Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.201
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Environ Manage ; 364: 121459, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38870798

RESUMO

The current trend in the European biogas industry is to shift away from electricity production towards the production of biomethane for the need to replace natural gas. The upgrading of biogas to biomethane is normally performed by separating the biogas in a stream containing natural gas grid quality methane and a stream containing mostly CO2. The CO2 stream is normally released into the atmosphere; however, part of the methane may still remain in it, and, if not oxidized, even a small fraction of methane released may jeopardise all the GHG emissions savings from producing the biomethane, being methane a powerful climate forcer. Scope of this work is to assess the opportunity cost of installing an Off Gas Combustion (OGC) device in biomethane upgrading plants. The currently available technologies for biogas upgrading to biomethane and the most common technology of OGC (the Regenerative Thermal Oxidisers, RTO) are described according to their performances and cost. Then the cost per tonne of CO2eq avoided associated to the adoption of RTO systems in relation to the upgrading performance is calculated to identify a potential threshold for an effective and efficient application of the RTO systems. It is found that, in case of upgrading technologies which can capture almost all biomethane in the upgrading off-gas (i.e. 99.9%), currently the adoption of an RTO to oxidise the methane left in the off-gas would add costs and need additional fuel to be operated, but would generate limited GHG emission savings, therefore the cost per tonne of CO2eq emissions avoided would result not competitive with other GHG emissions mitigation investments. While the installation of RTOs on upgrading systems with a methane slip of 0.3%, or higher, normally results cost competitive in reducing GHG emissions. The installation of an RTO on systems with a methane slip of 0.2% results in a cost per tonne of CO2eq emissions avoided of 50-100 euro, which is comparable to the current cost of CO2 emissions allowances in the EU ETS carbon market, representing therefore a reasonable choice for a threshold on methane slip regulation for biogas upgrading systems.


Assuntos
Biocombustíveis , Dióxido de Carbono , Gases de Efeito Estufa , Metano , Gases de Efeito Estufa/análise , Dióxido de Carbono/análise , Efeito Estufa , Gás Natural
2.
J Environ Manage ; 363: 121377, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850925

RESUMO

Petcoke generated during bitumen upgrading is a potential source of vanadium for the global market. Recovering vanadium from the fly ash originating from the combustion of petcoke appears to be a suitable route for commercial implementation, given its high extraction rate. Although the technical feasibility of the recovery process has been proven, the environmental impact should be addressed. Information on the greenhouse (GHG) emissions from the process is scarce in the public domain. Therefore, a framework was developed for assessment of life cycle GHG emissions for extraction of vanadium from petcoke-based fly ash. This framework was used to perform a life cycle GHG emissions assessment of a water leaching and salt roasting process to extract vanadium from fly ash. For the upstream GHG emissions, we collected direct emissions data and energy consumption from the literature, and, for the process emissions, we developed a model to estimate energy and material balances based on process conditions. The emission factors for electricity production, fuel combustion, production of consumables, and gas treatment were used to obtain the life cycle GHG emissions. The results show that the life cycle GHG emission of vanadium recovery are 26.6-3.9+0.9 kg CO2eq/kg V2O5; 66% of these are direct GHG emissions. The process GHG emissions from fly ash decarbonization contribute the most to the life cycle GHG emissions. The air-to-fuel ratio for roasting and the GHG emission factors for petcoke combustion and the gas treatment operation are the inputs that most effect the model output. Compared with the production of V2O5 from vanadium titano-magnetite ore and bitumen upgrading spent catalyst, the petcoke fly ash pathway generates about twice the life cycle GHG emissions. This study's results can help determine areas of improvement in the upstream operations and the recovery process to reduce the life cycle GHG emissions to levels that can compete with primary and alternative routes to produce vanadium pentoxide. The results of this study can help in decision-making associated with vanadium extract from fly ash produced from combustion of petcoke.


Assuntos
Cinza de Carvão , Vanádio , Vanádio/análise , Gases de Efeito Estufa/análise , Hidrocarbonetos/análise , Efeito Estufa
3.
Environ Sci Technol ; 58(26): 11386-11399, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38872476

RESUMO

China's dairy farming is undergoing a critical transition from extensive to industrial systems. To achieve sustainable milk production within China's dual-carbon goals, understanding the multidimensional impacts of industrialization on greenhouse gas (GHG) emissions is imperative. This study comprehensively analyzed the implications of China's dairy industrialization on GHG emissions and explored future mitigation potential. Results indicated that industrial systems exhibited lower methane but higher carbon dioxide intensities, with net GHG intensity lower than other systems. During 2002-2020, China's milk production increased by 165%, while GHG emissions increased by 105% to 50.27 Tg CO2eq, accompanying an industrialization rate increased from 16% to 75%. The industrialization progress played a mitigating effect on GHG primarily through intensification within individual production systems before 2008 and transformation between systems post-2008. However, the industrialization's effect was relatively modest compared to other socio-economic factors. By 2030, 11.8 Tg CO2eq will be triggered by predicted milk production growth, but only 0.6 Tg can be offset by system transformation. Integrating measures to improve feed, herd, and manure management on industrial farms could decouple GHG emissions from milk production and achieve a carbon peak before 2030. We suggest transforming to improved industrial systems as a necessary step toward sustainable livestock production.


Assuntos
Indústria de Laticínios , Gases de Efeito Estufa , China , Dióxido de Carbono/análise , Animais , Desenvolvimento Industrial , Metano , Leite/química , Efeito Estufa
4.
Environ Sci Technol ; 58(26): 11352-11362, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38899559

RESUMO

Cellulosic biomass-based sustainable aviation fuels (SAFs) can be produced from various feedstocks. The breakeven price and carbon intensity of these feedstock-to-SAF pathways are likely to differ across feedstocks and across spatial locations due to differences in feedstock attributes, productivity, opportunity costs of land for feedstock production, soil carbon effects, and feedstock composition. We integrate feedstock to fuel supply chain economics and life-cycle carbon accounting using the same system boundary to quantify and compare the spatially varying greenhouse gas (GHG) intensities and costs of GHG abatement with SAFs derived from four feedstocks (switchgrass, miscanthus, energy sorghum, and corn stover) at 4 km resolution across the U.S. rainfed region. We show that the optimal feedstock for each location differs depending on whether the incentive is to lower breakeven price, carbon intensity, or cost of carbon abatement with biomass or to have high biomass production per unit land. The cost of abating GHG emissions with SAF ranges from $181 Mg-1 CO2e to more than $444 Mg-1 CO2e and is lowest with miscanthus in the Midwest, switchgrass in the south, and energy sorghum in a relatively small region in the Great Plains. While corn stover-based SAF has the lowest breakeven price per gallon, it has the highest cost of abatement due to its relatively high GHG intensity. Our findings imply that different types of policies, such as volumetric targets, tax credits, and low carbon fuel standards, will differ in the mix of feedstocks they incentivize and locations where they are produced in the U.S. rainfed region.


Assuntos
Biomassa , Gases de Efeito Estufa , Celulose , Efeito Estufa , Biocombustíveis , Aviação
5.
Nat Food ; 5(6): 524-532, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38806695

RESUMO

Switching between similar food and beverage products may reduce greenhouse gas emissions (GHGe). Here, using consumer data linked to 23,550 product-specific GHGe values, we estimated annual GHGe attributable to product purchases consumed at home in Australia and calculated reductions from specific switches. Potential changes to mean Health Star Rating, mean energy density and the proportion of ultraprocessed foods purchased were assessed. Approximately 31 million tonnes of GHGe were attributable to products consumed at home in 2019, the three highest contributors of GHGe being 'meat and meat products' (49%), 'dairy' (17%) and 'non-alcoholic beverages' (16%). Switching higher-emission products for 'very similar' lower-emission products could reduce total emissions by 26%. Switches to 'less similar' lower-emission products could lead to a 71% reduction. Switches had little impact on the average Health Star Rating, energy density of purchases and proportion of ultraprocessed foods purchased. Directing manufacturing and marketing towards lower-environmental-impact products and signposting such options to consumers are key.


Assuntos
Bebidas , Comportamento do Consumidor , Gases de Efeito Estufa , Austrália , Gases de Efeito Estufa/análise , Humanos , Bebidas/economia , Alimentos/economia , Efeito Estufa/prevenção & controle
6.
Transfusion ; 64(4): 638-645, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38506497

RESUMO

BACKGROUND: Healthcare activities significantly contribute to greenhouse gas (GHG) emissions. Blood transfusions require complex, interlinked processes to collect, manufacture, and supply. Their contribution to healthcare emissions and avenues for mitigation is unknown. STUDY DESIGN AND METHODS: We performed a life cycle assessment (LCA) for red blood cell (RBC) transfusions across England where 1.36 million units are transfused annually. We defined the process flow with seven categories: donation, transportation, manufacturing, testing, stockholding, hospital transfusion, and disposal. We used direct measurements, manufacturer data, bioengineering databases, and surveys to assess electrical power usage, embodied carbon in disposable materials and reagents, and direct emissions through transportation, refrigerant leakage, and disposal. RESULTS: The central estimate of carbon footprint per unit of RBC transfused was 7.56 kg CO2 equivalent (CO2eq). The largest contribution was from transportation (2.8 kg CO2eq, 36% of total). The second largest was from hospital transfusion processes (1.9 kg CO2eq, 26%), driven mostly by refrigeration. The third largest was donation (1.3 kg CO2eq, 17%) due to the plastic blood packs. Total emissions from RBC transfusion are ~10.3 million kg CO2eq/year. DISCUSSION: This is the first study to estimate GHG emissions attributable to RBC transfusion, quantifying the contributions of each stage of the process. Primary areas for mitigation may include electric vehicles for the blood service fleet, improving the energy efficiency of refrigeration, using renewable sources of electricity, changing the plastic of blood packs, and using methods of disposal other than incineration.


Assuntos
Pegada de Carbono , Efeito Estufa , Humanos , Animais , Transfusão de Sangue , Estágios do Ciclo de Vida , Inglaterra
7.
J Environ Manage ; 355: 120405, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38432008

RESUMO

Low-carbon cities (LCC) are conducive to low-carbon development and reshaping the urban economic growth model. However, it is still unknown whether it has a synergistic mitigation effect on other greenhouse gases (GHGs). In this study, a dataset comprising 283 Chinese cities spanning the period 2003 to 2019 is chosen. We employ spatial difference-in-difference (SDID) modeling to investigate both the impacts and mechanisms of LCC on GHG emissions performance. The results show that (1) LCC notably lowers local GHG emissions, enhances emission efficiency, and improves GHG emissions performance in neighboring cities within a 1000 km radius. (2) LCC indirectly enhances the GHG emissions performance of local and neighboring cities through energy intensity and green technology innovation. Notably, LCC boosts the local GHG emissions performance by industrial structure upgrading and resource allocation but harms the positive spillover effects on nearby cities due to the siphoning effect. (3) The effect and spatial impact of LCC on GHG emission performance is notably pronounced in eastern cities, non-resource cities, and key environmental protection areas. The results of the study will further promote the development of LCC and provide an important decision-making reference for urban low-carbon sustainability.


Assuntos
Gases de Efeito Estufa , Cidades , Efeito Estufa , Carbono , Dióxido de Carbono/análise , Desenvolvimento Econômico , China
8.
Environ Res ; 250: 118528, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38403150

RESUMO

Agriculture is a leading sector in international initiatives to mitigate climate change and promote sustainability. This article exhaustively examines the removals and emissions of greenhouse gases (GHGs) in the agriculture industry. It also investigates an extensive range of GHG sources, including rice cultivation, enteric fermentation in livestock, and synthetic fertilisers and manure management. This research reveals the complex array of obstacles that are faced in the pursuit of reducing emissions and also investigates novel approaches to tackling them. This encompasses the implementation of monitoring systems powered by artificial intelligence, which have the capacity to fundamentally transform initiatives aimed at reducing emissions. Carbon capture technologies, another area investigated in this study, exhibit potential in further reducing GHGs. Sophisticated technologies, such as precision agriculture and the integration of renewable energy sources, can concurrently mitigate emissions and augment agricultural output. Conservation agriculture and agroforestry, among other sustainable agricultural practices, have the potential to facilitate emission reduction and enhance environmental stewardship. The paper emphasises the significance of financial incentives and policy frameworks that are conducive to the adoption of sustainable technologies and practices. This exhaustive evaluation provides a strategic plan for the agriculture industry to become more environmentally conscious and sustainable. Agriculture can significantly contribute to climate change mitigation and the promotion of a sustainable future by adopting a comprehensive approach that incorporates policy changes, technological advancements, and technological innovations.


Assuntos
Agricultura , Inteligência Artificial , Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Agricultura/métodos , Mudança Climática , Desenvolvimento Sustentável/tendências , Monitoramento Ambiental/métodos , Efeito Estufa , Conservação dos Recursos Naturais/métodos
9.
Environ Sci Pollut Res Int ; 31(13): 19226-19243, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355861

RESUMO

In recent years, there has been a persistent intensification of the global greenhouse effect. Balancing carbon emission reduction with economic growth poses an unprecedented global challenge. To better comprehend the relationship between economic growth and carbon emissions, this study first utilized the Tapio decoupling index to compare the decoupling relationship (the USA, Japan, and Germany) and three developing countries (China, India, and Russia) from 2000-2020. Additionally, the logarithmic mean Divisia index (LMDI) method was employed to investigate the factors influencing changes in carbon emissions. Our findings indicate that (1) the USA and Germany basically achieved strong decoupling; China, India, and Russia mainly showed weak decoupling; and Japan showed recessive decoupling. (2) Economic growth predominantly contributed to increased carbon emissions, with a lesser impact from population growth. A significant reduction in energy intensity restrained carbon emissions growth, as did energy structure replacement in most countries, excluding Japan. Based on this, a decoupling effort index was formulated. It has shown that the decoupling efforts made by developing countries are weaker than those of developed countries, primarily attributed to a lesser degree of decoupling between energy intensity and structure. This paper offers valuable insights for developing countries undergoing a low-carbon economic transformation. They should counterbalance carbon emission escalation resulting from economic growth through technological and energy structure improvements.


Assuntos
Carbono , Desenvolvimento Econômico , Carbono/análise , Países em Desenvolvimento , Dióxido de Carbono/análise , Efeito Estufa , China
10.
Braz J Biol ; 83: e279565, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422257

RESUMO

In order to evaluate the level of sustainability of an integrated waste management system (IWMS), it is necessary to analyze the impact criteria. Therefore, the purpose of this study is to provide a model for IWMS optimization with the two goals of minimizing the cost and the emission of greenhouse gases of the entire system. Environmental and health problems caused by the lack of proper waste management include the increase in disease, increase in stray animals, pollution of air, water, land, etc. Therefore, it is very important to identify the indicators and improve the efficiency of the waste management system. In the present research, with descriptive-analytical approach, it has been tried to clarify and evaluate the effective indicators in two dimensions of production-segregation and collection-transportation, and find ways to improve the efficiency of the system. In this article, five waste management systems including, incineration, landfill without gas extraction system, plasma incineration, recycling and aerobic decomposition are introduced and their performance in energy production and emission reduction are compared. The results of the evaluation of the basic waste management system (b) show that the amount of pollution is equivalent to 850 kg CO2 per ton of waste. While the amount of emission in the fifth comprehensive management system is reduced to 450 kg CO2 per ton of waste. According to the results obtained in this study, in all the management systems presented, the process of burying waste in sanitary landfills has the greatest effect in increasing pollution. This means that the pollution caused by burying the waste in the sanitary landfill will be reduced with the construction of the gas extraction system and the plasma method and use in electricity production. Despite the increase in initial costs, using the right technology and using the right waste system based on the type of waste and waste recycling has an effect on the efficiency of the system.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Eliminação de Resíduos/métodos , Dióxido de Carbono , Efeito Estufa , Gerenciamento de Resíduos/métodos , Incineração
11.
J Environ Sci (China) ; 140: 319-330, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38331511

RESUMO

To achieve carbon neutrality, the Chinese government needs to gain a comprehensive understanding of the sources and drivers of greenhouse gas (GHG) emissions, particularly at the county level. Anji County in eastern China is a typical example of an industrial transformation from quarrying to a low-carbon economy. This study analyzed the decoupling types and structural characteristics of GHG emissions and the driving factors of carbon dioxide (CO2) emissions in the Anji from 2006 to 2019, and explored the differences between county-level and provincial-level or city-level results. It was observed that energy-related activities are the main source of GHG emissions in Anji and that economic development is the driving factor behind the increasing CO2 emissions. However, industrial transformation and upgradation coupled with the alternative use of clean energy limit the growth of GHG emissions. This study details the GHG emissions of county during the industrial transformation stage and provides corresponding policy recommendations for county governments.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Dióxido de Carbono/análise , Efeito Estufa , China , Desenvolvimento Econômico
12.
BMJ Open ; 14(2): e080838, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418230

RESUMO

OBJECTIVES: To assess greenhouse gas (GHG) emissions from a regional hospital laundry unit, and model ways in which these can be reduced. DESIGN: A cradle to grave process-based attributional life-cycle assessment. SETTING: A large hospital laundry unit supplying hospitals in Southwest England. POPULATION: All laundry processed through the unit in 2020-21 and 2021-22 financial years. PRIMARY OUTCOME MEASURE: The mean carbon footprint of processing one laundry item, expressed as in terms of the global warming potential over 100 years, as carbon dioxide equivalents (CO2e). RESULTS: Average annual laundry unit GHG emissions were 2947 t CO2e. Average GHG emissions were 0.225 kg CO2e per item-use and 0.5080 kg CO2e/kg of laundry. Natural gas use contributed 75.7% of on-site GHG emissions. Boiler electrification using national grid electricity for 2020-2022 would have increased GHG emissions by 9.1%, however by 2030 this would reduce annual emissions by 31.9% based on the national grid decarbonisation trend. Per-item transport-related GHG emissions reduce substantially when heavy goods vehicles are filled at ≥50% payload capacity. Single-use laundry item alternatives cause significantly higher per-use GHG emissions, even if reusable laundry were transported long distances and incinerated at the end of its lifetime. CONCLUSIONS: The laundry unit has a large carbon footprint, however the per-item GHG emissions are modest and significantly lower than using single-use alternatives. Future electrification of boilers and optimal delivery vehicle loading can reduce the GHG emissions per laundry item.


Assuntos
Pegada de Carbono , Gases de Efeito Estufa , Humanos , Efeito Estufa , Dióxido de Carbono , Hospitais
13.
PLoS One ; 19(1): e0292066, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38289925

RESUMO

Carbon foot prints (CFs) studies based on life cycle assessment between sheep farming systems and green house gases (GHG) emissions is one of the best indicators to quantify the amount of GHG emissions per kg of product. Therefore, a life cycle assessment (LCA) study was conducted for three different sheep farming systems i.e. intensive system (stall fed only), semi-intensive (grazing with supplementation) and extensive system (grazing only) under semiarid region of India to assess the carbon cost of sheep rearing. The total CFs were estimated to be 16.9, 15.8 and 17.1 kg CO2-eq in intensive, semi-intensive and extensive system of grazing indicating semi-intensive system to be most carbon (C) efficient. For 1kg mutton production in semi-intensive and intensive system, around 30% and 24% CFs were contributed from enteric fermentation and feed respectively, whereas, in extensive system, the contribution of enteric fermentation increased up to 50%. The carbon foot prints analysis gives an insight of carbon inputs used but the amount of CO2 sequestered in soil making LCA a holistic approach for estimating GHG emissions from livestock.


Assuntos
Pegada de Carbono , Efeito Estufa , Animais , Ovinos , Dióxido de Carbono , Indústria de Laticínios , Agricultura , Carbono , Estágios do Ciclo de Vida
14.
Ecotoxicol Environ Saf ; 272: 116043, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295736

RESUMO

The carbon peaking and carbon neutrality targets proposed by the Chinese government have initiated a green transformation that is full of challenges and opportunities and endowed sustainable development strategy for combating global warming issue. It is essential to execute comprehensive identification and carbon reduction measures across all industries that produce greenhouse gas (GHG) emissions. Water supply system, as an energy-intensive sector, plays a crucial role in GHG reduction. This work conducted a life cycle assessment (LCA) to account the GHG emissions associated with the construction and operation phases of the drinking water treatment plant (DWTP). During the construction phase, the total GHG emissions were 19,525.762 t CO2-eq, with concrete work and rebar project being the dominant contributors (87.712%). The promotion of renewable or recyclable green building materials and low-carbon construction methods, such as the utilization of prefabricated components and on-site assembly, holds significant importance in reducing GHG emissions during the construction phase of DWTP. Regarding the operation stage, the DWTP possessed an average annual GHG emission of 37,660.160 t CO2-eq and an average GHG intensity of 0.202 kg CO2-eq/m3. Most emissions were attributed to electricity consumption (67.388%), chemicals utilization (12.893%), and heat consumption (10.414%). By increasing the use of clean energy and implementing strict control measures in the water supply pumps, energy consumption and GHG emissions can be effectively reduced. This study offers valuable insights into the mapping of GHG emissions in the DWTP, facilitating the identification of key areas for targeted implementation of energy-saving and carbon-reducing measures.


Assuntos
Água Potável , Gases de Efeito Estufa , Animais , Dióxido de Carbono/análise , Efeito Estufa , Carbono , Estágios do Ciclo de Vida
15.
Sci Total Environ ; 913: 169686, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38163598

RESUMO

Owing to the relentless growth of sewage sludge production, achieving low-carbon development in sewage sludge treatment and disposal (STD) is becoming increasingly challenging and unpredictable. However, the STD varied spatially, and city-specific analysis is deemed necessary for sustainable evaluation. Therefore, a lifecycle-based greenhouse gas (GHG), energy, and economic analysis were conducted by considering six local STD alternatives in Wuhan City, China, as a case study. The findings indicated anaerobic digestion combined with digestate utilization for urban greening (ADL) and incineration in existing power plants (INCP) exhibited the least GHG emissions at 34.073 kg CO2 eq/FU and 644.128 kg CO2 eq/FU, while INCP generated the most energy at -2594 kW.h/FU. The economic evaluation revealed that ADL and INCP were more beneficial without accounting for land acquisition. Scenario analysis showed that the energy recovery from ADL and INCP is significantly influenced by the hydrolysis yielding rate and sludge organic content. Perturbation sensitivity indicates that regional emission factor of electricity and electricity fee highly influence the overall GHG emission and cost. The results of this study could assist policymakers in identifying viable solutions to the cities experiencing the same sludge treatment burdens.


Assuntos
Gases de Efeito Estufa , Esgotos , Animais , Eliminação de Resíduos Líquidos/métodos , Cidades , Dióxido de Carbono , Efeito Estufa , China , Estágios do Ciclo de Vida
16.
J Environ Manage ; 352: 119982, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38218165

RESUMO

Electricity consumption and anaerobic reactions cause direct and indirect greenhouse gas (GHG) emissions within domestic sewage treatment systems (DSTSs). GHG emissions in DSTSs were influenced by the sewage quantity and the efficacy of treatment technologies. To address combined effects of these variables, this study presented an approach for identifying pathways for GHG mitigation within the DSTSs of cities under climate change and socio-economic development, through combining life cycle analysis (LCA) and the Hierarchical Archimedean copula (HAC) methods. The approach was innovative in the following aspects: 1) quantifying the GHG emissions of the DSTSs; 2) identifying the correlations among temperature changes, socioeconomic development, and domestic sewage quantity, and 3) predicting the future fluctuations in GHG emissions from the DSTSs. The effectiveness of the proposed approach was validated through its application to an urban agglomeration in the Pearl River Delta (PRD), China. To identify the potentials of GHG mitigation in the DSTSs, two pathways (i.e., general and optimized) were proposed according to the different technical choices for establishing facilities from 2021 to 2030. The results indicated that GHG emissions from the DSTS in the PRD were [3.01, 4.96] Mt CO2eq in 2021, with substantial contributions from Shenzhen and Guangzhou. Moreover, GHG emissions from the sewage treatment facilities based on Anaerobic-Anoxic-Axic (AAO) technology were higher than those based on other technologies. Under the optimized pathway, GHG emissions, contributed by the technologies of Continuous Cycle Aeration System (CASS) and Oxidation Ditch (OD), were the lowest. Through the results of correlation analysis, the impact of socioeconomic development on domestic sewage quantities was more significant than that of climate change. Domestic sewage quantities in the cities of the PRD would increase by 4.10%-28.38%, 17.14%-26.01%, and 18.15%-26.50% from 2022 to 2030 under three Representative Concentration Pathways (RCPs) 2.6, 4.5, and 8.5. These findings demonstrated that the capacities of domestic sewage treatment facilities in most cities of the PRD should be substantially improved from 0.12 to 2.99 times between 2022 and 2030. Under the optimized pathway, the future GHG emissions of the CASS method would be the lowest, followed by the OD method.


Assuntos
Gases de Efeito Estufa , Ácido Penicilânico/análogos & derivados , Esgotos , Efeito Estufa , Cidades
17.
J Environ Manage ; 353: 120175, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38281424

RESUMO

This study delves into the critical nexus between wastewater treatment, energy consumption, and greenhouse gas emissions. Wastewater treatment is a linchpin of sustainable development, yet its energy-intensive processes contribute significantly to greenhouse gas emissions. The research focuses on wastewater treatment plants (WWTPs) in Mexico City (CDMX) and the Metropolitan Area of Barcelona (AMB), exploring the disparities between a developed country and a developing country. The study examines how factors such as water treatment technologies and electricity sources influence carbon emissions. The AMB exhibits superior performance by treating all wastewater, cogenerating energy from the biomass contained in the wastewater and generating 10% fewer emissions, in stark contrast to CDMX, which does not capture the CH4 produced during water treatment, on top of only treating the water of 14% of the city's agglomeration. It underscores the critical implications of WWTP efficiency on climate change and progress toward UN Sustainable Development Goals. Given the limited attention to the Global South, this research serves as a vital contribution to the discourse on sustainability and development.


Assuntos
Gases de Efeito Estufa , Purificação da Água , Gases de Efeito Estufa/análise , Águas Residuárias , México , Efeito Estufa
18.
J Environ Manage ; 352: 119904, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38194877

RESUMO

Feeding the world's population while minimising the contribution of agriculture to climate change is one of the greatest challenges facing modern society. This challenge is particularly pronounced for dairy production where the carbon footprint of products and the mitigation costs are high, relative to other food stuffs. This paper reviews a number of mitigation measures that may be adopted by dairy farmers to reduce greenhouse gas emissions from their farms. A simulation model is developed to assess the cost-benefit of a range of mitigation measures. The model is applied to data from Ireland, a country with a large export-oriented dairy industry, for a range of farms including top, middle and bottom performing farms from a profitability perspective. The mitigation measures modelled included animal productivity, grass production and utilisation, better reproductive performance, early compact calving, reduced crude protein, decreased fertiliser N, protected urea, white clover, slurry tank cover and low emission slurry spreading (LESS). The results show that over half of the greenhouse gas abatement potential and most of the ammonia abatement potential were realised with cost-beneficial measures. Animal and feed-related measures that increased efficiency drove the abatement of GHG emissions. Low-emission slurry spreading was beneficial for the bottom and middle one-third of farms, while protected urea and reducing nitrogen use accounted for most of the ammonia abatement potential for the most profitable farms. Results showed that combining mitigation measures resulted in a decrease of 23%, 19%, and 12% in GHG emissions below 2020 levels for the bottom, middle, and top performing dairy farms, respectively. The findings imply that top dairy farms, that are already managed efficiently and optimally, may struggle to achieve the national and international GHG reduction targets with existing technologies and practices.


Assuntos
Gases , Gases de Efeito Estufa , Animais , Fazendas , Efeito Estufa , Gado , Amônia , Indústria de Laticínios/métodos , Ureia
19.
Bioresour Technol ; 393: 130115, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38013031

RESUMO

This paper aims to carry out an integrated Life Cycle Assessment (LCA) to evaluate the environmental performance of a novel thermochemical-biochemical biomass-to-liquid pathway for sustainable aviation and maritime biofuel production. Five scenarios are defined, consideringdifferent types of biomass feedstock and biorefinery locations, in different geographically dispersed European countries. The results indicate that the replacement of conventional aviation and maritime fuels with sustainable biofuels could reduce Greenhouse Gases (GHG) by 60-86%, based on feedstock type. When the renewable share in the electricity mix reaches 100% (in 2050), the GHG emissions will experience a great decrease (26% - 68%), compared to 2022 levels. The non-renewable energy consumption will also decrease (by 56% - 83%), with results strongly affected by the electricity mix of the European country considered. This study demonstrates that the deployment of biomass-to-jet/marine fuel pathways could favor the industrial adoption of circular economy strategies for transport biofuels production.


Assuntos
Aviação , Gases de Efeito Estufa , Animais , Biomassa , Efeito Estufa , Biocombustíveis/análise , Estágios do Ciclo de Vida
20.
Nature ; 626(7998): 327-334, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38109939

RESUMO

The pulp and paper industry is an important contributor to global greenhouse gas emissions1,2. Country-specific strategies are essential for the industry to achieve net-zero emissions by 2050, given its vast heterogeneities across countries3,4. Here we develop a comprehensive bottom-up assessment of net greenhouse gas emissions of the domestic paper-related sectors for 30 major countries from 1961 to 2019-about 3.2% of global anthropogenic greenhouse gas emissions from the same period5-and explore mitigation strategies through 2,160 scenarios covering key factors. Our results show substantial differences across countries in terms of historical emissions evolution trends and structure. All countries can achieve net-zero emissions for their pulp and paper industry by 2050, with a single measure for most developed countries and several measures for most developing countries. Except for energy-efficiency improvement and energy-system decarbonization, tropical developing countries with abundant forest resources should give priority to sustainable forest management, whereas other developing countries should pay more attention to enhancing methane capture rate and reducing recycling. These insights are crucial for developing net-zero strategies tailored to each country and achieving net-zero emissions by 2050 for the pulp and paper industry.


Assuntos
Agricultura Florestal , Efeito Estufa , Gases de Efeito Estufa , Indústrias , Internacionalidade , Papel , Desenvolvimento Sustentável , Madeira , Efeito Estufa/prevenção & controle , Efeito Estufa/estatística & dados numéricos , Gases de Efeito Estufa/análise , Gases de Efeito Estufa/isolamento & purificação , Indústrias/legislação & jurisprudência , Indústrias/estatística & dados numéricos , Metano/análise , Metano/isolamento & purificação , Reciclagem/estatística & dados numéricos , Reciclagem/tendências , Países Desenvolvidos , Países em Desenvolvimento , Florestas , Agricultura Florestal/métodos , Agricultura Florestal/tendências , Desenvolvimento Sustentável/tendências , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA