Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 592
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Methods Mol Biol ; 2783: 167-176, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478232

RESUMO

Decellularized human-adipose tissue (hDAT) can serve as an alternative to two-dimensional monolayer culture and current ECM hydrogels due to its unlimited availability and cytocompatibility. A major hurdle in the clinical translation and integration of hDAT and other hydrogels into current in vitro culture processes is adherence to current good manufacturing practices (cGMP). Transferring of innovative technologies, including hydrogels, requires the establishing standardized protocols for quality assurance and quality control (QA/QC) of the material.Integration of basic characterization techniques, including physiochemical characterization, structural/morphological characterization, thermal and mechanical characterization, and biological characterization, in addition to the reduction of batch-to-batch variability and establishment of proper sterilization, storage, and fabrication processes verifies the integrity of the hydrogel. Obatala Sciences has established a characterization protocol that involves a series of assays including the evaluation of gelation properties, protein content, glycosaminoglycan content, soluble collagen content, and DNA content of hDAT.


Assuntos
Matriz Extracelular , Hidrogéis , Humanos , Hidrogéis/química , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Glicosaminoglicanos/metabolismo , Controle de Qualidade , Engenharia Tecidual/métodos
2.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339088

RESUMO

Three-dimensional (3D) bioprinting is one of the most promising methodologies that are currently in development for the replacement of animal experiments. Bioprinting and most alternative technologies rely on animal-derived materials, which compromises the intent of animal welfare and results in the generation of chimeric systems of limited value. The current study therefore presents the first bioprinted liver model that is entirely void of animal-derived constituents. Initially, HuH-7 cells underwent adaptation to a chemically defined medium (CDM). The adapted cells exhibited high survival rates (85-92%) after cryopreservation in chemically defined freezing media, comparable to those preserved in standard medium (86-92%). Xeno-free bioink for 3D bioprinting yielded liver models with high relative cell viability (97-101%), akin to a Matrigel-based liver model (83-102%) after 15 days of culture. The established xeno-free model was used for toxicity testing of a marine biotoxin, okadaic acid (OA). In 2D culture, OA toxicity was virtually identical for cells cultured under standard conditions and in CDM. In the xeno-free bioprinted liver model, 3-fold higher concentrations of OA than in the respective monolayer culture were needed to induce cytotoxicity. In conclusion, this study describes for the first time the development of a xeno-free 3D bioprinted liver model and its applicability for research purposes.


Assuntos
Bioimpressão , Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Animais , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais
3.
J Biomed Mater Res B Appl Biomater ; 112(1): e35349, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38247239

RESUMO

In the field of bone tissue engineering, silicon (Si) has been found as an essential element for bone growth. However, the use of silicon in bioceramics microspheres remains limited. In this work, different weight percentages (0.8, 1.6, and 2.4 wt %) of silicon was incorporated into hydroxyapatite and fabricated into microspheres. 2.4 wt % of Si incorporated into HAp microspheres (2.4 SiHAp) were found to enhance functional properties of the microspheres which resulted in improved cell viability of human mesenchymal stem cells (hMSCs), demonstrating rapid cell proliferation rates resulting in high cell density accumulated on the surface of the microspheres which in turn permitted better hMSCs differentiation into osteoblasts when validated by bone marker assays (Type I collagen, alkaline phosphatase, osteocalcin, and osteopontin) compared to apatite microspheres of lower wt % of Si incorporated and non-substituted HAp (2.4 SiHAp >1.6 SiHAp >0.8 SiHAp > HAp). SEM images displayed the densest cell population on 2.4 SiHAp surfaces with the greatest degree of cell stretching and bridging between neighboring microspheres. Incorporation of silicon into apatite microspheres was found to accelerate the rate and number of apatite nucleation sites formed when subjected to physiological conditions improving the interface between the microsphere scaffolds and bone forming cells, facilitating better adhesion and proliferation.


Assuntos
Apatitas , Silício , Humanos , Microesferas , Engenharia Tecidual , Osso e Ossos
4.
J Appl Biomater Funct Mater ; 22: 22808000231221067, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38217369

RESUMO

The research on tissue engineering applications has been progressing to manufacture ideal tissue scaffold biomaterials. In this study, a double-layered electrospun biofiber scaffold biomaterial including Polycaprolactone (PCL)/Collagen (COL) fibrous inner layer and PCL/ Momordica charantia (MC) and Hypericum perforatum (HP) oils fibrous outer layer was developed to manufacture a functional, novel tissue scaffold with the advantageous mechanical and biological properties. The main approach was to combine the natural perspective using medicinal oils with an engineering point of view to fabricate a potential functional scaffold for tissue engineering. Medicinal plants MC and HP are rich in functional oils and incorporation of them in a tissue scaffold will unveil their potential to augment both new tissue formation and wound healing. In this study, a novel double-layered scaffold prototype was fabricated using electrospinning technique with two PCL fiber layers, first is composed of collagen, and second is composed of oils extracted from medicinal plants. Initially, the composition of plant oils was analyzed. Thereafter the biofiber scaffold layers were fabricated and were evaluated in terms of morphology, physicochemistry, thermal and mechanical features, wettability, in vitro bio-degradability. Double-layered scaffold prototype was further analyzed in terms of in vitro biocompatibility and antibacterial effect. The medicinal oils blend provided antioxidant and antibacterial properties to the novel PCL/Oils layer. The results signify that inner PCL/COL layer exhibited advanced biodegradability of 8.5% compared to PCL and enhanced wettability with 11.7° contact angle. Strength of scaffold prototype was 5.98 N/mm2 thanks to the elastic PCL fibrous matrix. The double-layered functional biofiber scaffold enabled 92% viability after 72 h contact with fibroblast cells and furthermore provided feasible attachment sites for the cells. The functional scaffold prototype's noteworthy mechanical, chemical, and biological features enable it to be suggested as a different novel biomaterial with the potential to be utilized in tissue engineering applications.


Assuntos
Hypericum , Momordica charantia , Engenharia Tecidual , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Colágeno/química , Poliésteres/química , Óleos de Plantas , Antibacterianos/química
5.
Adv Healthc Mater ; 13(9): e2303708, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37990819

RESUMO

Artificial organs and organs-on-a-chip (OoC) are of great clinical and scientific interest and have recently been made by additive manufacturing, but depend on, and benefit from, biocompatible, biodegradable, and soft materials. Poly(octamethylene maleate (anhydride) citrate (POMaC) meets these criteria and has gained popularity, and as in principle, it can be photocured and is amenable to vat-photopolymerization (VP) 3D printing, but only low-resolution structures have been produced so far. Here, a VP-POMaC ink is introduced and 3D printing of 80 µm positive features and complex 3D structures is demonstrated using low-cost (≈US$300) liquid-crystal display (LCD) printers. The ink includes POMaC, a diluent and porogen additive to reduce viscosity within the range of VP, and a crosslinker to speed up reaction kinetics. The mechanical properties of the cured ink are tuned to match the elastic moduli of different tissues simply by varying the porogen concentration. The biocompatibility is assessed by cell culture which yielded 80% viability and the potential for tissue engineering illustrated with a 3D-printed gyroid seeded with cells. VP-POMaC and low-cost LCD printers make the additive manufacturing of high resolution, elastomeric, and biodegradable constructs widely accessible, paving the way for a myriad of applications in tissue engineering and 3D cell culture as demonstrated here, and possibly in OoC, implants, wearables, and soft robotics.


Assuntos
Elastômeros , Engenharia Tecidual , Elastômeros/química , Impressão Tridimensional
6.
Biomacromolecules ; 25(4): 2075-2113, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37406611

RESUMO

The field of bone tissue engineering has seen significant advancements in recent years. Each year, over two million bone transplants are performed globally, and conventional treatments, such as bone grafts and metallic implants, have their limitations. Tissue engineering offers a new level of treatment, allowing for the creation of living tissue within a biomaterial framework. Recent advances in biomaterials have provided innovative approaches to rebuilding bone tissue function after damage. Among them, gelatin methacryloyl (GelMA) hydrogel is emerging as a promising biomaterial for supporting cell proliferation and tissue regeneration, and GelMA has exhibited exceptional physicochemical and biological properties, making it a viable option for clinical translation. Various methods and classes of additives have been used in the application of GelMA for bone regeneration, with the incorporation of nanofillers or other polymers enhancing its resilience and functional performance. Despite promising results, the fabrication of complex structures that mimic the bone architecture and the provision of balanced physical properties for both cell and vasculature growth and proper stiffness for load bearing remain as challenges. In terms of utilizing osteogenic additives, the priority should be on versatile components that promote angiogenesis and osteogenesis while reinforcing the structure for bone tissue engineering applications. This review focuses on recent efforts and advantages of GelMA-based composite biomaterials for bone tissue engineering, covering the literature from the last five years.


Assuntos
Metacrilatos , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Gelatina/química , Osso e Ossos , Hidrogéis/química
7.
Macromol Biosci ; 24(3): e2300393, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37904644

RESUMO

Achieving surgical success in orthopedic patients with metabolic disease remains a substantial challenge. Diabetic patients exhibit a unique tissue microenvironment consisting of high levels of reactive oxygen species (ROS), which promotes osteoclastic activity and leads to decreased bone healing. Alternative solutions, such as synthetic grafts, incorporating progenitor cells or growth factors, can be costly and have processing constraints. Previously, the potential for thiol-methacrylate networks to sequester ROS while possessing tunable mechanical properties and degradation rates has been demonstrated. In this study, the ability to fabricate thiol-methacrylate interconnected porous scaffolds using emulsion templating to create monoliths with an average porosity of 97.0% is reported. The average pore sizes of the scaffolds range from 27 to 656 µm. The scaffolds can sequester pathologic levels of ROS via hydrogen peroxide consumption and are not impacted by sterilization. Subcutaneous implantation shows no signs of acute toxicity. Finally, in a 6-week bilateral calvarial defect model in Zucker diabetic fatty rats, ROS scaffolds increase new bone volume by 66% over sham defects. Histologic analysis identifies woven bone infiltration throughout the scaffold and neovascularization. Overall, this study suggests that porous thiol-methacrylate scaffolds may improve healing for bone grafting applications where high levels of ROS hinder bone growth.


Assuntos
Diabetes Mellitus , Polímeros , Estirenos , Alicerces Teciduais , Humanos , Ratos , Animais , Engenharia Tecidual , Espécies Reativas de Oxigênio , Ratos Zucker , Porosidade , Metacrilatos , Compostos de Sulfidrila
9.
F S Sci ; 5(1): 58-68, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145868

RESUMO

OBJECTIVE: To assess the in vivo biomechanical maturation of tissue-engineered neo-uteri that have previously supported live births in a rabbit model. DESIGN: Nonclinical animal study. SETTING: University-based research laboratory. ANIMALS: Eighteen adult female rabbits. INTERVENTION: Biodegradable poly-DL-lactide-co-glycolide-coated polyglycolic acid scaffolds seeded with autologous uterine-derived endometrial and myometrial cells. Nonseeded scaffolds and seeded, tissue-engineered neo-uteri were implanted into one uterine horn of rabbits for 1, 3, or 6 months, excised, and biomechanically assessed in comparison to native uterine tissue. MAIN OUTCOME MEASURES: Tensile stress-relaxation testing, strain-to-failure testing, and viscoelastic modeling. RESULTS: By evaluating the biomechanical data with several viscoelastic models, it was revealed that tissue-engineered uteri were more mechanically robust than nonseeded scaffolds. For example, the 10% instantaneous stress of the tissue-engineered neo-uteri was 2.1 times higher than the nonseeded scaffolds at the 1-month time point, 1.6 times higher at the 3-month time point, and 1.5 times higher at the 6-month time point. Additionally, as the duration of implantation increased, the engineered constructs became more mechanically robust (e.g., 10% instantaneous stress of the tissue-engineered neo-uteri increased from 22 kPa at 1 month to 42 kPa at 6 months). Compared with native tissue values, tissue-engineered neo-uteri achieved or surpassed native tissue values by the 6-month time point. CONCLUSION: The present study evaluated the mechanical characteristics of novel tissue-engineered neo-uteri that have previously been reported to support live births in the rabbit model. We demonstrate that the biomechanics of these implants closely resemble those of native tissue, giving further credence to their development as a clinical solution to uterine factor infertility.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Humanos , Gravidez , Animais , Feminino , Coelhos , Ácido Poliglicólico , Nascido Vivo , Útero/cirurgia
10.
AAPS PharmSciTech ; 24(8): 228, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964180

RESUMO

This review explores recent advancements and applications of 3D printing in healthcare, with a focus on personalized medicine, tissue engineering, and medical device production. It also assesses economic, environmental, and ethical considerations. In our review of the literature, we employed a comprehensive search strategy, utilizing well-known databases like PubMed and Google Scholar. Our chosen keywords encompassed essential topics, including 3D printing, personalized medicine, nanotechnology, and related areas. We first screened article titles and abstracts and then conducted a detailed examination of selected articles without imposing any date limitations. The articles selected for inclusion, comprising research studies, clinical investigations, and expert opinions, underwent a meticulous quality assessment. This methodology ensured the incorporation of high-quality sources, contributing to a robust exploration of the role of 3D printing in the realm of healthcare. The review highlights 3D printing's potential in healthcare, including customized drug delivery systems, patient-specific implants, prosthetics, and biofabrication of organs. These innovations have significantly improved patient outcomes. Integration of nanotechnology has enhanced drug delivery precision and biocompatibility. 3D printing also demonstrates cost-effectiveness and sustainability through optimized material usage and recycling. The healthcare sector has witnessed remarkable progress through 3D printing, promoting a patient-centric approach. From personalized implants to radiation shielding and drug delivery systems, 3D printing offers tailored solutions. Its transformative applications, coupled with economic viability and sustainability, have the potential to revolutionize healthcare. Addressing material biocompatibility, standardization, and ethical concerns is essential for responsible adoption.


Assuntos
Medicina de Precisão , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Impressão Tridimensional , Sistemas de Liberação de Medicamentos , Poder Psicológico
11.
Molecules ; 28(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37894518

RESUMO

Large bone defects due to trauma, infections, and tumors are difficult to heal spontaneously by the body's repair mechanisms and have become a major hindrance to people's daily lives and economic development. However, autologous and allogeneic bone grafts, with their lack of donors, more invasive surgery, immune rejection, and potential viral transmission, hinder the development of bone repair. Hydrogel tissue bioengineered scaffolds have gained widespread attention in the field of bone repair due to their good biocompatibility and three-dimensional network structure that facilitates cell adhesion and proliferation. In addition, loading natural products with nanoparticles and incorporating them into hydrogel tissue bioengineered scaffolds is one of the most effective strategies to promote bone repair due to the good bioactivity and limitations of natural products. Therefore, this paper presents a brief review of the application of hydrogels with different gel-forming properties, hydrogels with different matrices, and nanoparticle-loaded natural products loaded and incorporated into hydrogels for bone defect repair in recent years.


Assuntos
Produtos Biológicos , Hidrogéis , Humanos , Hidrogéis/uso terapêutico , Hidrogéis/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Engenharia Biomédica
12.
Head Face Med ; 19(1): 46, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891625

RESUMO

Current 3D scanning and printing technologies offer not only state-of-the-art developments in the field of medical imaging and bio-engineering, but also cost and time effective solutions for surgical reconstruction procedures. Besides tissue engineering, where living cells are used, bio-compatible polymers or synthetic resin can be applied. The combination of 3D handheld scanning devices or volumetric imaging, (open-source) image processing packages, and 3D printers form a complete workflow chain that is capable of effective rapid prototyping of outer ear replicas. This paper reviews current possibilities and latest use cases for 3D-scanning, data processing and printing of outer ear replicas with a focus on low-cost solutions for rehabilitation engineering.


Assuntos
Procedimentos de Cirurgia Plástica , Impressão Tridimensional , Humanos , Análise Custo-Benefício , Orelha Externa , Engenharia Tecidual
13.
J Biomater Appl ; 38(5): 646-661, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37889125

RESUMO

Tissue engineering has recently attracted attention as an alternative to traditional treatment methods for tissue and organ damage. Since bone is one of the most important vital parts of the body, the treatment of bone damage is important. Silk fibroin is a natural polymer with properties such as biocompatibility and biodegradability, which attracts attention with its controlled release, especially in drug delivery systems. In this study, gelatin-based scaffolds loaded with silk fibroin nanoparticles and ß -tricalcium phosphate (ß -TCP) were developed to be used as a potential drug delivery system in bone tissue engineering. The chosen nanoparticle formulation has a 294 nm average diameter with a 0.380 polidispersity index (PDI). In vitro characterization of scaffolds was performed by mechanical, morphological characterization, swelling capacity, Differential Scanning Calorimetry (DSC), Fourier-Transform Infrared Spectroscopy (FT-IR) measurements, and biocompatibility was evaluated by cell culture studies. Swelling index, tensile strength, elongation at break, and Young modulus of the ß -TCP and silk nanoparticles loaded scaffold were found as 456%, 1.476 MPa, 6.75%, and 24 MPa, respectively. In vitro cell culture studies have shown that scaffolds prepared in the present study can accelerate osteoblast differentiation and increase the healing rate of bone tissues. In addition, they have the potential to be used as a drug delivery system in bone tissue engineering that needs to be evaluated with further studies.


Assuntos
Fibroínas , Nanopartículas , Fibroínas/química , Gelatina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Alicerces Teciduais/química , Osso e Ossos , Engenharia Tecidual/métodos , Seda , Nanopartículas/química
14.
Curr Eye Res ; 48(12): 1112-1121, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37669915

RESUMO

PURPOSE: Loss of corneal transparency is one of the major causes of visual loss, generating a considerable health and economic burden globally. Corneal transplantation is the leading treatment procedure, where the diseased cornea is replaced by donated corneal tissue. Despite the rise of cornea donations in the past decade, there is still a huge gap between cornea supply and demand worldwide. 3D bioprinting is an emerging technology that can be used to fabricate tissue equivalents that resemble the native tissue, which holds great potential for corneal tissue engineering application. This study evaluates the manufacturability of 3D bioprinted acellular corneal grafts using low-cost equipment and software, not necessarily designed for bioprinting applications. This approach allows access to 3D printed structures where commercial 3D bioprinters are cost prohibitive and not readily accessible to researchers and clinicians. METHODS: Two extrusion-based methods were used to 3D print acellular corneal stromal scaffolds with collagen, alginate, and alginate-gelatin composite bioinks from a digital corneal model. Compression testing was used to determine moduli. RESULTS: The printed model was visually transparent with tunable mechanical properties. The model had central radius of curvature of 7.4 mm, diameter of 13.2 mm, and central thickness of 0.4 mm. The compressive secant modulus of the material was 23.7 ± 1.7 kPa at 20% strain. 3D printing into a concave mold had reliability advantages over printing into a convex mold. CONCLUSIONS: The printed corneal models exhibited visible transparency and a dome shape, demonstrating the potential of this process for the preparation of acellular partial thickness corneal replacements. The modified printing process presented a low-cost option for corneal bioprinting.


Assuntos
Bioimpressão , Humanos , Bioimpressão/métodos , Estudos de Viabilidade , Reprodutibilidade dos Testes , Substância Própria/cirurgia , Engenharia Tecidual/métodos , Alginatos , Alicerces Teciduais/química , Hidrogéis/química
15.
Small ; 19(50): e2300771, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37691091

RESUMO

Diatoms have long been used as living biological indicators for the assessment of water quality in lakes and rivers worldwide. While this approach benefits from the great diversity of these unicellular algae, established protocols are time-consuming and require specialized equipment. Here, this work 3D prints diatom-laden hydrogels that can be used as a simple multiplex bio-indicator for water assessment. The hydrogel-based living materials are created with the help of a desktop extrusion-based printer using a suspension of diatoms, cellulose nanocrystals (CNC) and alginate as bio-ink constituents. Rheology and mechanical tests are employed to establish optimum bio-ink formulations, whereas cell culture experiments are utilized to evaluate the proliferation of the entrapped diatoms in the presence of selected water contaminants. Bioprinting of diatom-laden hydrogels is shown to be an enticing approach to generate living materials that can serve as low-cost bio-indicators for water quality assessment.


Assuntos
Bioimpressão , Diatomáceas , Bioimpressão/métodos , Qualidade da Água , Hidrogéis/química , Reologia , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Tinta
16.
ACS Biomater Sci Eng ; 9(8): 4573-4582, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37531298

RESUMO

Endogenous electrically mediated signaling is a key feature of most native tissues, the most notable examples being the nervous and the cardiac systems. Biomedical engineering often aims to harness and drive such activity in vitro, in bioreactors to study cell disease and differentiation, and often in three-dimensional (3D) formats with the help of biomaterials, with most of these approaches adopting scaffold-free self-assembling strategies to create 3D tissues. In essence, this is the casting of gels which self-assemble in response to factors such as temperature or pH and have capacity to harbor cells during this process without imparting toxicity. However, the use of materials that do not self-assemble but can support 3D encapsulation of cells (such as porous scaffolds) warrants consideration given the larger repertoire this would provide in terms of material physicochemical properties and microstructure. In this method and protocol paper, we detail and provide design codes and assembly instructions to cheaply create an electrical pacing bioreactor and a Rig for Stimulation of Sponge-like Scaffolds (R3S). This setup has also been engineered to simultaneously perform live optical imaging of the in vitro models. To showcase a pilot exploration of material physiochemistry (in this aspect material conductivity) and microstructure (isotropy versus anisotropy), we adopt isotropic and anisotropic porous scaffolds composed of collagen or poly(3,4-ethylene dioxythiophene):polystyrenesulfonate (PEDOT:PSS) for their contrasting conductivity properties yet similar in porosity and mechanical integrity. Electric field pacing of mouse C3H10 cells on anisotropic porous scaffolds placed in R3S led to increased metabolic activity and enhanced cell alignment. Furthermore, after 7 days electrical pacing drove C3H10 alignment regardless of material conductivity or anisotropy. This platform and its design, which we have shared, have wide suitability for the study of electrical pacing of cellularized scaffolds in 3D in vitro cultures.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Camundongos , Animais , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Porosidade , Fluxo de Trabalho , Materiais Biocompatíveis
17.
Int J Mol Sci ; 24(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37445622

RESUMO

Musculoskeletal impairments, especially cartilage and meniscus lesions, are some of the major contributors to disabilities. Thus, novel tissue engineering strategies are being developed to overcome these issues. In this study, the aim was to investigate the biocompatibility, in vitro and in vivo, of a thermosensitive, injectable chitosan-based hydrogel loaded with three different primary mesenchymal stromal cells. The cell types were human adipose-derived mesenchymal stromal cells (hASCs), human bone marrow stem cells (hBMSCs), and neonatal porcine infrapatellar fat-derived cells (IFPCs). For the in vitro study, the cells were encapsulated in sol-phase hydrogel, and then, analyzed via live/dead assay at 1, 4, 7, and 14 days to compare their capacity to survive in the hydrogel. To assess biocompatibility in vivo, cellularized scaffolds were subcutaneously implanted in the dorsal pouches of nude mice and analyzed at 4 and 12 weeks. Our data showed that all the different cell types survived (the live cell percentages were between 60 and 80 at all time points in vitro) and proliferated in the hydrogel (from very few at 4 weeks to up to 30% at 12 weeks in vivo); moreover, the cell-laden hydrogels did not trigger an immune response in vivo. Hence, our hydrogel formulation showed a favorable profile in terms of safety and biocompatibility, and it may be applied in tissue engineering strategies for cartilage and meniscus repair.


Assuntos
Quitosana , Hidrogéis , Camundongos , Humanos , Animais , Suínos , Engenharia Tecidual , Camundongos Nus , Diferenciação Celular , Alicerces Teciduais
18.
Int J Mol Sci ; 24(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298394

RESUMO

Three-dimensional scaffold-based culture has been increasingly gaining influence in oncology as a therapeutic strategy for tumors with a high relapse percentage. This study aims to evaluate electrospun poly(ε-caprolactone) (PCL) and poly(lactic acid) (PLA) scaffolds to create a 3D model of colorectal adenocarcinoma. Specifically, the physico-mechanical and morphological properties of PCL and PLA electrospun fiber meshes collected at different drum velocities, i.e., 500 rpm, 1000 rpm and 2500 rpm, were assessed. Fiber size, mesh porosity, pore size distribution, water contact angle and tensile mechanical properties were investigated. Caco-2 cells were cultured on the produced PCL and PLA scaffolds for 7 days, demonstrating good cell viability and metabolic activity in all the scaffolds. A cross-analysis of the cell-scaffold interactions with morphological, mechanical and surface characterizations of the different electrospun fiber meshes was carried out, showing an opposite trend of cell metabolic activity in PLA and PCL scaffolds regardless of the fiber alignment, which increased in PLA and decreased in PCL. The best samples for Caco-2 cell culture were PCL500 (randomly oriented fibers) and PLA2500 (aligned fibers). Caco-2 cells had the highest metabolic activity in these scaffolds, with Young's moduli in the range of 8.6-21.9 MPa. PCL500 showed Young's modulus and strain at break close to those of the large intestine. Advancements in 3D in vitro models of colorectal adenocarcinoma could move forward the development of therapies for this cancer.


Assuntos
Adenocarcinoma , Neoplasias Colorretais , Humanos , Engenharia Tecidual/métodos , Células CACO-2 , Recidiva Local de Neoplasia , Poliésteres , Alicerces Teciduais
19.
J Biomech ; 154: 111590, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37163962

RESUMO

Mechanical stimulation can modulate the chondrogenic differentiation of stem/progenitor cells and potentially benefit tissue engineering (TE) of functional articular cartilage (AC). Mechanical cues like hydrostatic pressure (HP) are often applied to cell-laden scaffolds, with little optimization of other key parameters (e.g. cell density, biomaterial properties) known to effect lineage commitment. In this study, we first sought to establish cell seeding densities and fibrin concentrations supportive of robust chondrogenesis of human mesenchymal stem cells (hMSCs). High cell densities (15*106 cells/ml) were more supportive of sGAG deposition on a per cell basis, while collagen deposition was higher at lower seeding densities (5*106 cells/ml). Employment of lower fibrin (2.5 %) concentration hydrogels supported more robust chondrogenesis of hMSCs, with higher collagen type II and lower collagen type X deposition compared to 5 % hydrogels. The application of HP to hMSCs maintained in identified chondro-inductive culture conditions had little effect on overall levels of cartilage-specific matrix production. However, if hMSCs were first temporally primed with TGF-ß3 before its withdrawal, they responded to HP by increased sGAG production. The response to HP in higher cell density cultures was also associated with a metabolic shift towards glycolysis, which has been linked with a mature chondrocyte-like phenotype. These results suggest that mechanical stimulation may not be necessary to engineer functional AC grafts using hMSCs if other culture conditions have been optimised. However, such bioreactor systems can potentially be employed to better understand how engineered tissues respond to mechanical loading in vivo once removed from in vitro culture environments.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Humanos , Condrogênese/fisiologia , Pressão Hidrostática , Engenharia Tecidual/métodos , Diferenciação Celular , Hidrogéis , Fibrina , Células Cultivadas
20.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108772

RESUMO

This research aimed to substantiate the potential practicality of utilizing a matrix-like platform, a novel 3D-printed biomaterial scaffold, to enhance and guide host cells' growth for bone tissue regeneration. The 3D biomaterial scaffold was successfully printed using a 3D Bioplotter® (EnvisionTEC, GmBH) and characterized. Osteoblast-like MG63 cells were utilized to culture the novel printed scaffold over a period of 1, 3, and 7 days. Cell adhesion and surface morphology were examined using scanning electron microscopy (SEM) and optical microscopy, while cell viability was determined using MTS assay and cell proliferation was evaluated using a Leica microsystem (Leica MZ10 F). The 3D-printed biomaterial scaffold exhibited essential biomineral trace elements that are significant for biological bone (e.g., Ca-P) and were confirmed through energy-dispersive X-ray (EDX) analysis. The microscopy analyses revealed that the osteoblast-like MG63 cells were attached to the printed scaffold surface. The viability of cultured cells on the control and printed scaffold increased over time (p < 0.05); however, on respective days (1, 3, and 7 days), the viability of cultured cells between the two groups was not significantly different (p > 0.05). The protein (human BMP-7, also known as growth factor) was successfully attached to the surface of the 3D-printed biomaterial scaffold as an initiator of osteogenesis in the site of the induced bone defect. An in vivo study was conducted to substantiate if the novel printed scaffold properties were engineered adequately to mimic the bone regeneration cascade using an induced rabbit critical-sized nasal bone defect. The novel printed scaffold provided a potential pro-regenerative platform, rich in mechanical, topographical, and biological cues to guide and activate host cells toward functional regeneration. The histological studies revealed that there was progress in new bone formation, especially at week 8 of the study, in all induced bone defects. In conclusion, the protein (human BMP-7)-embedded scaffolds showed higher regenerative bone formation potential (week 8 complete) compared to the scaffolds without protein (e.g., growth factor; BMP-7) and the control (empty defect). At 8 weeks postimplantation, protein (BMP-7) significantly promoted osteogenesis as compared to other groups. The scaffold underwent gradual degradation and replacement by new bones at 8 weeks in most defects.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Animais , Humanos , Coelhos , Materiais Biocompatíveis/farmacologia , Alicerces Teciduais , Proteína Morfogenética Óssea 7 , Osteogênese , Regeneração Óssea , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA