Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 300
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1379-1387, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38886437

RESUMO

The energy oriented mine ecological restoration mode of photovoltaic+ecological restoration provides a breakthrough for alleviating the dilemma of photovoltaic land development and solving the urgent need for restoration of abandoned mining land. Taking a mining area in central Liaoning Province as an example, we established three photovoltaic+mining ecological restoration modes, including forest-photovoltaic complementary, agriculture-photovoltaic, and grass photovoltaic complementation. Combined with the life cycle assessment method, we calculated and assessed the potential of photovoltaic+mining ecological restoration in carbon reduction and sink enhancement. The average annual carbon reduction and sink increase was 514.93 t CO2·hm-2 under the photovoltaic+mining ecological restoration mode, while the average annual carbon reduction per megawatt photovoltaic power station was 1242.94 t CO2. The adoption of photovoltaic+ecological restoration mode in this mining area could make carbon reduction and sink enhancement 6.30-7.79 Mt CO2 during 25 years. The carbon reduction and sink increment mainly stemmed from the photovoltaic clean power generation induced carbon reduction, accounting for 96.4%-99.4%, while the contribution of ecosystem carbon sink increment was small, accounting for only 0.6%-3.7% of the total. Among different photovoltaic+ecological restoration modes, the carbon reduction and sink increment was the largest in forest-photovoltaic complementary (7.11 Mt CO2), followed by agriculture-photovoltaic (7.04 Mt CO2), and the least in grass photovoltaic complementation (6.98 Mt CO2). Constructing the development mode of "photovoltaic+mining ecological restoration" could effectively leverage the dual benefits of reducing emissions from photovoltaic power generation and increase sinks from mining ecological restoration, which would be helpful for achieving the goal of carbon neutrality in China.


Assuntos
Sequestro de Carbono , Ecossistema , Mineração , China , Recuperação e Remediação Ambiental/métodos , Modelos Teóricos , Carbono/química , Carbono/análise , Conservação dos Recursos Naturais/métodos , Dióxido de Carbono/análise , Energia Solar
2.
Nanotechnology ; 35(42)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38897177

RESUMO

Silicon in its nanoscale range offers a versatile scope in biomedical, photovoltaic, and solar cell applications. Due to its compatibility in integration with complex molecules owing to changes in charge density of as-fabricated Silicon Nanostructures (SiNSs) to realize label-free and real-time detection of certain biological and chemical species with certain biomolecules, it can be exploited as an indicator for ultra-sensitive and cost-effective biosensing applications in disease diagnosis. The morphological changes of SiNSs modified receptors (PNA, DNA, etc) have huge future scope in optimized sensitivity (due to conductance variations of SiNSs) of target biomolecules in health care applications. Further, due to the unique optical and electrical properties of SiNSs realized using the chemical etching technique, they can be used as an indicator for photovoltaic and solar cell applications. In this work, emphasis is given on different critical parameters that control the fabrication morphologies of SiNSs using metal-assisted chemical etching technique (MACE) and its corresponding fabrication mechanisms focusing on numerous applications in energy storage and health care domains. The evolution of MACE as a low-cost, easy process control, reproducibility, and convenient fabrication mechanism makes it a highly reliable-process friendly technique employed in photovoltaic, energy storage, and biomedical fields. Analysis of the experimental fabrication to obtain high aspect ratio SiNSs was carried out using iMAGEJ software to understand the role of surface-to-volume ratio in effective bacterial interfacing. Also, the role of silicon nanomaterials has been discussed as effective anti-bacterial surfaces due to the presence of silver investigated in the post-fabrication energy dispersive x-ray spectroscopy analysis using MACE.


Assuntos
Nanoestruturas , Silício , Silício/química , Nanoestruturas/química , Técnicas Biossensoriais/métodos , Energia Solar , Humanos , Nanotecnologia/métodos , Nanotecnologia/economia
3.
Environ Sci Pollut Res Int ; 31(27): 39406-39420, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816633

RESUMO

Numerous research studies have found that a double-pass solar air heater (DPSAH) performs better than a single-pass solar air heater (SAH). This suggested study aims to evaluate the performance of a DPSAH setup in Southern Tamil Nadu, India. Several artificial roughness features have been incorporated into the solar black-coated absorber plate for this examination. Broken ribs with semi-circular and semi-polygonal shapes are used and explicitly tested on the absorber plate. Next, the efficiency of these rib designs is contrasted with a typical flat plate DPSAH. These studies also employ three different mass flow rates (0.01 kg/s, 0.02 kg/s, and 0.03 kg/s), enabling a thorough assessment of the DPSAH system's performance at each rate. These studies' findings demonstrate that adding artificial roughness to the solar collector plate has a beneficial effect on the turbulence of fluid flows. As a result, this innovation increases the double-pass solar air heater's (DPSAH) heat transfer rate. It is noteworthy that compared to the DPSAH with flat plates, both rib designs perform better. It is important to remember that the semi-polygonal ribs function better than the semi-circular ones. The average efficiency values for the semi-polygonal rib structure are 17.1%, 18.7%, and 19.1% greater than those seen for flat plates. These efficiency values are additionally 4.4%, 7.4%, and 8.7% higher than those attained with the semi-circular rib topologies at flow rates of 0.01 kg/s, 0.02 kg/s, and 0.03 kg/s, respectively. The study goes into considerable detail on how particular rib patterns can be advantageous economically and environmentally.


Assuntos
Energia Solar , Índia
4.
Trop Doct ; 54(3): 258-261, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38557301

RESUMO

In this report we describe the implementation of a new electricity supply system at Mulanje Mission Hospital, Malawi, which integrates the use of grid electricity, solar-generated electricity and battery back-up. To realize the system, suppliers from several countries had to be used and external expertise and funding were vital. The completed system provides reliable and good quality electricity to all departments in the hospital, prioritizing essential equipment when needed. Implementation of the system has reduced cost of electricity bills by 60%, ended black-outs and extended longevity of electrical equipment. We describe our approach, the materials used and results with challenges and recommendations to governments, donors interested in hospital infrastructure and other health facilities operating in similar circumstances. Others in similar settings can benefit from the experiences documented.


Assuntos
Fontes de Energia Elétrica , Energia Solar , Malaui , Energia Solar/economia , Humanos , Eletricidade , Hospitais
5.
Environ Res ; 252(Pt 3): 118660, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38503379

RESUMO

The development and utilization of renewable energy (RE) is crucial for achieving the sustainable development goals (SDGs). The northwest China, endowed with abundant RE sources such as wind and solar power, accounts for over 70% of the country's total resources. The assessment and utilization of RE in this region has become a critical means to achieve the SDGs, particularly SDG7. However, lack of knowledge regarding the RE potential poses a barrier to achieving high-quality energy development. Thus, through a Geographical Information System (GIS) based multi-criteria analysis, we assess the solar and wind energy potential in northwest China, quantitatively examine the energy potential and its contribution towards achieving the SDGs. Our results show that a substantial portion of RE can be harnessed in northwest China, with wind energy generation reaching up to 9.84PWh/km2/yr at 110m and 12.43 PWh/km2/yr at 140m. Concurrently, solar energy can contribute up to 15.16 PWh/km2/yr. Xinjiang province has the highest RE potential for it contains a large share of suitable area with good resource quality. The findings illustrate the contribution of northwest China towards achieving SDGs and facilitate the formulation of more targeted resource policies.


Assuntos
Energia Renovável , Energia Solar , Desenvolvimento Sustentável , Vento , China , Sistemas de Informação Geográfica , Conservação dos Recursos Naturais/métodos
6.
Environ Sci Technol ; 58(14): 6158-6169, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38546376

RESUMO

Coastal regions, home to more than half of the global population and contributing over 50% to the global economy, possess vast renewable resources, such as seawater and solar energy. The effective utilization of these resources, through the seawater-cooled district cooling system (SWDCS), seawater toilet flushing (SWTF), and rooftop solar photovoltaic system (RTPV), has the potential to significantly reduce carbon emissions. However, implementing these technologies in different geographic contexts to achieve the desired carbon and economic outcomes at the city level lacks a clear roadmap. To address this challenge, we comprehensively analyzed 12 coastal megacities worldwide by integrating geospatial building data. Our study evaluated the potential energy savings, carbon mitigation, and levelized carbon abatement costs (LCACs) from a life cycle perspective. The results revealed that using seawater and solar energy within urban boundaries can reduce electricity consumption from 1 to 24% across these cities. The spatial distribution of the LCAC for seawater-based systems exhibited more variation compared to the RTPV. By applying specific LCAC thresholds ranging from 0 to 225 USD/tCO2e, all cities could achieve both carbon reductions and economic benefits. These thresholds resulted in up to 80 million tonnes of carbon emission reductions and 5 billion USD of economic benefits, respectively. Our study provides valuable insights into integrating renewable resource systems, enabling coastal cities to achieve carbon and economic advantages at the city scale simultaneously.


Assuntos
Aparelho Sanitário , Energia Solar , Cidades , Carbono , Água do Mar
7.
Environ Sci Pollut Res Int ; 31(13): 19244-19256, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355862

RESUMO

Solar water heaters are a type of renewable energy technology that converts solar energy into heat to warm water. Solar water heaters are becoming increasingly popular due to their eco-friendliness, cost-effectiveness, and low maintenance requirements. In this study, low-cost solar collectors were developed using date palm waste (dried leaves) as thermal insulation. Date palm waste is a readily available and abundant resource in many regions, and using it in solar collectors can help reduce waste and promote sustainability. Two solar collectors were fabricated using crushed date palm waste, with one collector using the waste alone and the other mixed with starch. Tests were conducted in accordance with the European standard EN 12975-2-2006 and modeled the thermal behavior of the collectors. The results obtained showed that the prototypes of solar collectors performed well and exhibited behavior comparable to that of a commercial solar collector, with a production cost up to three times less. The use of date palm waste as thermal insulation in solar collectors is an innovative approach that aligns with the principles of sustainability and environmental friendliness. Furthermore, it was found that the leveled heating cost (LCOH) and the simple payback period (SPP) were 0.952 US$ kWh-1 and 2.472 years for the prototype without starch and 0.926 US$ kWh-1 and 2.397 years for the prototype with starch.


Assuntos
Phoeniceae , Energia Solar , Água , Amido , Luz Solar
8.
PLoS One ; 19(2): e0292892, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38330055

RESUMO

Where local resources for renewable electricity are scarce or insufficient, long-distance electricity imports will be required in the future. Even across long distances, the variable availability of renewable energy sources needs to be managed for which dedicated storage options are usually considered. Other alternatives could be demand-side flexibility and concentrated solar power with integrated thermal energy storage. Here their influence on the cost of imported electricity is explored. Using a techno-economic linear capacity optimization, exports of renewable electricity from Morocco and Tunisia to CERN in Geneva, Switzerland in the context of large research facilities are modeled. Two different energy supply chains are considered, direct imports of electricity by HVDC transmission lines, and indirect imports using H2 pipelines subsequent electricity generation. The results show that direct electricity exports ranging from 58 EUR/MWh to 106 EUR/MWh are the more economical option compared to indirect H2-based exports ranging from 157 EUR/MWh to 201 EUR/MWh. Both demand-side flexibility and CSP with TES offer significant opportunities to reduce the costs of imports, with demand-side flexibility able to reduce costs for imported electricity by up to 45%. Research institutions in Central Europe could initiate and strengthen electricity export-import partnerships with North Africa to take on a leading role in Europe's energy transition and to secure for themselves a long-term, sustainable electricity supply at plannable costs.


Assuntos
Energia Renovável , Energia Solar , Europa (Continente) , Eletricidade , Tunísia
10.
Environ Sci Process Impacts ; 26(3): 540-554, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38299676

RESUMO

III-V/Silicon tandem solar cells offer one of the most promising avenues for high-efficiency, high-stability photovoltaics. However, a key concern is the potential environmental release of group III-V elements, especially arsenic. To inform long-term policies on the energy transition and energy security, we develop and implement a framework that fully integrates future PV demand scenarios with dynamic stock, emission, and fate models in a probabilistic ecological risk assessment. We examine three geographical scales: local (including a floating utility-scale PV and waste treatment), regional (city-wide), and continental (Europe). Our probabilistic assessment considers a wide range of possible values for over one hundred uncertain technical, environmental, and regulatory parameters. We find that III-V/silicon PV integration in energy grids at all scales presents low-to-negligible risks to soil and freshwater organisms. Risks are further abated if recycling of III-V materials is considered at the panels' end-of-life.


Assuntos
Silício , Energia Solar , Estudos Prospectivos , Reciclagem , Solo , Medição de Risco
11.
Environ Sci Pollut Res Int ; 31(5): 8274-8290, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38175504

RESUMO

The demand for sustainable energy is increasingly urgent to mitigate global warming which has been exacerbated by the extensive use of fossil fuels. Solar energy has attracted global attention as a crucial renewable resource. This study conducted a bibliometric analysis based on publication metrics from the Web of Science database to gain insights into global solar power research. The results indicate a stable global increase in publications on solar power generation and a rise in citations, reflecting growing academic interest. Leading contributors include China, the USA, South Korea, Japan, and India, with the Chinese Academy of Sciences emerging as the most prolific institution. Multidisciplinary Materials Science, Applied Physics, Energy and Fuels, Physical Chemistry, and Nanoscience and Nanotechnology were the most used and promising subject categories. Current hot topics include the systematic analysis of photovoltaic systems, perovskite as a solar cell material, and focusing on stability and flexibility issues arising during photovoltaic-grid integration. This study facilitates a comprehensive understanding of the status and trends in solar power research for researchers, stakeholders, and policy-makers.


Assuntos
Energia Solar , Desenvolvimento Sustentável , Bibliometria , Energia Renovável , Ásia
12.
Environ Sci Technol ; 58(5): 2282-2292, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38270080

RESUMO

Direct air capture (DAC) of CO2 has gained attention as a sustainable carbon source. One of the most promising technologies currently available is liquid solvent DAC (L-DAC), but the significant fraction of fossil CO2 in the output stream hinders its utilization in carbon-neutral fuels and chemicals. Fossil CO2 is generated and captured during the combustion of fuels to calcine carbonates, which is difficult to decarbonize due to the high temperatures required. Solar thermal energy can provide green high-temperature heat, but it flourishes in arid regions where environmental conditions are typically unfavorable for L-DAC. This study proposes a solar-powered L-DAC approach and develops a model to assess the influence of the location and plant capacity on capture costs. The performed life cycle assessment enables the comparison of technologies based on net CO2 removal, demonstrating that solar-powered L-DAC is not only more environmentally friendly but also more cost-effective than conventional L-DAC.


Assuntos
Dióxido de Carbono , Energia Solar , Custos e Análise de Custo , Carbono , Tecnologia
13.
Environ Sci Pollut Res Int ; 31(12): 18171-18187, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36823466

RESUMO

Renewable cooling via absorption chillers being supplied by various green heat technologies such as solar collectors has been widely studied in the literature, but it is still challenging to get positive economic outcomes from such systems due to the large expenses of solar thermal systems. This study offers the use of a new generation of solar collectors, so-called eccentric reflective solar collectors, for driving single-effect absorption chillers and thereby reducing the levelized cost of cooling. This article develops the most optimal design of this system (based on several different scenarios) using multi-objective optimization techniques and employs them for a case study in Brazil to assess its proficiency compared to conventional solar-driven cooling methods. For making the benchmarking analyses fair, the conventional system is also rigorously optimized in terms of design and operation features. The results show that the eccentric solar collector would enhance the cost-effectiveness by 29%. In addition, using optimally sized storage units would be necessary to get acceptable economic performance from the system, no matter which collector type is used. For the case study, at the optimal sizing and operating conditions, the levelized cost of cooling will be 124 USD/MWh and an emission level of 18.97 kgCO2/MWh.


Assuntos
Energia Solar , Luz Solar , Temperatura Baixa , Temperatura Alta , Transição de Fase
14.
Environ Sci Pollut Res Int ; 31(12): 18200-18208, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37002519

RESUMO

Solar energy is one of the most feasible options to produce energy in countries where unexploited desert areas or solar radiation are abundant. An energy tower is an effective system for electrical power generation that can perform more efficiently along with solar radiation. As the primary aim of the present study, effects of different environmental parameters on total efficacy of energy tower were investigated. In this study, the efficiency of the energy tower system is investigated experimentally by an indoor fully adjustable apparatus. In this regard, a comprehensive set of influencing parameters like air velocity, humidity, and temperature and the effects of tower height on the performance of the energy tower are individually assessed. It is demonstrated that there is a direct relationship between an increase in humidity percentage of the surrounding and performance of energy tower, meaning that a 274% increase in humidification rate led to 43% elevation in airflow velocity. The kinetic energy increases in the direction of airflow from top to bottom, and as the height of the tower lengthens, the kinetic energy enhances and subsequently increases the overall efficiency of the tower. An elevation about 2.7% in airflow velocity was seen due to an increase from 180 to 250 cm in chimney height. Although the energy tower performs efficiently in the nighttime, airflow velocity increases averagely about 8% during the daytime and at the peak of the solar radiation, the airflow velocity enhances by 58% compared to nighttime.


Assuntos
Energia Solar , Umidade , Temperatura
15.
J Environ Manage ; 351: 119916, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38150926

RESUMO

As a promising solution to address the global challenge of freshwater scarcity, solar-powered interfacial steam generation has undergone notable advancements. This study introduces a novel solar-driven interfacial evaporation membrane (ZnIn2S4@SiO2/ACSA, ZSAS) comprising a ZnIn2S4@SiO2 composite and a black sodium alginate aerogel infused with activated carbon. The ZSAS membrane demonstrates exceptional light absorption and thermal insulation, leading to elevated surface temperatures and reduced heat dissipation into the bulk water. Furthermore, the incorporation of AC reinforces the mechanical properties of the ZSAS membrane and enhances the water purification performance. These collective features result in an impressive evaporation rate of 1.485 kg m-2 h-1 and a high photothermal conversion efficiency of 91.2% under 1 sun irradiation for the optimal ZSAS membrane. Moreover, the optimal ZSAS membrane can effectively remove salts, heavy metal ions, and organic pollutants, benefitting from its superior evaporation separation effect and the photocatalytic properties of the ZnIn2S4@SiO2 composite.


Assuntos
Energia Solar , Purificação da Água , Análise Custo-Benefício , Dióxido de Silício , Alginatos , Carvão Vegetal
16.
Environ Res ; 246: 118047, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38160972

RESUMO

This study examines the potential for widespread solar photovoltaic panel production in Mexico and emphasizes the country's unique qualities that position it as a strong manufacturing candidate in this field. An advanced model based on artificial neural networks has been developed to predict solar photovoltaic panel plant metrics. This model integrates a state-of-the-art non-linear programming framework using Pyomo as well as an innovative optimization and machine learning toolkit library. This approach creates surrogate models for individual photovoltaic plants including production timelines. While this research, conducted through extensive simulations and meticulous computations, unveiled that Latin America has been significantly underrepresented in the production of silicon, wafers, cells, and modules within the global market; it also demonstrates the substantial potential of scaling up photovoltaic panel production in Mexico, leading to significant economic, social, and environmental benefits. By hyperparameter optimization, an outstanding and competitive artificial neural network model has been developed with a coefficient of determination values above 0.99 for all output variables. It has been found that water and energy consumption during PV panel production is remarkable. However, water consumption (33.16 × 10-4 m3/kWh) and the emissions generated (1.12 × 10-6 TonCO2/kWh) during energy production are significantly lower than those of conventional power plants. Notably, the results highlight a positive economic trend, with module production plants generating the highest profits (35.7%) among all production stages, while polycrystalline silicon production plants yield comparatively lower earnings (13.0%). Furthermore, this study underscores a critical factor in the photovoltaic panel production process which is that cell production plants contribute the most to energy consumption (39.7%) due to their intricate multi-stage processes. The blending of Machine Learning and optimization models heralds a new era in resource allocation for a more sustainable renewable energy sector, offering a brighter, greener future.


Assuntos
Energia Solar , México , Silício , Centrais Elétricas , Alocação de Recursos
17.
Chemosphere ; 346: 140409, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37832893

RESUMO

Biomass, including municipal solid waste, and solar energy are two of the inevitable sources for future decarbonized energy systems. Fresnel lens thermal collectors using cheap micro-structured foils is an interesting emerging medium-temperature solar thermal design that might be of high practical value, provided that its fluctuating output is managed. This study proposes a hybrid solar-waste solution using this type of collector for multi-generation via an Organic Rankine Cycle. The cycle is specially designed for supplying low-grade heat, power, and industrial heat (which is a very critical sector to be decarbonized) taking advantage of the generated stable solar-waste medium-temperature heat at zero emission level. To achieve this optimal design, the article conducts a thorough energy-exergy-economic-environment (4E) analysis of the system and employs the non-dominated sorting genetic algorithm (NSGA II) for the optimizations. A benchmarking analysis is also conducted to show the importance of industrial heat supply in this cycle. The results show that this hybridization, owing to the cheap and flexible heat delivery of the waste incinerator as well as the low cost of the solar collectors, is very effective for efficient and cheap multi-generation. Especially for industrial heat supply, the competitive levelized cost of energy (LCOE) of 23.96 €/MWh is obtained, which is way lower than today's achievable costs in the industry.


Assuntos
Incineração , Energia Solar , Incineração/métodos , Temperatura Alta , Resíduos Sólidos/análise , Temperatura
18.
Environ Sci Pollut Res Int ; 30(57): 120844-120862, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945965

RESUMO

Solar air heaters (SAH) convert solar energy to thermal energy for food processing industries and commercial space heating applications, as solar energy is cost-free. In this experimental study, the thermal performance of the solar air heater has been successively improved using different roughness elements over the absorber. The triangle-shaped wedges in three structures (inline, serpentine, and clustered structure) are investigated in this work. Thermal performance comparison is made with a SAH with a plain absorber. A maximum air temperature rise of 19 °C is observed for the SAH with wedges in a clustered structure. The absorber surface temperature for clustered structured roughness elements is 76.8 °C with an average heat loss coefficient of 4.43 W/m2·K. The useful heat absorption using clustered structure wedges is 33%, 17.9%, and 6.6% higher than the SAH with plain, inline, and serpentine structured wedges. SAH's maximum thermal and exergy efficiency with clustered structured elements is 70.4% and 1.64%. The average thermal efficiency of inline, serpentine, and clustered arrangement is 13.3%, 25.3%, and 35.6% higher than the SAH with a plain absorber. The proposed SAH design shows a sustainability index 1.01, and lower payback periods show economic and environmental viability.


Assuntos
Utensílios Domésticos , Energia Solar , Asbestos Serpentinas , Calefação , Temperatura Alta
19.
Environ Sci Pollut Res Int ; 30(47): 104350-104373, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37704812

RESUMO

This paper focuses on exergo-enviro-economic and yearly productivity analyses for conical passive solar still having the potential to fulfil the sustainable development goal of the United Nations. A new approach for thermal modelling of conical passive solar still has been carried out with experimental validation in the present work, wherein different weather conditions have been considered for the analysis of the proposed system. The carried out work has been done for each month of the year. In further methodology, the computational code in MATLAB has been used for the computation of hourly freshwater production, exergy, and energy followed by the estimation of their annual values. Thereafter, exergo-enviro-economic parameters, yearly productivity, payback period, and freshwater cost have been estimated, and the obtained results have been compared with the earlier published research. Concludingly, the exergo-economic parameter, enviro-economic parameter, and yearly productivity for the proposed system have been found higher by 44.25%, 25.68%, and 44.07%, respectively, than the conventional solar still. The comparative freshwater cost is 13.56% less than the conventional solar still for 0.025 m water depth. Additionally, the payback period for the proposed system will remain at 2.75 years, which is 13.82% less in comparison to the conventional solar still considering a 2% interest rate.


Assuntos
Destilação , Energia Solar , Tempo (Meteorologia) , Água Doce , Água
20.
Environ Sci Pollut Res Int ; 30(45): 100660-100674, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37639091

RESUMO

This study proposed a novel building attached photovoltaic (BAPV) system mainly comprised of the PV system, building with household appliances, electric vehicle (EV), and power grid. Effect analyses of four typical factors are conducted, including the number of batteries, PV system supporting type, azimuth, and tilt angles of PV panels. The results show that the BAPV system with 8 batteries, an open PV system supporting type, an azimuth angle of 0°, and a tilt angle of 30.5° is relatively optimal. The operation, economic, and environment benefit performances of the BAPV system are analyzed. The results reveal that the annual effective output electricity of the BAPV system is 58.3 MWh, of which about 20 MWh is consumed by household appliances and EV or stored in batteries, and 38.3 MWh is sold to the power grid. The annual performance ratio of the BAPV system is 82.7%. Based on the annual nominal power generation quantity of the PV system, the effective output electricity occupies about 89%, and the energy loss part occupies 11%. The levelized cost of electricity (LCOE) and cost recovery cycle of the BAPV system are 0.132 yuan/kWh and 8.7 years, respectively. For the whole lifetime, the emission reduction quantities of carbon dioxide, dust, sulfur dioxide, and nitrogen oxide of the BAPV project are 786.3 t, 4.225 t, 7.275 t, and 6.9 t. The results of this study demonstrate the technical and economic feasibilities as well as the acceptable environmental protection performance of the proposed BAPV system, and this paper will contribute to the research and development works of BAPV systems.


Assuntos
Energia Solar , Dióxido de Enxofre , Poeira , Óxidos de Nitrogênio , Eletricidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA