Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.586
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Water Environ Res ; 96(6): e11060, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847129

RESUMO

This study aims to improve COD, NH3-N, and turbidity removal from Bingöl's leachate using a single-reactor integrated electrocoagulation (EC)-coal-based powdered activated carbon (CBPAC) process under various experimental conditions. In the EC-CBPAC process, three stainless-steel cathodes and three aluminum electrodes were connected to the negative and positive terminals of the power supply, respectively. The initial concentrations in the leachate were 1044 mg O2/L for COD, 204 mg/L for NH3-N, and 57 NTU (or 71.25-mg (NH2)2H2SO4/L) for turbidity, respectively. After a 40-min EC-CBPAC process, with a CBPAC dosage of 5 g/L and pH of 5 for COD and turbidity, and 9.5 for NH3-N, the optimum removal efficiencies for COD, NH3-N, and turbidity were achieved at 92%, 40%, and 91%, respectively. When the EC process was applied without CBPAC under the same experimental conditions, the removal efficiencies of COD, NH3-N, and turbidity were 87%, 28%, and 54%, respectively. Before and after the EC-CBPAC process, the Brunauer-Emmett-Teller (BET) surface area, pore volume, and mean pore diameter of the CBPAC were found to be (888 m2/g, 0.498 cm3/g, and 22.28 Å) and (173 m2/g, 0.18 cm3/g, and 42.8 Å), respectively. The optimum pseudo-first-order (PFO) rate constants for COD, turbidity, and NH3-N were determined to be 3.15 × 10-2, 4.77 × 10-2, and 8.8 × 10-3 min-1, respectively. With the current density increasing from 15 to 25 mA/cm2, energy consumption, unit energy consumption, and total cost increased from 68.7 to 122.4 kWh/m3, 6.948 to 15.226 kWh/kg COD, and 0.85 to 1.838 $/kg COD, respectively. PRACTITIONER POINTS: EC-CBPAC process has greater COD, NH3-N, and turbidity removal efficiency than EC process. COD and turbidity achieved their optimum disposal efficiencies at 92% and 91%, respectively, at pH 5 The most efficient disposal efficiency for NH3-N was observed to be 40% at pH 9.5. EC-CBPAC process increased removal efficiencies for COD, NH3-N, and turbidity by 20%, 19%, and 38%, respectively, compared with EC alone. The turbidity, NH3-N, and COD disposal fitted PSO model due to high correlation values (R2 0.94-0.99).


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Carvão Vegetal/química , Poluentes Químicos da Água/química , Cinética , Purificação da Água/métodos , Eliminação de Resíduos Líquidos/métodos
2.
J Environ Manage ; 362: 121348, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38824891

RESUMO

Heterotrophic-sulfur autotrophic denitrification (HAD) has been proposed to be a prospective nitrogen removal process. In this work, the potential of fermentation liquid (FL) from waste-activated sludge (WAS) as the electron donor for denitrification in the HAD system was explored and compared with other conventional carbon sources. Results showed that when FL was used as a carbon source, over 99% of NO3--N was removed and its removal rate exceeded 14.00 mg N/g MLSS/h, which was significantly higher than that of methanol and propionic acid. The produced sulfate was below the limit value and the emission of N2O was low (1.38% of the NO3--N). Microbial community analysis showed that autotrophic denitrifiers were predominated in the HAD system, in which Thiobacillus (16.4%) was the dominant genus. The economic analysis showed the cost of the FL was 0.062 €/m3, which was 30% lower than that in the group dosed with methanol. Our results demonstrated the FL was a promising carbon source for the HAD system, which could reduce carbon emission and cost, and offer a creative approach for waste-activated sludge resource reuse.


Assuntos
Carbono , Desnitrificação , Fermentação , Nitrogênio , Esgotos , Carbono/metabolismo , Nitrogênio/metabolismo , Eliminação de Resíduos Líquidos/métodos
3.
Sci Total Environ ; 940: 173753, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38838494

RESUMO

The food and beverage industries in Mexico generate substantial effluents, including nejayote, cheese-whey, and tequila vinasses, which pose significant environmental challenges due to their extreme physicochemical characteristics and excessive organic load. This study aimed to assess the potential of Chlorella vulgaris in bioremediating these complex wastewaters while also producing added-value compounds. A UV mutagenesis treatment (40 min) enhanced C. vulgaris adaptability to grow in the effluent conditions. Robust growth was observed in all three effluents, with nejayote identified as the optimal medium. Physicochemical measurements conducted pre- and post-cultivation revealed notable reductions of pollutants in nejayote, including complete removal of nitrogen and phosphates, and an 85 % reduction in COD. Tequila vinasses exhibited promise with a 66 % reduction in nitrogen and a 70 % reduction in COD, while cheese-whey showed a 17 % reduction in phosphates. Regarding valuable compounds, nejayote yielded the highest pigment (1.62 mg·g-1) and phenolic compound (3.67 mg·g-1) content, while tequila vinasses had the highest protein content (16.83 %). The main highlight of this study is that C. vulgaris successfully grew in 100 % of the three effluents (without additional water or nutrients), demonstrating its potential for sustainable bioremediation and added-value compound production. When grown in 100 % of the effluents, they become a sustainable option since they don't require an input of fresh water and therefore do not contribute to water scarcity. These findings offer a practical solution for addressing environmental challenges in the food and beverage industries within a circular economy framework.


Assuntos
Biodegradação Ambiental , Chlorella vulgaris , Eliminação de Resíduos Líquidos , Águas Residuárias , Chlorella vulgaris/metabolismo , Águas Residuárias/química , México , Eliminação de Resíduos Líquidos/métodos , Bebidas , Indústria Alimentícia , Poluentes Químicos da Água/análise , Resíduos Industriais/análise
4.
Water Res ; 259: 121832, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38852395

RESUMO

The presence of antibiotics in aquatic ecosystems poses a significant concern for public health and aquatic life, owing to their contribution to the proliferation of antibiotic-resistant bacteria. Effective wastewater treatment strategies are needed to ensure that discharges from pharmaceutical manufacturing facilities are adequately controlled. Here we propose the sequential use of nanofiltration (NF) for concentrating a real pharmaceutical effluent derived from azithromycin production, followed by electrochemical oxidation for thorough removal of pharmaceutical compounds. The NF membrane demonstrated its capability to concentrate wastewater at a high recovery value of 95 % and 99.7 ± 0.2 % rejection to azithromycin. The subsequent electrochemical oxidation process completely degraded azithromycin in the concentrate within 30 min and reduced total organic carbon by 95 % in 180 min. Such integrated treatment approach minimized the electrochemically-treated volume through a low-energy membrane approach and enhanced mass transfer towards the electrodes, therefore driving the process toward zero-liquid-discharge objectives. Overall, our integrated approach holds promises for cost-effective and sustainable removal of trace pharmaceutical compounds and other organics in pharmaceutical wastewater.


Assuntos
Filtração , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Técnicas Eletroquímicas , Purificação da Água/métodos , Azitromicina , Preparações Farmacêuticas , Oxirredução , Nanotecnologia , Indústria Farmacêutica
5.
Sci Total Environ ; 939: 173634, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38823717

RESUMO

Developing cost-efficient wastewater treatment technologies for safe reuse is essential, especially in developing countries simultaneously facing water scarcity. This study developed and evaluated a hybrid constructed wetlands (CWs) approach, incorporating tidal flow (TF) operation and utilising local Jordanian zeolite as a wetland substrate for real pharmaceutical industry wastewater treatment. Over 273 days of continuous monitoring, the results revealed that the first-stage TFCWs filled with either raw or modified zeolite performed significantly higher reductions in Chemical Oxygen Demand (COD, 58 %-60 %), Total Nitrogen (TN, 32 %-37 %), and Phosphate (PO4, 46 %-64 %) compared to TFCWs filled with normal sand. Water quality further improved after the second stage of horizontal subsurface flow CWs treatment, achieving log removals of 1.09-2.47 for total coliform and 1.89-2.09 for E. coli. With influent pharmaceutical concentrations ranging from 275 to 2000 µg/L, the zeolite-filled hybrid CWs achieved complete removal (>98 %) for ciprofloxacin, ofloxacin, erythromycin, and enrofloxacin, moderate removal (43 %-81 %) for flumequine and lincomycin, and limited removal (<8 %) for carbamazepine and diclofenac. The overall accumulation of pharmaceuticals in plant tissue and substrate adsorption accounted for only 2.3 % and 4.3 %, respectively, of the total mass removal. Biodegradation of these pharmaceuticals (up to 61 %) through microbial-mediated processes or within plant tissues was identified as the key removal pathway. For both conventional pollutants and pharmaceuticals, modified zeolite wetland media could only slightly enhance treatment without a significant difference between the two treatment groups. The final effluent from all hybrid CWs complied with Jordanian treated industry wastewater reuse standards (category III), and systems filled with raw or modified zeolite achieved over 95 % of samples meeting the highest water reuse category I. This study provides evidence of using hybrid CWs technology as a nature-based solution to address water safety and scarcity challenges.


Assuntos
Indústria Farmacêutica , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Áreas Alagadas , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Jordânia , Zeolitas/química , Análise da Demanda Biológica de Oxigênio
6.
Waste Manag ; 186: 236-248, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38941734

RESUMO

Proper management of wastewater treatment plant side streams in pulp and paper mills is a matter of great interest. This study evaluates the environmental impact of different strategies in the management of biosludge from pulp and paper mills in Finland through a Life Cycle Assessment methodology. The base industrial standard practice, biosludge incineration for energy recovery and ash landfill disposal (Scenario 1), was compared to the alternative process of hydrothermal carbonization. The hydrochar generated from hydrothermal carbonization was evaluated for energy recovery through incineration (Scenario 2), or for use in composting for nutrient recovery (Scenario 3). The results showed that the hydrothermal process improved the overall environmental performance of the sludge management, particularly in terms of energy consumption and greenhouse gas emissions. The use of hydrochar as a soil amendment in composting also resulted in a significant reduction on the environmental impact compared to the other two scenarios. Overall, this study highlights the potential of hydrothermal carbonization and hydrochar utilization as sustainable options for managing biosludge from pulp mills.


Assuntos
Incineração , Resíduos Industriais , Papel , Esgotos , Finlândia , Incineração/métodos , Resíduos Industriais/análise , Eliminação de Resíduos Líquidos/métodos , Compostagem/métodos
7.
Environ Sci Pollut Res Int ; 31(31): 43673-43686, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38904874

RESUMO

In this comprehensive investigation, we evaluate the efficacy of the Fenton process in degrading basic fuchsin (BF), a resistant dye. Our primary focus is on the utilization of readily available, environmentally benign, and cost-effective reagents for the degradation process. Furthermore, we delve into various operational parameters, including the quantity of sodium percarbonate (SPC), pH levels, and the dimensions of waste iron bars, to optimize the treatment efficiency. In the course of our research, we employed an initial SPC concentration of 0.5 mM, a pH level of 3, a waste iron bar measuring 3.5 cm in length and 0.4 cm in diameter, and a processing time of 10 min. Our findings reveal the successful elimination of the BF dye, even when subjected to treatment with diverse salts and surfactants under elevated temperatures and acidic conditions (pH below 3). This underscores the robustness of the Fenton process in purifying wastewater contaminated with dye compounds. The outcomes of our study not only demonstrate the efficiency of the Fenton process but highlight its adaptability to address dye contamination challenges across various industries. Critically, this research pioneers the application of waste iron bars as a source of iron in the Fenton reaction, introducing a novel, sustainable approach that enhances the environmental and economic viability of the process. This innovative use of recycled materials as catalysts represents a significant advancement in sustainable chemical engineering practices.


Assuntos
Carbonatos , Ferro , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Ferro/química , Poluentes Químicos da Água/química , Carbonatos/química , Catálise , Corantes/química , Eliminação de Resíduos Líquidos/métodos , Peróxido de Hidrogênio/química
8.
Bioresour Technol ; 402: 130822, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729582

RESUMO

Three different technological solutions, namely acidogenic fermentation and chemical extraction (alkaline or acidic), followed by precipitation with 1% Ca(OH)2, were investigated in the view of integrating phosphorus recovery into existing wastewater treatment plants. Experiments were conducted at the lab-scale using (i) sludge taken from biologically and chemically promoted phosphorus removal activated sludge processes and (ii) ashes obtained from sludge muffle incineration. Results highlighted the benefits of enhanced biological phosphorus removal (EBPR) systems rather than chemically promoted phosphorus removal in not only phosphorus extraction (up to 40% with EBPR) and recovery directly from secondary sludge (P precipitation between 66 and 92%), but after sludge incineration as well (P extraction up to 96% and precipitation above 96%). Acidogenic fermentation ensured the highest phosphorus release from EBPR sludge (equal to a concentration in solution of 122 mg/L P-PO43-), while the derived ashes had a lower level of metal contamination (particularly Fe and Al content < 2%). The phosphorus-rich product obtained by means of the recovery process showed relevant metal contamination (Cu, Zn, and Ni) under some operating conditions, suggesting the need for further treatments.


Assuntos
Fósforo , Esgotos , Águas Residuárias , Purificação da Água , Esgotos/química , Purificação da Água/métodos , Águas Residuárias/química , Fermentação , Eliminação de Resíduos Líquidos/métodos
9.
Water Res ; 257: 121691, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705069

RESUMO

The wastewater industry and the energy system are undergoing significant transformations to address climate change and environmental pollution. Green hydrogen, which will be mainly obtained from renewable electricity water electrolysis (Power-to-Hydrogen, PtH), has been considered as an essential energy carrier to neutralize the fluctuations of renewable energy sources. PtH, or Power-to-X (PtX), has been allocated to multiple sectors, including industry, transport and power generation. However, considering its large potential for implementation in the wastewater sector, represented by Water Resource Recovery Facilities (WRRFs), the PtX concept has been largely overlooked in terms of planning and policymaking. This paper proposes a concept to implement PtX at WRRFs, where sourcing of water, utilization of the oxygen by-product, and PtX itself can be sustainable and diversified strategies. Potential value chains of PtX are presented and illustrated in the frame of a WWRF benchmark simulation model, highlighting the applications of oxygen from PtX through pure oxygen aeration and ozone disinfection. Opportunities and challenges are highlighted briefly, and so is the prospective outlook to the future. Ultimately, it is concluded that 'coupling PtX to WRRFs' is a promising solution, which will potentially bring sustainable opportunities for both WRRFs and the energy system. Apart from regulatory and economic challenges, the limitations in coupling PtX to WRRFs mainly come from energy efficiency concerns and the complexity of the integration of the water framework and the energy system.


Assuntos
Águas Residuárias , Águas Residuárias/química , Recursos Hídricos , Purificação da Água , Eliminação de Resíduos Líquidos/métodos , Oxigênio , Conservação dos Recursos Hídricos
10.
Water Res ; 257: 121710, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728784

RESUMO

Sewage treatment involves a trade-off of land vs. energy and the location of installing Sewage Treatment Plants (STPs) strongly impacts the decisions regarding treatment technologies. In the wake of rapid urbanization, deteriorating freshwater quality and water scarcity, it is crucial to plan adequate and low-cost sewerage infrastructure that can improve the quality of life in rural and urban areas. The present work involves a novel life cycle analysis through six scenarios generated from a holistic perspective that can aid urban planners and urban local bodies in planning the sewage treatment facilities in their cities, towns or villages. Instead of planning sewerage infrastructure for a long-term period of thirty years, it is suggested to create and operate the STPs only for the upcoming decade. Further, owing to the drawbacks of mechanized and natural treatment systems, adopting a mix of these treatment approaches in planning infrastructure is suggested and the benefits of implementing the same are quantified and discussed. Implementing these strategies results in almost 30 % cost savings and 40 % reduction in greenhouse gas emissions, hence, investing in land for natural treatment systems is suggested instead of incurring heavy electricity bills for mechanized treatment systems. The land cost significantly affects the decision-making regarding treatment technology selection; hence, the variation in the life cycle cost of different sewage treatment approaches is assessed for varying land rates in India.


Assuntos
Esgotos , Instalações de Eliminação de Resíduos , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/economia , Eliminação de Resíduos Líquidos/métodos , Custos e Análise de Custo , Urbanização , Recursos Hídricos/provisão & distribuição , Conservação dos Recursos Naturais , Índia , Humanos , População Rural , População Urbana , Gases de Efeito Estufa , Abastecimento de Água/estatística & dados numéricos , Instalações de Eliminação de Resíduos/economia , Instalações de Eliminação de Resíduos/estatística & dados numéricos
11.
Environ Sci Pollut Res Int ; 31(24): 36052-36063, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38744768

RESUMO

Industrialization and the ever-increasing world population have diminished high-quality water resources for sustainable agriculture. It is imperative to effectively treat industrial effluent to render the treated water available for crop cultivation. This study aimed to assess the effectiveness of textile effluent treated with Trametes pubescens MB 89 in supporting maize cultivation. The fungal treatment reduced the amounts of Co, Pb and As in the textile effluent. The biological oxygen demand, total dissolved solids and total suspended solids were within the permissible limits in the treated effluent. The data indicated that the irrigation of maize with fungal-treated textile effluent improved the growth parameters of the plant including root, shoot length, leaf area and chlorophyll content. Moreover, better antioxidant activity, total phenol content and protein content in roots, stems and leaves of maize plants were obtained. Photosynthetic parameters (potential quantum yield, electron transport rate and fluorescence yield of non-photochemical losses other than heat) were also improved in the plants irrigated with treated effluent as compared to the control groups. In conclusion, the treatment of textile effluent with the immobilized T. pubescens presents a sustainable solution to minimize chemical pollution and effectively utilize water resources.


Assuntos
Têxteis , Trametes , Trametes/metabolismo , Zea mays , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água , Águas Residuárias/química
12.
Sci Total Environ ; 934: 173096, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38729365

RESUMO

Bioaerosols released from municipal wastewater treatment plants (MWWTPs) contain pathogenic microorganisms, if dispersed into the atmosphere, which pose potential health risks to humans. In this study, the concentrations and size distribution of bioaerosol, factors on the bioaerosol emission, exposure risk, and microbial composition in different treatment units of a MWWTP were investigated. The results showed that bioaerosol was released to different degrees in each treatment unit, with the concentrations of bioaerosol varied widely, ranging from 978 to 3710 CFU/m3. FG and PST were primary bioaerosol emission sources in MWWTP. COD concentration, wind speed (WS) and relative humidity (RH) significantly influenced bioaerosol concentrations. The proportion of inhalable particles (< 4.7 µm) ranged from 51.35 % to 83.33 %, and bioaerosol emitted from WWTP caused a non-carcinogenic risk to children by the exposure risk assessment (HI > 1), which need to be paid more attention. Bacterial, fungal and actinomycete aerosols were detected in each treatment unit of MWWTP. Among these bioaerosols, bacterial aerosol was dominant. Importantly, several pathogenic bacteria including Sphingobium, Brevundimonas, Romboutsia, Arcobacter, Acinetobacter, and Mycobacterium were identified within the airborne bacteria population, most of which originated from wastewater or sludge, particularly in the ambient air of AeT. Pathogenic bacteria from MWWTP should be studied further to determine their long-term behavior and possible health risks.


Assuntos
Aerossóis , Microbiologia do Ar , Poluentes Atmosféricos , Monitoramento Ambiental , Eliminação de Resíduos Líquidos , Águas Residuárias , Aerossóis/análise , Medição de Risco , Águas Residuárias/microbiologia , Poluentes Atmosféricos/análise , Bactérias/isolamento & purificação , Humanos
13.
Chemosphere ; 361: 142396, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38777194

RESUMO

This study focuses on the removal and risk assessment of twenty emerging contaminants (ECs) and heavy metals in a REMIX water treatment plant (RWTP) that produces drinking water from combination of wastewater reuse and desalination. The membrane biological reactor (MBR) exhibit removal rates exceeding 95% of pharmaceuticals like acetaminophen, trimethoprim, diclofenac, naproxen, and emtricitabine. The efficiency of brackish reverse osmosis (BWRO) in removing ECs is highlighted, showing substantial efficacy with reduction rates of 99.5%, 75.5%, and 51.2% for sulfamethoxazole, venlafaxine, and benzotriazole, respectively. The advanced oxidation process based on Fenton process reveals removal (>95%) of emtricitabine, efavirenz, and carbamazepine. The study confirms that the combination of treatment units within the RWTP effectively removes heavy metals (>90%), complying with acceptable limits. Risk quotient (RQ) calculations indicate the efficiency of the RWTP in EC removal, serving as benchmarks for public acceptance of reclaimed water. In the context of heavy metals, the study concludes negligible cancer risks associated with reclaimed water consumption over a lifetime. Quantitative structure-activity relationship and occurrence, persistence, bioaccumulation and toxicity (OPBT) models were used to assess EC risk. The study screened and identified potential persistant, bio accumulating and toxic PBT ECs. Critical control points (CCPs) in the RWTP are identified, with brackish and seawater reverse osmosis (BWRO and SWRO) and advanced oxidation process (AOP) recognized as pivotal in hazard management. The study provides valuable insights on the removal of ECs and heavy metals in a wastewater reuse process and demonstrates potential of adopted process configuration in supplying safe drinking water from wastewater recycling.


Assuntos
Água Potável , Metais Pesados , Águas Residuárias , Poluentes Químicos da Água , Purificação da Água , Poluentes Químicos da Água/análise , Metais Pesados/análise , Águas Residuárias/química , Medição de Risco , Purificação da Água/métodos , Água Potável/química , Humanos , Eliminação de Resíduos Líquidos/métodos
14.
Water Sci Technol ; 89(7): 1741-1756, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619900

RESUMO

Wastewater treatment plants (WWTPs) have positive and negative impacts on the environment. Therefore, life cycle impact assessment (LCIA) can provide a more holistic framework for performance evaluation than the conventional approach. This study added water footprint (WF) to LCIA and defined ϕ index for accounting for the damage ratio of carbon footprint (CF) to WF. The application of these innovations was verified by comparing the performance of 26 WWTPs. These facilities are located in four different climates in Iran, serve between 1,900 and 980,000 people, and have treatment units like activated sludge, aerated lagoon, and stabilization pond. Here, grey water footprint (GWF) calculated the ecological impacts through typical pollutants. Blue water footprint (BWF) included the productive impacts of wastewater reuse, and CF estimated CO2 emissions from WWTPs. Results showed that GWF was the leading factor. ϕ was 4-7.5% and the average WF of WWTPs was 0.6 m3/ca, which reduced 84%, to 0.1 m³/ca, through wastewater reuse. Here, wastewater treatment and reuse in larger WWTPs, particularly with activated sludge had lower cumulative impacts. Since this method takes more items than the conventional approach, it is recommended for integrated evaluation of WWTPs, mainly in areas where the water-energy nexus is a paradigm for sustainable development.


Assuntos
Águas Residuárias , Purificação da Água , Humanos , Esgotos , Eliminação de Resíduos Líquidos/métodos , Pegada de Carbono
15.
Water Sci Technol ; 89(7): 1879-1890, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619909

RESUMO

This study investigated the treatment of wastewater from tomato paste (TP) production using electrocoagulation (EC) and electrooxidation (EO). The effectiveness of water recovery from the pretreated water was then investigated using the membrane process. For this purpose, the effects of independent control variables, including electrode type (aluminum, iron, graphite, and stainless steel), current density (25-75 A/m2), and electrolysis time (15-120 min) on chemical oxygen demand (COD) and color removal were investigated. The results showed that 81.0% of COD and 100% of the color removal were achieved by EC at a current density of 75 A/m2, a pH of 6.84 and a reaction time of 120 min aluminum electrodes. In comparison, EO with graphite electrodes achieved 55.6% of COD and 100% of the color removal under similar conditions. The operating cost was calculated to be in the range of $0.56-30.62/m3. Overall, the results indicate that EO with graphite electrodes is a promising pretreatment process for the removal of various organics. In the membrane process, NP030, NP010, and NF90 membranes were used at a volume of 250 mL and 5 bar. A significant COD removal rate of 94% was achieved with the membrane. The combination of EC and the membrane process demonstrated the feasibility of water recovery from TP wastewater.


Assuntos
Grafite , Solanum lycopersicum , Poluentes Químicos da Água , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Alumínio , Eletrocoagulação/métodos , Água , Eletrodos , Resíduos Industriais/análise
16.
J Environ Manage ; 357: 120732, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38560954

RESUMO

Pharmaceutical compounds (PhCs) pose a growing concern with potential environmental impacts, commonly introduced into the environment via wastewater treatment plants (WWTPs). The occurrence, removal, and season variations of 60 different classes of PhCs were investigated in the baffled bioreactor (BBR) wastewater treatment process during summer and winter. The concentrations of 60 PhCs were 3400 ± 1600 ng/L in the influent, 2700 ± 930 ng/L in the effluent, and 2400 ± 120 ng/g dw in sludge. Valsartan (Val, 1800 ng/L) was the main contaminant found in the influent, declining to 520 ng/L in the effluent. The grit chamber and BBR tank were substantially conducive to the removal of VAL. Nonetheless, the BBR process showcased variable removal efficiencies across different PhC classes. Sulfadimidine had the highest removal efficiency of 87 ± 17% in the final effluent (water plus solid phase). Contrasting seasonal patterns were observed among PhC classes within BBR process units. The concentrations of many PhCs were higher in summer than in winter, while some macrolide antibiotics exhibited opposing seasonal fluctuations. A thorough mass balance analysis revealed quinolone and sulfonamide antibiotics were primarily eliminated through degradation and transformation in the BBR process. Conversely, 40.2 g/d of macrolide antibiotics was released to the natural aquatic environment via effluent discharge. Gastric acid and anticoagulants, as well as cardiovascular PhCs, primarily experienced removal through sludge adsorption. This study provides valuable insights into the intricate dynamics of PhCs in wastewater treatment, emphasizing the need for tailored strategies to effectively mitigate their release and potential environmental risks.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Esgotos/análise , Eliminação de Resíduos Líquidos , Estações do Ano , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Antibacterianos/análise , Medição de Risco , Macrolídeos/análise , Preparações Farmacêuticas
17.
J Environ Sci (China) ; 143: 85-98, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38644026

RESUMO

Ciprofloxacin (CIP) is a commonly used antibiotic in the fluoroquinolone group and is widely used in medical and veterinary medicine disciplines to treat bacterial infections. When CIP is discharged into the sewage system, it cannot be removed by a conventional wastewater treatment plant because of its recalcitrant characteristics. In this study, boron-doped diamond anode and persulfate were used to degrade CIP in an aquatic solution by creating an electrochemically activated persulfate (EAP) process. Iron was added to the system as a coactivator and the process was called EAP+Fe. The effects of independent variables, including pH, Fe2+, persulfate concentration, and electrolysis time on the system were optimized using the response surface methodology. The results showed that the EAP+Fe process removed 94% of CIP under the following optimum conditions: A pH of 3, persulfate/Fe2+ concentration of 0.4 mmol/L, initial CIP concentration 30 mg/L, and electrolysis time of 12.64 min. CIP removal efficiency was increased from 65.10% to 94.35% by adding Fe2+ as a transition metal. CIP degradation products, 7 pathways, and 78 intermediates of CIP were studied, and three of those intermediates (m/z 298, 498, and 505) were reported. The toxicological analysis based on toxicity estimation software results indicated that some degradation products of CIP were toxic to targeted animals, including fathead minnow, Daphnia magna, Tetrahymena pyriformis, and rats. The optimum operation costs were similar in EAP and EAP+Fe processes, approximately 0.54 €/m3.


Assuntos
Antibacterianos , Ciprofloxacina , Poluentes Químicos da Água , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Antibacterianos/química , Antibacterianos/toxicidade , Ciprofloxacina/toxicidade , Animais , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Técnicas Eletroquímicas , Sulfatos/química
18.
Sci Total Environ ; 927: 172296, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588732

RESUMO

Constructed wetlands (CWs) are pivotal for wastewater treatment due to their high efficiency and numerous advantages. The impact of plant species and diversity on greenhouse gas (GHG) emissions from CWs requires a more comprehensive evaluation. Moreover, controversial perspectives persist about whether CWs function as carbon sinks or sources. In this study, horizontal subsurface flow (HSSF) CWs vegetated with Cyperus alternifolius, Typhae latifolia, Acorus calamus, and the mixture of these three species were constructed to evaluate pollutant removal efficiencies and GHG emissions, and estimate carbon budgets. Polyculture CWs can stably remove COD (86.79 %), NH4+-N (97.41 %), NO3--N (98.55 %), and TP (98.48 %). They also mitigated global warming potential (GWP) by suppressing N2O emissions compared with monoculture CWs. The highest abundance of the Pseudogulbenkiania genus, crucial for denitrification, was observed in polyculture CWs, indicating that denitrification dominated in nitrogen removal. While the highest nosZ copy numbers were observed in CWs vegetated with Cyperus alternifolius, suggesting its facilitation of denitrification-related microbes. Selecting Cyperus alternifolius to increase species diversity is proposed for simultaneously maintaining the water purification capacity and reducing GHG emissions. Carbon budget estimations revealed that all four types of HSSF CWs were carbon sinks after six months of operation, with carbon accumulation capacity of 4.90 ± 1.50 (Cyperus alternifolius), 3.31 ± 2.01 (Typhae latifola), 1.78 ± 1.30 (Acorus calamus), and 2.12 ± 0.88 (polyculture) kg C/m2/yr. This study implies that under these operation conditions, CWs function as carbon sinks rather than sources, aligning with carbon peak and neutrality objectives and presenting significant potential for carbon reduction efforts.


Assuntos
Gases de Efeito Estufa , Eliminação de Resíduos Líquidos , Áreas Alagadas , Gases de Efeito Estufa/análise , Eliminação de Resíduos Líquidos/métodos , Cyperus/metabolismo , Carbono/metabolismo , Águas Residuárias , Typhaceae/metabolismo , Acorus/metabolismo
19.
Chemosphere ; 356: 141973, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608777

RESUMO

Pharmaceuticals are progressively employed in both human and veterinary medicine and increasingly recognized as environmental contaminants. This study investigated the occurrence of selected pharmaceuticals in influent and effluent of wastewater treatment plants of 12 hospitals in Hanoi and 3 northern cities of Vietnam during dry and rainy seasons. In addition, environmental risk of pharmaceuticals in both hospital influents and effluents were evaluated based on risk quotients (RQs). Nine selected pharmaceutical compounds including sulfamethoxazole (SMX), naproxen (NPX), diclofenac (DCF), ibuprofen (IBU), acetaminophen (ACT), carbamazepine (CBM), iopromide (IOP), atenolol (ATN), and caffeine (CAF) were frequently detected in most influent and effluent wastewaters of 12 investigated hospitals. Detected compound levels exhibited a wide range, from as low as 1 ng/L for DCF to as high as 61,772 ng/L for ACT. Among these compounds, ACT, CAF, SMX, and IOP were consistently detected at substantial concentrations in both influents and effluents. This investigation also highlighted potential risks posed by SMX, ACT, and CAF residues present in influents and effluents of hospital wastewater treatment plants (WWTPs) to aquatic ecosystem. These finding are expected to provide scientific-based evidence for the development of hospital waste management and environmental management programs in Vietnam.


Assuntos
Monitoramento Ambiental , Hospitais , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Vietnã , Poluentes Químicos da Água/análise , Preparações Farmacêuticas/análise , Medição de Risco , Eliminação de Resíduos Líquidos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA