Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 613
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Artif Intell Med ; 151: 102869, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593683

RESUMO

Anaesthesia, crucial to surgical practice, is undergoing renewed scrutiny due to the integration of artificial intelligence in its medical use. The precise control over the temporary loss of consciousness is vital to ensure safe, pain-free procedures. Traditional methods of depth of anaesthesia (DoA) assessment, reliant on physical characteristics, have proven inconsistent due to individual variations. In response, electroencephalography (EEG) techniques have emerged, with indices such as the Bispectral Index offering quantifiable assessments. This literature review explores the current scope and frontier of DoA research, emphasising methods utilising EEG signals for effective clinical monitoring. This review offers a critical synthesis of recent advances, specifically focusing on electroencephalography (EEG) techniques and their role in enhancing clinical monitoring. By examining 117 high-impact papers, the review delves into the nuances of feature extraction, model building, and algorithm design in EEG-based DoA analysis. Comparative assessments of these studies highlight their methodological approaches and performance, including clinical correlations with established indices like the Bispectral Index. The review identifies knowledge gaps, particularly the need for improved collaboration for data access, which is essential for developing superior machine learning models and real-time predictive algorithms for patient management. It also calls for refined model evaluation processes to ensure robustness across diverse patient demographics and anaesthetic agents. The review underscores the potential of technological advancements to enhance precision, safety, and patient outcomes in anaesthesia, paving the way for a new standard in anaesthetic care. The findings of this review contribute to the ongoing discourse on the application of EEG in anaesthesia, providing insights into the potential for technological advancement in this critical area of medical practice.


Assuntos
Anestesia , Eletroencefalografia , Aprendizado de Máquina , Humanos , Eletroencefalografia/métodos , Anestesia/métodos , Processamento de Sinais Assistido por Computador , Monitores de Consciência , Algoritmos
2.
J Neural Eng ; 21(2)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38579741

RESUMO

Objective. The auditory steady-state response (ASSR) allows estimation of hearing thresholds. The ASSR can be estimated from electroencephalography (EEG) recordings from electrodes positioned on both the scalp and within the ear (ear-EEG). Ear-EEG can potentially be integrated into hearing aids, which would enable automatic fitting of the hearing device in daily life. The conventional stimuli for ASSR-based hearing assessment, such as pure tones and chirps, are monotonous and tiresome, making them inconvenient for repeated use in everyday situations. In this study we investigate the use of natural speech sounds for ASSR estimation.Approach.EEG was recorded from 22 normal hearing subjects from both scalp and ear electrodes. Subjects were stimulated monaurally with 180 min of speech stimulus modified by applying a 40 Hz amplitude modulation (AM) to an octave frequency sub-band centered at 1 kHz. Each 50 ms sub-interval in the AM sub-band was scaled to match one of 10 pre-defined levels (0-45 dB sensation level, 5 dB steps). The apparent latency for the ASSR was estimated as the maximum average cross-correlation between the envelope of the AM sub-band and the recorded EEG and was used to align the EEG signal with the audio signal. The EEG was then split up into sub-epochs of 50 ms length and sorted according to the stimulation level. ASSR was estimated for each level for both scalp- and ear-EEG.Main results. Significant ASSRs with increasing amplitude as a function of presentation level were recorded from both scalp and ear electrode configurations.Significance. Utilizing natural sounds in ASSR estimation offers the potential for electrophysiological hearing assessment that are more comfortable and less fatiguing compared to existing ASSR methods. Combined with ear-EEG, this approach may allow convenient hearing threshold estimation in everyday life, utilizing ambient sounds. Additionally, it may facilitate both initial fitting and subsequent adjustments of hearing aids outside of clinical settings.


Assuntos
Audição , Som , Humanos , Estimulação Acústica/métodos , Limiar Auditivo/fisiologia , Eletroencefalografia/métodos
3.
Behav Brain Res ; 465: 114959, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38494128

RESUMO

Microstates have been proposed as topographical maps representing large-scale resting-state networks and have recently been suggested as markers for methamphetamine use disorder (MUD). However, it is unknown whether and how they change after repetitive transcranial magnetic stimulation (rTMS) intervention. This study included a comprehensive subject population to investigate the effect of rTMS on MUD microstates. 34 patients with MUD underwent a 4-week randomized, double-blind rTMS intervention (active=17, sham=17). Two resting-state EEG recordings and VAS evaluations were conducted before and after the intervention period. Additionally, 17 healthy individuals were included as baseline controls. The modified k-means clustering method was used to calculate four microstates (MS-A∼MS-D) of EEG, and the FC network was also analyzed. The differences in microstate indicators between groups and within groups were compared. The durations of MS-A and MS-B microstates in patients with MUD were significantly lower than that in HC but showed significant improvements after rTMS intervention. Changes in microstate indicators were found to be significantly correlated with changes in craving level. Furthermore, selective modulation of the resting-state network by rTMS was observed in the FC network. The findings indicate that changes in microstates in patients with MUD are associated with craving level improvement following rTMS, suggesting they may serve as valuable evaluation markers.


Assuntos
Metanfetamina , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Encéfalo/fisiologia , Metanfetamina/efeitos adversos , Eletroencefalografia/métodos , Fissura
4.
PLoS One ; 19(3): e0299108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38452019

RESUMO

Cognitive human error and recent cognitive taxonomy on human error causes of software defects support the intuitive idea that, for instance, mental overload, attention slips, and working memory overload are important human causes for software bugs. In this paper, we approach the EEG as a reliable surrogate to MRI-based reference of the programmer's cognitive state to be used in situations where heavy imaging techniques are infeasible. The idea is to use EEG biomarkers to validate other less intrusive physiological measures, that can be easily recorded by wearable devices and useful in the assessment of the developer's cognitive state during software development tasks. Herein, our EEG study, with the support of fMRI, presents an extensive and systematic analysis by inspecting metrics and extracting relevant information about the most robust features, best EEG channels and the best hemodynamic time delay in the context of software development tasks. From the EEG-fMRI similarity analysis performed, we found significant correlations between a subset of EEG features and the Insula region of the brain, which has been reported as a region highly related to high cognitive tasks, such as software development tasks. We concluded that despite a clear inter-subject variability of the best EEG features and hemodynamic time delay used, the most robust and predominant EEG features, across all the subjects, are related to the Hjorth parameter Activity and Total Power features, from the EEG channels F4, FC4 and C4, and considering in most of the cases a hemodynamic time delay of 4 seconds used on the hemodynamic response function. These findings should be taken into account in future EEG-fMRI studies in the context of software debugging.


Assuntos
Encéfalo , Eletroencefalografia , Humanos , Eletroencefalografia/métodos , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Software , Imagem Multimodal , Cognição
5.
Epilepsy Res ; 202: 107343, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552593

RESUMO

BACKGROUND: Convulsive (CSE) and non-convulsive (NCSE) Status Epilepticus are a complication in 0.2-0.3% ischemic strokes. Large stroke and cortical involvement are the main risk factors for developing SE. This study evaluates the prevalence of SE in patients treated with endovascular thrombectomy (EVT) through EEG recording within 72- h from admission. Moreover, we compared clinical, radiological, and outcome measures in SE and no-SE patients. MATERIALS AND METHODS: We collected retrospectively demographical and clinical characteristics of acute ischemic stroke patients who underwent EVT, admitted in the Stroke Unit (SU) of the University Hospital of Trieste between January 2018 and March 2020 who underwent EEG recording within 72- h from the symptoms' onset. RESULTS: Out of 247 EVT patients, 138 met the inclusion criteria, of whom 9 (6.5%) showed SE with median onset time of 1 day (IQR 1-2). No difference was found between the two groups as for age, sex, risk factors, grade of recanalization, etiology of stroke, and closed vessel. The no-SE group presented higher NIHSS improvement rate (p=0.025) compared to the SE group. The sum of the lobes involved in the ischemic lesion was significantly higher in SE group (p=0.048). CONCLUSION: SE after EVT in large strokes is a non-rare complication, with most being NCSE. Performing a rapid EEG assessment in a Stroke Unit setting may allow for a prompt recognition and treatment of SE in the acute/hyper-acute phase. SE may be correlated with worse clinical outcomes in patients with large vessel occlusion.


Assuntos
Eletroencefalografia , Estado Epiléptico , Trombectomia , Humanos , Estado Epiléptico/fisiopatologia , Estado Epiléptico/diagnóstico por imagem , Eletroencefalografia/métodos , Masculino , Feminino , Idoso , Trombectomia/métodos , Estudos Retrospectivos , Pessoa de Meia-Idade , Prognóstico , AVC Isquêmico/cirurgia , AVC Isquêmico/fisiopatologia , AVC Isquêmico/diagnóstico por imagem , Acidente Vascular Cerebral/cirurgia , Acidente Vascular Cerebral/fisiopatologia , Idoso de 80 Anos ou mais , Fatores de Risco , Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/cirurgia
6.
Artigo em Inglês | MEDLINE | ID: mdl-38376977

RESUMO

Chronic tinnitus is highly prevalent but lacks precise diagnostic or effective therapeutic standards. Its onset and treatment mechanisms remain unclear, and there is a shortage of objective assessment methods. We aim to identify abnormal neural activity and reorganization in tinnitus patients and reveal potential neurophysiological markers for objectively evaluating tinnitus. By way of analyzing EEG microstates, comparing metrics under three resting states (OE, CE, and OECEm) between tinnitus sufferers and controls, and correlating them with tinnitus symptoms. This study reflected specific changes in the EEG microstates of tinnitus patients across multiple resting states, as well as inconsistent correlations with tinnitus symptoms. Microstate parameters were significantly different when patients were in OE and CE states. Specifically, the occurrence of Microstate A and the transition probabilities (TP) from other Microstates to A increased significantly, particularly in the CE state (32-37%, p ≤ 0.05 ); and both correlated positively with the tinnitus intensity. Nevertheless, under the OECEm state, increases were mainly observed in the duration, coverage, and occurrence of Microstate B (15-47%, ), which negatively correlated with intensity ( [Formula: see text]-0.513, ). Additionally, TPx between Microstates C and D were significantly reduced and positively correlated with HDAS levels ( [Formula: see text] 0.548, ). Furthermore, parameters of Microstate D also correlated with THI grades ( [Formula: see text]-0.576, ). The findings of this study could offer compelling evidence for central neural reorganization associated with chronic tinnitus. EEG microstate parameters that correlate with tinnitus symptoms could serve as neurophysiological markers, contributing to future research on the objective assessment of tinnitus.


Assuntos
Encéfalo , Zumbido , Humanos , Encéfalo/fisiologia , Zumbido/diagnóstico , Eletroencefalografia/métodos , Benchmarking
7.
Med Biol Eng Comput ; 62(5): 1475-1490, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38267740

RESUMO

Fatigue deteriorates the performance of a brain-computer interface (BCI) system; thus, reliable detection of fatigue is the first step to counter this problem. The fatigue evaluated by means of electroencephalographic (EEG) signals has been studied in many research projects, but widely different results have been reported. Moreover, there is scant research when considering the fatigue on steady-state visually evoked potential (SSVEP)-based BCI. Therefore, nowadays, fatigue detection is not a completely solved topic. In the current work, the issues found in the literature that led to the differences in the results are identified and saved by performing a new experiment on an SSVEP-based BCI system. The experiment was long enough to produce fatigue in the users, and different SSVEP stimulation ranges were used. Additionally, the EEG features commonly reported in the literature (EEG rhythms powers, SNR, etc.) were calculated as well as newly proposed features (spectral features and Lempel-Ziv complexity). The analysis was carried out on O1, Oz and O2 channels. This work found a tendency of displacement from high-frequency rhythms to low-frequency ones, and thus, better EEG features should present a similar behaviour. Then, the 'relative power' of EEG rhythms, the rates (θ + α)/ß, α/ß and θ/ß, some spectral features (central and mean frequencies, asymmetry and kurtosis coefficients, etc.) and Lempel-Ziv complexity are proposed as reliable EEG features for fatigue detection. Hence, this set of features may be used to construct a more trustworthy fatigue index.


Assuntos
Astenopia , Interfaces Cérebro-Computador , Humanos , Potenciais Evocados Visuais , Estimulação Luminosa , Potenciais Evocados , Eletroencefalografia/métodos , Algoritmos
8.
IEEE Trans Biomed Eng ; 71(6): 1889-1900, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38231823

RESUMO

OBJECTIVE: Common pain assessment approaches such as self-evaluation and observation scales are inappropriate for children as they require patients to have reasonable communication ability. Subjective, inconsistent, and discontinuous pain assessment in children may reduce therapeutic effectiveness and thus affect their later life. METHODS: To address the need for suitable assessment measures, this paper proposes a spatiotemporal deep learning framework for scalp electroencephalogram (EEG)-based automated pain assessment in children. The dataset comprises scalp EEG data recorded from 33 pediatric patients with an arterial puncture as a pain stimulus. Two electrode reduction plans in line with clinical findings are proposed. Combining three-dimensional hand-crafted features and preprocessed raw signals, the proposed transformer-based pain assessment network (STPA-Net) integrates both spatial and temporal information. RESULTS: STPA-Net achieves superior performance with a subject-independent accuracy of 87.83% for pain recognition, and outperforms other state-of-the-art approaches. The effectiveness of electrode combinations is explored to analyze pain-related cortical activities and correspondingly reduce cost. The two proposed electrode reduction plans both demonstrate competitive pain assessment performance qualitatively and quantitatively. CONCLUSION AND SIGNIFICANCE: This study is the first to develop a scalp EEG-based automated pain assessment for children adopting a method that is objective, standardized, and consistent. The findings provide a potential reference for future clinical research.


Assuntos
Aprendizado Profundo , Eletroencefalografia , Medição da Dor , Couro Cabeludo , Humanos , Criança , Eletroencefalografia/métodos , Couro Cabeludo/fisiologia , Medição da Dor/métodos , Feminino , Masculino , Pré-Escolar , Processamento de Sinais Assistido por Computador , Adolescente , Dor/fisiopatologia , Dor/diagnóstico
9.
Artigo em Inglês | MEDLINE | ID: mdl-38194390

RESUMO

Automatic identification of visual learning style in real time using raw electroencephalogram (EEG) is challenging. In this work, inspired by the powerful abilities of deep learning techniques, deep learning-based models are proposed to learn high-level feature representation for EEG visual learning identification. Existing computer-aided systems that use electroencephalograms and machine learning can reasonably assess learning styles. Despite their potential, offline processing is often necessary to eliminate artifacts and extract features, making these methods unsuitable for real-time applications. The dataset was chosen with 34 healthy subjects to measure their EEG signals during resting states (eyes open and eyes closed) and while performing learning tasks. The subjects displayed no prior knowledge of the animated educational content presented in video format. The paper presents an analysis of EEG signals measured during a resting state with closed eyes using three deep learning techniques: Long-term, short-term memory (LSTM), Long-term, short-term memory-convolutional neural network (LSTM-CNN), and Long-term, short-term memory-Fully convolutional neural network (LSTM-FCNN). The chosen techniques were based on their suitability for real-time applications with varying data lengths and the need for less computational time. The optimization of hypertuning parameters has enabled the identification of visual learners through the implementation of three techniques. LSTM-CNN technique has the highest average accuracy of 94%, a sensitivity of 80%, a specificity of 92%, and an F1 score of 94% when identifying the visual learning style of the student out of all three techniques. This research has shown that the most effective method is the deep learning-based LSTM-CNN technique, which accurately identifies a student's visual learning style.


Assuntos
Aprendizado Profundo , Humanos , Redes Neurais de Computação , Eletroencefalografia/métodos , Aprendizado de Máquina , Artefatos
10.
Artigo em Inglês | MEDLINE | ID: mdl-38198273

RESUMO

Social interaction enables the smooth progression of our daily lives. Mounting evidence from recent hyperscanning neuroimaging studies indicates that key components of social behavior can be evaluated using inter-brain oscillations and connectivity. However, mapping out inter-brain networks and developing neurocognitive theories that explain how humans co-create and share information during social interaction remains challenging. In this study, we developed a jigsaw puzzle-solving game with hyperscanning electroencephalography (EEG) signals recorded to investigate inter-brain activities during social interactions involving cooperation and competition. Participants were recruited and paired into dyads to participate in the multiplayer jigsaw puzzle game with 32-channel EEG signals recorded. The corresponding event-related potentials (ERPs), brain oscillations, and inter-brain functional connectivity were analyzed. The results showed different ERP morphologies of P3 patterns in competitive and cooperative contexts, and brain oscillations in the low-frequency band may be an indicator of social cognitive activities. Furthermore, increased inter-brain functional connectivity in the delta, theta, alpha, and beta frequency bands was observed in the competition mode compared to the cooperation mode. By presenting comparable and valid hyperscanning EEG results alongside those of previous studies using traditional paradigms, this study demonstrates the potential of utilizing hyperscanning techniques in real-life game-playing scenarios to quantitatively assess social cognitive interactions involving cooperation and competition. Our approach offers a promising platform with potential applications in the flexible assessment of psychiatric disorders related to social functioning.


Assuntos
Encéfalo , Eletroencefalografia , Humanos , Eletroencefalografia/métodos , Potenciais Evocados , Tálamo , Cognição , Mapeamento Encefálico/métodos
11.
Clin EEG Neurosci ; 55(3): 296-304, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37849312

RESUMO

Background: People diagnosed with substance use disorders (SUDs) are at risk for impairment of brain function and structure. However, physicians still do not have any clinical biomarker of brain impairment that helps diagnose or treat these patients when needed. The most common method to study these patients is the classical electroencephalographic (EEG) analyses of absolute and relative powers, but this has limited individual clinical applicability. Other non-classical measures such as frequency band ratios and entropy show promise in these patients. Therefore, there is a need to expand the use of quantitative (q)EEG beyond classical measures in clinical populations. Our aim is to assess a group of classical and non-classical qEEG measures in a population with SUDs. Methods: We selected 56 non-medicated and drug-free adult patients (30 males) diagnosed with SUDs and admitted to Rehabilitation Clinics. According to qualitative EEG findings, patients were divided into four groups. We estimated the absolute and relative powers and calculated the entropy, and the alpha/(delta + theta) ratio. Results: Our findings showed a significant variability of absolute and relative powers among patients with SUDs. We also observed a decrease in the EEG-based entropy index and alpha/(theta + delta) ratio, mainly in posterior regions, in the patients with abnormal qualitative EEG. Conclusions: Our findings support the view that the power spectrum is not a reliable biomarker on an individual level. Thus, we suggest shifting the approach from the power spectrum toward other potential methods and designs that may offer greater clinical possibilities.


Assuntos
Eletroencefalografia , Transtornos Relacionados ao Uso de Substâncias , Masculino , Adulto , Humanos , Eletroencefalografia/métodos , Encéfalo , Mapeamento Encefálico , Transtornos Relacionados ao Uso de Substâncias/diagnóstico , Biomarcadores
12.
IEEE Trans Biomed Eng ; 71(3): 792-802, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37747857

RESUMO

OBJECTIVE: Past research in Brain-Computer Interfaces (BCI) have presented different decoding algorithms for different modalities. Meanwhile, highly specific decision making processes have been developed for some of these modalities, while others lack such a component in their classic pipeline. The present work proposes a model based on Partially Observable Markov Decission Process (POMDP) that works as a high-level decision making framework for three different active/reactive BCI modalities. METHODS: We tested our approach on three different BCI modalities using publicly available datasets. We compared the general POMDP model as a decision making process with state of the art methods for each BCI modality. Accuracy, false positive (FP) trials, no-action (NA) trials and average decision time are presented as metrics. RESULTS: Our results show how the presented POMDP models achieve comparable or better performance to the presented baseline methods, while being usable for the three proposed experiments without significant changes. Crucially, it offers the possibility of taking no-action (NA) when the decoding does not perform well. CONCLUSION: The present work implements a flexible POMDP model that acts as a sequential decision framework for BCI systems that lack such a component, and perform comparably to those that include it. SIGNIFICANCE: We believe the proposed POMDP framework provides several interesting properties for future BCI developments, mainly the generalizability to any BCI modality and the possible integration of other physiological or brain data pipelines under a unified decision-making framework.


Assuntos
Interfaces Cérebro-Computador , Benchmarking , Algoritmos , Cadeias de Markov , Encéfalo/fisiologia , Eletroencefalografia/métodos
13.
Artigo em Inglês | MEDLINE | ID: mdl-38145526

RESUMO

This study presents a novel method to assess the learning effectiveness using Electroencephalography (EEG)-based deep learning model. It is difficult to assess the learning effectiveness of professional courses in cultivating students' ability objectively by questionnaire or other assessment methods. Research in the field of brain has shown that innovation ability can be reflected from cognitive ability which can be embodied by EEG signal features. Three navigation tasks of increasing cognitive difficulty were designed and a total of 41 subjects participated in the experiment. For the classification and tracking of the subjects' EEG signals, a convolutional neural network (CNN)-based Multi-Time Scale Spatiotemporal Compound Model (MTSC) is proposed in this paper to extract and classify the features of the subjects' EEG signals. Furthermore, Spiking neural networks (SNN) -based NeuCube is used to assess the learning effectiveness and demonstrate cognitive processes, acknowledging that NeuCube is an excellent method to display the spatiotemporal differences between spikes emitted by neurons. The results of the classification experiment show that the cognitive training traces of different students in solving three navigational problems can be effectively distinguished. More importantly, new information about navigation is revealed through the analysis of feature vector visualization and model dynamics. This work provides a foundation for future research on cognitive navigation and the training of students' navigational skills.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Humanos , Encéfalo , Cognição , Eletroencefalografia/métodos , Algoritmos
14.
Behav Brain Res ; 460: 114827, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38128886

RESUMO

Advancements in portable neuroimaging technologies open up new opportunities to gain insight into the neural dynamics and cognitive processes underlying day-to-day behaviors. In this study, we evaluated the relevance of a headphone- mounted electroencephalogram (EEG) system for monitoring mental workload. The participants (N = 12) were instructed to pay attention to auditory alarms presented sporadically while performing the Multi-Attribute Task Battery (MATB) whose difficulty was staged across three conditions to manipulate mental workload. The P300 Event-Related Potentials (ERP) elicited by the presentation of auditory alarms were used as probes of attentional resources available. The amplitude and latency of P300 ERPs were compared across experimental conditions. Our findings indicate that the P300 ERP component can be captured using a headphone-mounted EEG system. Moreover, neural responses to alarm could be used to classify mental workload with high accuracy (over 80%) at a single-trial level. Our analyses indicated that the signal-to-noise ratio acquired by the sponge-based sensors remained stable throughout the recordings. These results highlight the potential of portable neuroimaging technology for the development of neuroassistive applications while underscoring the current limitations and challenges associated with the integration of EEG sensors in everyday-life wearable technologies. Overall, our study contributes to the growing body of research exploring the feasibility and validity of wearable neuroimaging technologies for the study of human cognition and behavior in real-world settings.


Assuntos
Eletroencefalografia , Potenciais Evocados , Humanos , Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Potenciais Evocados Auditivos , Cognição/fisiologia , Potenciais Evocados P300/fisiologia
15.
J Med Econ ; 27(1): 51-61, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38014443

RESUMO

Aims: Point-of-care electroencephalogram (POC-EEG) is an acute care bedside screening tool for the identification of nonconvulsive seizures (NCS) and nonconvulsive status epilepticus (NCSE). The objective of this narrative review is to describe the economic themes related to POC-EEG in the United States (US).Materials and methods: We examined peer-reviewed, published manuscripts on the economic findings of POC-EEG for bedside use in US hospitals, which included those found through targeted searches on PubMed and Google Scholar. Conference abstracts, gray literature offerings, frank advertisements, white papers, and studies conducted outside the US were excluded.Results: Twelve manuscripts were identified and reviewed; results were then grouped into four categories of economic evidence. First, POC-EEG usage was associated with clinical management amendments and antiseizure medication reductions. Second, POC-EEG was correlated with fewer unnecessary transfers to other facilities for monitoring and reduced hospital length of stay (LOS). Third, when identifying NCS or NCSE onsite, POC-EEG was associated with greater reimbursement in Medical Severity-Diagnosis Related Group coding. Fourth, POC-EEG may lower labor costs via decreasing after-hours requests to EEG technologists for conventional EEG (convEEG).Limitations: We conducted a narrative review, not a systematic review. The studies were observational and utilized one rapid circumferential headband system, which limited generalizability of the findings and indicated publication bias. Some sample sizes were small and hospital characteristics may not represent all US hospitals. POC-EEG studies in pediatric populations were also lacking. Ultimately, further research is justified.Conclusions: POC-EEG is a rapid screening tool for NCS and NCSE in critical care and emergency medicine with potential financial benefits through refining clinical management, reducing unnecessary patient transfers and hospital LOS, improving reimbursement, and mitigating burdens on healthcare staff and hospitals. Since POC-EEG has limitations (i.e. no video component and reduced montage), the studies asserted that it did not replace convEEG.


Assuntos
Sistemas Automatizados de Assistência Junto ao Leito , Estado Epiléptico , Criança , Humanos , Convulsões , Estado Epiléptico/diagnóstico , Estado Epiléptico/tratamento farmacológico , Eletroencefalografia/métodos , Cuidados Críticos/métodos
16.
Artigo em Inglês | MEDLINE | ID: mdl-38082932

RESUMO

Rett syndrome (RTT) is considered a rare disease despite being the leading genetic disorder to cause severe intellectual disability in women. There is no cure for RTT, so the treatment is symptomatic and supporting, requiring a multidisciplinary approach. Occupational therapy can help girls and their families to improve communication, being one of the main concerns when verbal language and intentional hand movement are impaired or lost. This paper presents a pilot study of cognitive training through the combined use of eye-tracking technology (ETT) and augmentative and alternative communication (AAC) using the Peabody Picture Vocabulary Test (PPVT-IV). The objective was to evaluate brain activation by means of electroencephalography (EEG) during the stimulation of non-verbal communication. EEG data were recorded during an eyes-open resting state (EO-RS) period and during cognitive stimulation via AAC activity. To assess their effect, both signals were compared at the spectral level, focusing on frequency, brain symmetry and connectivity. During the task, a redistribution of power towards fast frequency bands was observed, as well as an improvement in the brain symmetry index (BSI) and functional synchronicity through increased coherence. Therefore, the results of the spectral analysis showed a possible deviation from the pathological pattern, manifesting a positive effect in the use of non-verbal cognitive stimulation activities. In conclusion, it was observed that it is possible to establish a cognitive training system that produces brain activation and favors communication and learning despite intentional language loss.Clinical Relevance- This manifests a method of cognitive training that would induce brain activation in RTT patients with absence of intentional communication. The evaluation system through spectral analysis could complement the standardized protocols to asses communication that are based on verbal and motor production.


Assuntos
Síndrome de Rett , Humanos , Feminino , Síndrome de Rett/diagnóstico , Síndrome de Rett/genética , Tecnologia de Rastreamento Ocular , Projetos Piloto , Eletroencefalografia/métodos , Cognição
17.
J Neural Eng ; 20(6)2023 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-38128128

RESUMO

Objective.While electroencephalography (EEG)-based brain-computer interfaces (BCIs) have many potential clinical applications, their use is impeded by poor performance for many users. To improve BCI performance, either via enhanced signal processing or user training, it is critical to understand and describe each user's ability to perform mental control tasks and produce discernible EEG patterns. While classification accuracy has predominantly been used to assess user performance, limitations and criticisms of this approach have emerged, thus prompting the need to develop novel user assessment approaches with greater descriptive capability. Here, we propose a combination of unsupervised clustering and Markov chain models to assess and describe user skill.Approach.Using unsupervisedK-means clustering, we segmented the EEG signal space into regions representing pattern states that users could produce. A user's movement through these pattern states while performing different tasks was modeled using Markov chains. Finally, using the steady-state distributions and entropy rates of the Markov chains, we proposed two metricstaskDistinctandrelativeTaskInconsistencyto assess, respectively, a user's ability to (i) produce distinct task-specific patterns for each mental task and (ii) maintain consistent patterns during individual tasks.Main results.Analysis of data from 14 adolescents using a three-class BCI revealed significant correlations between thetaskDistinctandrelativeTaskInconsistencymetrics and classification F1 score. Moreover, analysis of the pattern states and Markov chain models yielded descriptive information regarding user performance not immediately apparent from classification accuracy.Significance.Our proposed user assessment method can be used in concert with classifier-based analysis to further understand the extent to which users produce task-specific, time-evolving EEG patterns. In turn, this information could be used to enhance user training or classifier design.


Assuntos
Interfaces Cérebro-Computador , Adolescente , Humanos , Cadeias de Markov , Eletroencefalografia/métodos , Imagens, Psicoterapia , Movimento , Encéfalo
18.
Epilepsia ; 64(12): 3160-3195, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37804168

RESUMO

Limited guidance exists regarding the assessment and management of psychogenic non-epileptic seizures (PNES) in children. Our aim was to develop consensus-based recommendations to fill this gap. The members of the International League Against Epilepsy (ILAE) Task Force on Pediatric Psychiatric Issues conducted a scoping review adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-SR) standards. This was supplemented with a Delphi process sent to pediatric PNES experts. Consensus was defined as ≥80% agreement. The systematic search identified 77 studies, the majority (55%) of which were retrospective (only one randomized clinical trial). The primary means of PNES identification was video electroencephalography (vEEG) in 84% of studies. Better outcome was associated with access to counseling/psychological intervention. Children with PNES have more frequent psychiatric disorders than controls. The Delphi resulted in 22 recommendations: Assessment-There was consensus on the importance of (1) taking a comprehensive developmental history; (2) obtaining a description of the events; (3) asking about potential stressors; (4) the need to use vEEG if available parent, self, and school reports and video recordings can contribute to a "probable" diagnosis; and (5) that invasive provocation techniques or deceit should not be employed. Management-There was consensus about the (1) need for a professional with expertise in epilepsy to remain involved for a period after PNES diagnosis; (2) provision of appropriate educational materials to the child and caregivers; and (3) that the decision on treatment modality for PNES in children should consider the child's age, cognitive ability, and family factors. Comorbidities-There was consensus that all children with PNES should be screened for mental health and neurodevelopmental difficulties. Recommendations to facilitate the assessment and management of PNES in children were developed. Future directions to fill knowledge gaps were proposed.


Assuntos
Epilepsia , Transtornos Mentais , Humanos , Criança , Estudos Retrospectivos , Consenso , Convulsões/diagnóstico , Convulsões/terapia , Epilepsia/diagnóstico , Epilepsia/terapia , Epilepsia/psicologia , Transtornos Mentais/diagnóstico , Transtornos Mentais/terapia , Eletroencefalografia/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto
19.
Sensors (Basel) ; 23(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37896483

RESUMO

When assessing trainees' progresses during a driving training program, instructors can only rely on the evaluation of a trainee's explicit behavior and their performance, without having any insight about the training effects at a cognitive level. However, being able to drive does not imply knowing how to drive safely in a complex scenario such as the road traffic. Indeed, the latter point involves mental aspects, such as the ability to manage and allocate one's mental effort appropriately, which are difficult to assess objectively. In this scenario, this study investigates the validity of deploying an electroencephalographic neurometric of mental effort, obtained through a wearable electroencephalographic device, to improve the assessment of the trainee. The study engaged 22 young people, without or with limited driving experience. They were asked to drive along five different but similar urban routes, while their brain activity was recorded through electroencephalography. Moreover, driving performance, subjective and reaction times measures were collected for a multimodal analysis. In terms of subjective and performance measures, no driving improvement could be detected either through the driver's subjective measures or through their driving performance. On the other side, through the electroencephalographic neurometric of mental effort, it was possible to catch their improvement in terms of mental performance, with a decrease in experienced mental demand after three repetitions of the driving training tasks. These results were confirmed by the analysis of reaction times, that significantly improved from the third repetition as well. Therefore, being able to measure when a task is less mentally demanding, and so more automatic, allows to deduce the degree of users training, becoming capable of handling additional tasks and reacting to unexpected events.


Assuntos
Condução de Veículo , Dispositivos Eletrônicos Vestíveis , Humanos , Adolescente , Tempo de Reação , Eletroencefalografia/métodos , Acidentes de Trânsito
20.
BMC Res Notes ; 16(1): 288, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875937

RESUMO

OBJECTIVE: Hypnosis can be an effective treatment for many conditions, and there have been attempts to develop instrumental approaches to continuously monitor hypnotic state level ("depth"). However, there is no method that addresses the individual variability of electrophysiological hypnotic correlates. We explore the possibility of using an EEG-based passive brain-computer interface (pBCI) for real-time, individualised estimation of the hypnosis deepening process. RESULTS: The wakefulness and deep hypnosis intervals were manually defined and labelled in 27 electroencephalographic (EEG) recordings obtained from eight outpatients after hypnosis sessions. Spectral analysis showed that EEG correlates of deep hypnosis were relatively stable in each patient throughout the treatment but varied between patients. Data from each first session was used to train classification models to continuously assess deep hypnosis probability in subsequent sessions. Models trained using four frequency bands (1.5-45, 1.5-8, 1.5-14, and 4-15 Hz) showed accuracy mostly exceeding 85% in a 10-fold cross-validation. Real-time classification accuracy was also acceptable, so at least one of the four bands yielded results exceeding 74% in any session. The best results averaged across all sessions were obtained using 1.5-14 and 4-15 Hz, with an accuracy of 82%. The revealed issues are also discussed.


Assuntos
Interfaces Cérebro-Computador , Hipnose , Humanos , Hipnóticos e Sedativos , Eletroencefalografia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA