemical toxicity, exposure, and risk, and highlights the critical process for risk assessors to convey and discuss information sufficiency and uncertainty mitigation strategy with risk managers. This article complements the four articles in the special series that provide a critical review of existing frameworks for chemical risk screening and management, and applications of the WoE approach for assessing exposure in the aquatic environment, prediction of fish toxicity, and bioaccumulation. Collectively, the articles exemplify the use of WoE approaches to evaluate chemicals that are data rich and/or data poor for decision-making. They integrate the WoE concepts and approaches into practical considerations and guidance, and help to scale the value of WoE in supporting sound chemical risk assessment and science-based policy implementation. Integr Environ Assess Manag 2023;19:1188-1191. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Ecotoxicologia , Objetivos , Animais , Reprodutibilidade dos Testes , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA